/*-------------------------------------------------------------------- This file is part of the Adafruit NeoPixel library. NeoPixel is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. NeoPixel is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with NeoPixel. If not, see . --------------------------------------------------------------------*/ #ifndef ADAFRUIT_NEOPIXEL_H #define ADAFRUIT_NEOPIXEL_H #if (ARDUINO >= 100) #include #else #include #include #endif // 'type' flags for LED pixels (third parameter to constructor): #define NEO_RGB 0x00 // Wired for RGB data order #define NEO_GRB 0x01 // Wired for GRB data order #define NEO_BRG 0x04 #define NEO_COLMASK 0x01 #define NEO_KHZ800 0x02 // 800 KHz datastream #define NEO_SPDMASK 0x02 // Trinket flash space is tight, v1 NeoPixels aren't handled by default. // Remove the ifndef/endif to add support -- but code will be bigger. // Conversely, can comment out the #defines to save space on other MCUs. #ifndef __AVR_ATtiny85__ #define NEO_KHZ400 0x00 // 400 KHz datastream #endif class MitovEmbedded_Adafruit_NeoPixel { public: // Constructor: number of LEDs, pin number, LED type MitovEmbedded_Adafruit_NeoPixel(uint16_t n, uint8_t p=6, uint8_t t=NEO_GRB + NEO_KHZ800); ~MitovEmbedded_Adafruit_NeoPixel(); void begin(void), show(void), setPin(uint8_t p), setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b), setPixelColor(uint16_t n, uint32_t c), setBrightness(uint8_t), clear(); uint8_t *getPixels(void) const, getBrightness(void) const; uint16_t numPixels(void) const; static uint32_t Color(uint8_t r, uint8_t g, uint8_t b); uint32_t getPixelColor(uint16_t n) const; inline bool canShow(void) { return (micros() - endTime) >= 50L; } private: const uint16_t numLEDs, // Number of RGB LEDs in strip numBytes; // Size of 'pixels' buffer below uint8_t pin, // Output pin number brightness, *pixels, // Holds LED color values (3 bytes each) rOffset, // Index of red byte within each 3-byte pixel gOffset, // Index of green byte bOffset; // Index of blue byte const uint8_t type; // Pixel flags (400 vs 800 KHz, RGB vs GRB color) uint32_t endTime; // Latch timing reference #ifdef __AVR__ const volatile uint8_t *port; // Output PORT register uint8_t pinMask; // Output PORT bitmask #endif }; MitovEmbedded_Adafruit_NeoPixel::MitovEmbedded_Adafruit_NeoPixel(uint16_t n, uint8_t p, uint8_t t) : numLEDs(n), numBytes(n * 3), pin(p), brightness(0), pixels(NULL), type(t), endTime(0) #ifdef __AVR__ ,port(portOutputRegister(digitalPinToPort(p))), pinMask(digitalPinToBitMask(p)) #endif { if((pixels = (uint8_t *)malloc(numBytes))) { memset(pixels, 0, numBytes); } if(t & NEO_GRB) { // GRB vs RGB; might add others if needed rOffset = 1; gOffset = 0; bOffset = 2; } else if (t & NEO_BRG) { rOffset = 1; gOffset = 2; bOffset = 0; } else { rOffset = 0; gOffset = 1; bOffset = 2; } } MitovEmbedded_Adafruit_NeoPixel::~MitovEmbedded_Adafruit_NeoPixel() { if(pixels) free(pixels); pinMode(pin, INPUT); } void MitovEmbedded_Adafruit_NeoPixel::begin(void) { pinMode(pin, OUTPUT); digitalWrite(pin, LOW); } void MitovEmbedded_Adafruit_NeoPixel::show(void) { if(!pixels) return; // Data latch = 50+ microsecond pause in the output stream. Rather than // put a delay at the end of the function, the ending time is noted and // the function will simply hold off (if needed) on issuing the // subsequent round of data until the latch time has elapsed. This // allows the mainline code to start generating the next frame of data // rather than stalling for the latch. while(!canShow()); // endTime is a private member (rather than global var) so that mutliple // instances on different pins can be quickly issued in succession (each // instance doesn't delay the next). // In order to make this code runtime-configurable to work with any pin, // SBI/CBI instructions are eschewed in favor of full PORT writes via the // OUT or ST instructions. It relies on two facts: that peripheral // functions (such as PWM) take precedence on output pins, so our PORT- // wide writes won't interfere, and that interrupts are globally disabled // while data is being issued to the LEDs, so no other code will be // accessing the PORT. The code takes an initial 'snapshot' of the PORT // state, computes 'pin high' and 'pin low' values, and writes these back // to the PORT register as needed. noInterrupts(); // Need 100% focus on instruction timing #ifdef __AVR__ volatile uint16_t i = numBytes; // Loop counter volatile uint8_t *ptr = pixels, // Pointer to next byte b = *ptr++, // Current byte value hi, // PORT w/output bit set high lo; // PORT w/output bit set low // Hand-tuned assembly code issues data to the LED drivers at a specific // rate. There's separate code for different CPU speeds (8, 12, 16 MHz) // for both the WS2811 (400 KHz) and WS2812 (800 KHz) drivers. The // datastream timing for the LED drivers allows a little wiggle room each // way (listed in the datasheets), so the conditions for compiling each // case are set up for a range of frequencies rather than just the exact // 8, 12 or 16 MHz values, permitting use with some close-but-not-spot-on // devices (e.g. 16.5 MHz DigiSpark). The ranges were arrived at based // on the datasheet figures and have not been extensively tested outside // the canonical 8/12/16 MHz speeds; there's no guarantee these will work // close to the extremes (or possibly they could be pushed further). // Keep in mind only one CPU speed case actually gets compiled; the // resulting program isn't as massive as it might look from source here. // 8 MHz(ish) AVR --------------------------------------------------------- #if (F_CPU >= 7400000UL) && (F_CPU <= 9500000UL) #ifdef NEO_KHZ400 if((type & NEO_SPDMASK) == NEO_KHZ800) { // 800 KHz bitstream #endif volatile uint8_t n1, n2 = 0; // First, next bits out // Squeezing an 800 KHz stream out of an 8 MHz chip requires code // specific to each PORT register. At present this is only written // to work with pins on PORTD or PORTB, the most likely use case -- // this covers all the pins on the Adafruit Flora and the bulk of // digital pins on the Arduino Pro 8 MHz (keep in mind, this code // doesn't even get compiled for 16 MHz boards like the Uno, Mega, // Leonardo, etc., so don't bother extending this out of hand). // Additional PORTs could be added if you really need them, just // duplicate the else and loop and change the PORT. Each add'l // PORT will require about 150(ish) bytes of program space. // 10 instruction clocks per bit: HHxxxxxLLL // OUT instructions: ^ ^ ^ (T=0,2,7) #ifdef PORTD // PORTD isn't present on ATtiny85, etc. if(port == &PORTD) { hi = PORTD | pinMask; lo = PORTD & ~pinMask; n1 = lo; if(b & 0x80) n1 = hi; // Dirty trick: RJMPs proceeding to the next instruction are used // to delay two clock cycles in one instruction word (rather than // using two NOPs). This was necessary in order to squeeze the // loop down to exactly 64 words -- the maximum possible for a // relative branch. asm volatile( "headD:" "\n\t" // Clk Pseudocode // Bit 7: "out %[port] , %[hi]" "\n\t" // 1 PORT = hi "mov %[n2] , %[lo]" "\n\t" // 1 n2 = lo "out %[port] , %[n1]" "\n\t" // 1 PORT = n1 "rjmp .+0" "\n\t" // 2 nop nop "sbrc %[byte] , 6" "\n\t" // 1-2 if(b & 0x40) "mov %[n2] , %[hi]" "\n\t" // 0-1 n2 = hi "out %[port] , %[lo]" "\n\t" // 1 PORT = lo "rjmp .+0" "\n\t" // 2 nop nop // Bit 6: "out %[port] , %[hi]" "\n\t" // 1 PORT = hi "mov %[n1] , %[lo]" "\n\t" // 1 n1 = lo "out %[port] , %[n2]" "\n\t" // 1 PORT = n2 "rjmp .+0" "\n\t" // 2 nop nop "sbrc %[byte] , 5" "\n\t" // 1-2 if(b & 0x20) "mov %[n1] , %[hi]" "\n\t" // 0-1 n1 = hi "out %[port] , %[lo]" "\n\t" // 1 PORT = lo "rjmp .+0" "\n\t" // 2 nop nop // Bit 5: "out %[port] , %[hi]" "\n\t" // 1 PORT = hi "mov %[n2] , %[lo]" "\n\t" // 1 n2 = lo "out %[port] , %[n1]" "\n\t" // 1 PORT = n1 "rjmp .+0" "\n\t" // 2 nop nop "sbrc %[byte] , 4" "\n\t" // 1-2 if(b & 0x10) "mov %[n2] , %[hi]" "\n\t" // 0-1 n2 = hi "out %[port] , %[lo]" "\n\t" // 1 PORT = lo "rjmp .+0" "\n\t" // 2 nop nop // Bit 4: "out %[port] , %[hi]" "\n\t" // 1 PORT = hi "mov %[n1] , %[lo]" "\n\t" // 1 n1 = lo "out %[port] , %[n2]" "\n\t" // 1 PORT = n2 "rjmp .+0" "\n\t" // 2 nop nop "sbrc %[byte] , 3" "\n\t" // 1-2 if(b & 0x08) "mov %[n1] , %[hi]" "\n\t" // 0-1 n1 = hi "out %[port] , %[lo]" "\n\t" // 1 PORT = lo "rjmp .+0" "\n\t" // 2 nop nop // Bit 3: "out %[port] , %[hi]" "\n\t" // 1 PORT = hi "mov %[n2] , %[lo]" "\n\t" // 1 n2 = lo "out %[port] , %[n1]" "\n\t" // 1 PORT = n1 "rjmp .+0" "\n\t" // 2 nop nop "sbrc %[byte] , 2" "\n\t" // 1-2 if(b & 0x04) "mov %[n2] , %[hi]" "\n\t" // 0-1 n2 = hi "out %[port] , %[lo]" "\n\t" // 1 PORT = lo "rjmp .+0" "\n\t" // 2 nop nop // Bit 2: "out %[port] , %[hi]" "\n\t" // 1 PORT = hi "mov %[n1] , %[lo]" "\n\t" // 1 n1 = lo "out %[port] , %[n2]" "\n\t" // 1 PORT = n2 "rjmp .+0" "\n\t" // 2 nop nop "sbrc %[byte] , 1" "\n\t" // 1-2 if(b & 0x02) "mov %[n1] , %[hi]" "\n\t" // 0-1 n1 = hi "out %[port] , %[lo]" "\n\t" // 1 PORT = lo "rjmp .+0" "\n\t" // 2 nop nop // Bit 1: "out %[port] , %[hi]" "\n\t" // 1 PORT = hi "mov %[n2] , %[lo]" "\n\t" // 1 n2 = lo "out %[port] , %[n1]" "\n\t" // 1 PORT = n1 "rjmp .+0" "\n\t" // 2 nop nop "sbrc %[byte] , 0" "\n\t" // 1-2 if(b & 0x01) "mov %[n2] , %[hi]" "\n\t" // 0-1 n2 = hi "out %[port] , %[lo]" "\n\t" // 1 PORT = lo "sbiw %[count], 1" "\n\t" // 2 i-- (don't act on Z flag yet) // Bit 0: "out %[port] , %[hi]" "\n\t" // 1 PORT = hi "mov %[n1] , %[lo]" "\n\t" // 1 n1 = lo "out %[port] , %[n2]" "\n\t" // 1 PORT = n2 "ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ "sbrc %[byte] , 7" "\n\t" // 1-2 if(b & 0x80) "mov %[n1] , %[hi]" "\n\t" // 0-1 n1 = hi "out %[port] , %[lo]" "\n\t" // 1 PORT = lo "brne headD" "\n" // 2 while(i) (Z flag set above) : [byte] "+r" (b), [n1] "+r" (n1), [n2] "+r" (n2), [count] "+w" (i) : [port] "I" (_SFR_IO_ADDR(PORTD)), [ptr] "e" (ptr), [hi] "r" (hi), [lo] "r" (lo)); } else if(port == &PORTB) { #endif // PORTD // Same as above, just switched to PORTB and stripped of comments. hi = PORTB | pinMask; lo = PORTB & ~pinMask; n1 = lo; if(b & 0x80) n1 = hi; asm volatile( "headB:" "\n\t" "out %[port] , %[hi]" "\n\t" "mov %[n2] , %[lo]" "\n\t" "out %[port] , %[n1]" "\n\t" "rjmp .+0" "\n\t" "sbrc %[byte] , 6" "\n\t" "mov %[n2] , %[hi]" "\n\t" "out %[port] , %[lo]" "\n\t" "rjmp .+0" "\n\t" "out %[port] , %[hi]" "\n\t" "mov %[n1] , %[lo]" "\n\t" "out %[port] , %[n2]" "\n\t" "rjmp .+0" "\n\t" "sbrc %[byte] , 5" "\n\t" "mov %[n1] , %[hi]" "\n\t" "out %[port] , %[lo]" "\n\t" "rjmp .+0" "\n\t" "out %[port] , %[hi]" "\n\t" "mov %[n2] , %[lo]" "\n\t" "out %[port] , %[n1]" "\n\t" "rjmp .+0" "\n\t" "sbrc %[byte] , 4" "\n\t" "mov %[n2] , %[hi]" "\n\t" "out %[port] , %[lo]" "\n\t" "rjmp .+0" "\n\t" "out %[port] , %[hi]" "\n\t" "mov %[n1] , %[lo]" "\n\t" "out %[port] , %[n2]" "\n\t" "rjmp .+0" "\n\t" "sbrc %[byte] , 3" "\n\t" "mov %[n1] , %[hi]" "\n\t" "out %[port] , %[lo]" "\n\t" "rjmp .+0" "\n\t" "out %[port] , %[hi]" "\n\t" "mov %[n2] , %[lo]" "\n\t" "out %[port] , %[n1]" "\n\t" "rjmp .+0" "\n\t" "sbrc %[byte] , 2" "\n\t" "mov %[n2] , %[hi]" "\n\t" "out %[port] , %[lo]" "\n\t" "rjmp .+0" "\n\t" "out %[port] , %[hi]" "\n\t" "mov %[n1] , %[lo]" "\n\t" "out %[port] , %[n2]" "\n\t" "rjmp .+0" "\n\t" "sbrc %[byte] , 1" "\n\t" "mov %[n1] , %[hi]" "\n\t" "out %[port] , %[lo]" "\n\t" "rjmp .+0" "\n\t" "out %[port] , %[hi]" "\n\t" "mov %[n2] , %[lo]" "\n\t" "out %[port] , %[n1]" "\n\t" "rjmp .+0" "\n\t" "sbrc %[byte] , 0" "\n\t" "mov %[n2] , %[hi]" "\n\t" "out %[port] , %[lo]" "\n\t" "sbiw %[count], 1" "\n\t" "out %[port] , %[hi]" "\n\t" "mov %[n1] , %[lo]" "\n\t" "out %[port] , %[n2]" "\n\t" "ld %[byte] , %a[ptr]+" "\n\t" "sbrc %[byte] , 7" "\n\t" "mov %[n1] , %[hi]" "\n\t" "out %[port] , %[lo]" "\n\t" "brne headB" "\n" : [byte] "+r" (b), [n1] "+r" (n1), [n2] "+r" (n2), [count] "+w" (i) : [port] "I" (_SFR_IO_ADDR(PORTB)), [ptr] "e" (ptr), [hi] "r" (hi), [lo] "r" (lo)); #ifdef PORTD } // endif PORTB #endif #ifdef NEO_KHZ400 } else { // end 800 KHz, do 400 KHz // Timing is more relaxed; unrolling the inner loop for each bit is // not necessary. Still using the peculiar RJMPs as 2X NOPs, not out // of need but just to trim the code size down a little. // This 400-KHz-datastream-on-8-MHz-CPU code is not quite identical // to the 800-on-16 code later -- the hi/lo timing between WS2811 and // WS2812 is not simply a 2:1 scale! // 20 inst. clocks per bit: HHHHxxxxxxLLLLLLLLLL // ST instructions: ^ ^ ^ (T=0,4,10) volatile uint8_t next, bit; hi = *port | pinMask; lo = *port & ~pinMask; next = lo; bit = 8; asm volatile( "head20:" "\n\t" // Clk Pseudocode (T = 0) "st %a[port], %[hi]" "\n\t" // 2 PORT = hi (T = 2) "sbrc %[byte] , 7" "\n\t" // 1-2 if(b & 128) "mov %[next], %[hi]" "\n\t" // 0-1 next = hi (T = 4) "st %a[port], %[next]" "\n\t" // 2 PORT = next (T = 6) "mov %[next] , %[lo]" "\n\t" // 1 next = lo (T = 7) "dec %[bit]" "\n\t" // 1 bit-- (T = 8) "breq nextbyte20" "\n\t" // 1-2 if(bit == 0) "rol %[byte]" "\n\t" // 1 b <<= 1 (T = 10) "st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 12) "rjmp .+0" "\n\t" // 2 nop nop (T = 14) "rjmp .+0" "\n\t" // 2 nop nop (T = 16) "rjmp .+0" "\n\t" // 2 nop nop (T = 18) "rjmp head20" "\n\t" // 2 -> head20 (next bit out) "nextbyte20:" "\n\t" // (T = 10) "st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 12) "nop" "\n\t" // 1 nop (T = 13) "ldi %[bit] , 8" "\n\t" // 1 bit = 8 (T = 14) "ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 16) "sbiw %[count], 1" "\n\t" // 2 i-- (T = 18) "brne head20" "\n" // 2 if(i != 0) -> (next byte) : [port] "+e" (port), [byte] "+r" (b), [bit] "+r" (bit), [next] "+r" (next), [count] "+w" (i) : [hi] "r" (hi), [lo] "r" (lo), [ptr] "e" (ptr)); } #endif // 12 MHz(ish) AVR -------------------------------------------------------- #elif (F_CPU >= 11100000UL) && (F_CPU <= 14300000UL) #ifdef NEO_KHZ400 if((type & NEO_SPDMASK) == NEO_KHZ800) { // 800 KHz bitstream #endif // In the 12 MHz case, an optimized 800 KHz datastream (no dead time // between bytes) requires a PORT-specific loop similar to the 8 MHz // code (but a little more relaxed in this case). // 15 instruction clocks per bit: HHHHxxxxxxLLLLL // OUT instructions: ^ ^ ^ (T=0,4,10) volatile uint8_t next; #ifdef PORTD if(port == &PORTD) { hi = PORTD | pinMask; lo = PORTD & ~pinMask; next = lo; if(b & 0x80) next = hi; // Don't "optimize" the OUT calls into the bitTime subroutine; // we're exploiting the RCALL and RET as 3- and 4-cycle NOPs! asm volatile( "headD:" "\n\t" // (T = 0) "out %[port], %[hi]" "\n\t" // (T = 1) "rcall bitTimeD" "\n\t" // Bit 7 (T = 15) "out %[port], %[hi]" "\n\t" "rcall bitTimeD" "\n\t" // Bit 6 "out %[port], %[hi]" "\n\t" "rcall bitTimeD" "\n\t" // Bit 5 "out %[port], %[hi]" "\n\t" "rcall bitTimeD" "\n\t" // Bit 4 "out %[port], %[hi]" "\n\t" "rcall bitTimeD" "\n\t" // Bit 3 "out %[port], %[hi]" "\n\t" "rcall bitTimeD" "\n\t" // Bit 2 "out %[port], %[hi]" "\n\t" "rcall bitTimeD" "\n\t" // Bit 1 // Bit 0: "out %[port] , %[hi]" "\n\t" // 1 PORT = hi (T = 1) "rjmp .+0" "\n\t" // 2 nop nop (T = 3) "ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 5) "out %[port] , %[next]" "\n\t" // 1 PORT = next (T = 6) "mov %[next] , %[lo]" "\n\t" // 1 next = lo (T = 7) "sbrc %[byte] , 7" "\n\t" // 1-2 if(b & 0x80) (T = 8) "mov %[next] , %[hi]" "\n\t" // 0-1 next = hi (T = 9) "nop" "\n\t" // 1 (T = 10) "out %[port] , %[lo]" "\n\t" // 1 PORT = lo (T = 11) "sbiw %[count], 1" "\n\t" // 2 i-- (T = 13) "brne headD" "\n\t" // 2 if(i != 0) -> (next byte) "rjmp doneD" "\n\t" "bitTimeD:" "\n\t" // nop nop nop (T = 4) "out %[port], %[next]" "\n\t" // 1 PORT = next (T = 5) "mov %[next], %[lo]" "\n\t" // 1 next = lo (T = 6) "rol %[byte]" "\n\t" // 1 b <<= 1 (T = 7) "sbrc %[byte], 7" "\n\t" // 1-2 if(b & 0x80) (T = 8) "mov %[next], %[hi]" "\n\t" // 0-1 next = hi (T = 9) "nop" "\n\t" // 1 (T = 10) "out %[port], %[lo]" "\n\t" // 1 PORT = lo (T = 11) "ret" "\n\t" // 4 nop nop nop nop (T = 15) "doneD:" "\n" : [byte] "+r" (b), [next] "+r" (next), [count] "+w" (i) : [port] "I" (_SFR_IO_ADDR(PORTD)), [ptr] "e" (ptr), [hi] "r" (hi), [lo] "r" (lo)); } else if(port == &PORTB) { #endif // PORTD hi = PORTB | pinMask; lo = PORTB & ~pinMask; next = lo; if(b & 0x80) next = hi; // Same as above, just set for PORTB & stripped of comments asm volatile( "headB:" "\n\t" "out %[port], %[hi]" "\n\t" "rcall bitTimeB" "\n\t" "out %[port], %[hi]" "\n\t" "rcall bitTimeB" "\n\t" "out %[port], %[hi]" "\n\t" "rcall bitTimeB" "\n\t" "out %[port], %[hi]" "\n\t" "rcall bitTimeB" "\n\t" "out %[port], %[hi]" "\n\t" "rcall bitTimeB" "\n\t" "out %[port], %[hi]" "\n\t" "rcall bitTimeB" "\n\t" "out %[port], %[hi]" "\n\t" "rcall bitTimeB" "\n\t" "out %[port] , %[hi]" "\n\t" "rjmp .+0" "\n\t" "ld %[byte] , %a[ptr]+" "\n\t" "out %[port] , %[next]" "\n\t" "mov %[next] , %[lo]" "\n\t" "sbrc %[byte] , 7" "\n\t" "mov %[next] , %[hi]" "\n\t" "nop" "\n\t" "out %[port] , %[lo]" "\n\t" "sbiw %[count], 1" "\n\t" "brne headB" "\n\t" "rjmp doneB" "\n\t" "bitTimeB:" "\n\t" "out %[port], %[next]" "\n\t" "mov %[next], %[lo]" "\n\t" "rol %[byte]" "\n\t" "sbrc %[byte], 7" "\n\t" "mov %[next], %[hi]" "\n\t" "nop" "\n\t" "out %[port], %[lo]" "\n\t" "ret" "\n\t" "doneB:" "\n" : [byte] "+r" (b), [next] "+r" (next), [count] "+w" (i) : [port] "I" (_SFR_IO_ADDR(PORTB)), [ptr] "e" (ptr), [hi] "r" (hi), [lo] "r" (lo)); #ifdef PORTD } #endif #ifdef NEO_KHZ400 } else { // 400 KHz // 30 instruction clocks per bit: HHHHHHxxxxxxxxxLLLLLLLLLLLLLLL // ST instructions: ^ ^ ^ (T=0,6,15) volatile uint8_t next, bit; hi = *port | pinMask; lo = *port & ~pinMask; next = lo; bit = 8; asm volatile( "head30:" "\n\t" // Clk Pseudocode (T = 0) "st %a[port], %[hi]" "\n\t" // 2 PORT = hi (T = 2) "sbrc %[byte] , 7" "\n\t" // 1-2 if(b & 128) "mov %[next], %[hi]" "\n\t" // 0-1 next = hi (T = 4) "rjmp .+0" "\n\t" // 2 nop nop (T = 6) "st %a[port], %[next]" "\n\t" // 2 PORT = next (T = 8) "rjmp .+0" "\n\t" // 2 nop nop (T = 10) "rjmp .+0" "\n\t" // 2 nop nop (T = 12) "rjmp .+0" "\n\t" // 2 nop nop (T = 14) "nop" "\n\t" // 1 nop (T = 15) "st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 17) "rjmp .+0" "\n\t" // 2 nop nop (T = 19) "dec %[bit]" "\n\t" // 1 bit-- (T = 20) "breq nextbyte30" "\n\t" // 1-2 if(bit == 0) "rol %[byte]" "\n\t" // 1 b <<= 1 (T = 22) "rjmp .+0" "\n\t" // 2 nop nop (T = 24) "rjmp .+0" "\n\t" // 2 nop nop (T = 26) "rjmp .+0" "\n\t" // 2 nop nop (T = 28) "rjmp head30" "\n\t" // 2 -> head30 (next bit out) "nextbyte30:" "\n\t" // (T = 22) "nop" "\n\t" // 1 nop (T = 23) "ldi %[bit] , 8" "\n\t" // 1 bit = 8 (T = 24) "ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 26) "sbiw %[count], 1" "\n\t" // 2 i-- (T = 28) "brne head30" "\n" // 1-2 if(i != 0) -> (next byte) : [port] "+e" (port), [byte] "+r" (b), [bit] "+r" (bit), [next] "+r" (next), [count] "+w" (i) : [hi] "r" (hi), [lo] "r" (lo), [ptr] "e" (ptr)); } #endif // 16 MHz(ish) AVR -------------------------------------------------------- #elif (F_CPU >= 15400000UL) && (F_CPU <= 19000000L) #ifdef NEO_KHZ400 if((type & NEO_SPDMASK) == NEO_KHZ800) { // 800 KHz bitstream #endif // WS2811 and WS2812 have different hi/lo duty cycles; this is // similar but NOT an exact copy of the prior 400-on-8 code. // 20 inst. clocks per bit: HHHHHxxxxxxxxLLLLLLL // ST instructions: ^ ^ ^ (T=0,5,13) volatile uint8_t next, bit; hi = *port | pinMask; lo = *port & ~pinMask; next = lo; bit = 8; asm volatile( "head20:" "\n\t" // Clk Pseudocode (T = 0) "st %a[port], %[hi]" "\n\t" // 2 PORT = hi (T = 2) "sbrc %[byte], 7" "\n\t" // 1-2 if(b & 128) "mov %[next], %[hi]" "\n\t" // 0-1 next = hi (T = 4) "dec %[bit]" "\n\t" // 1 bit-- (T = 5) "st %a[port], %[next]" "\n\t" // 2 PORT = next (T = 7) "mov %[next] , %[lo]" "\n\t" // 1 next = lo (T = 8) "breq nextbyte20" "\n\t" // 1-2 if(bit == 0) (from dec above) "rol %[byte]" "\n\t" // 1 b <<= 1 (T = 10) "rjmp .+0" "\n\t" // 2 nop nop (T = 12) "nop" "\n\t" // 1 nop (T = 13) "st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 15) "nop" "\n\t" // 1 nop (T = 16) "rjmp .+0" "\n\t" // 2 nop nop (T = 18) "rjmp head20" "\n\t" // 2 -> head20 (next bit out) "nextbyte20:" "\n\t" // (T = 10) "ldi %[bit] , 8" "\n\t" // 1 bit = 8 (T = 11) "ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 13) "st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 15) "nop" "\n\t" // 1 nop (T = 16) "sbiw %[count], 1" "\n\t" // 2 i-- (T = 18) "brne head20" "\n" // 2 if(i != 0) -> (next byte) : [port] "+e" (port), [byte] "+r" (b), [bit] "+r" (bit), [next] "+r" (next), [count] "+w" (i) : [ptr] "e" (ptr), [hi] "r" (hi), [lo] "r" (lo)); #ifdef NEO_KHZ400 } else { // 400 KHz // The 400 KHz clock on 16 MHz MCU is the most 'relaxed' version. // 40 inst. clocks per bit: HHHHHHHHxxxxxxxxxxxxLLLLLLLLLLLLLLLLLLLL // ST instructions: ^ ^ ^ (T=0,8,20) volatile uint8_t next, bit; hi = *port | pinMask; lo = *port & ~pinMask; next = lo; bit = 8; asm volatile( "head40:" "\n\t" // Clk Pseudocode (T = 0) "st %a[port], %[hi]" "\n\t" // 2 PORT = hi (T = 2) "sbrc %[byte] , 7" "\n\t" // 1-2 if(b & 128) "mov %[next] , %[hi]" "\n\t" // 0-1 next = hi (T = 4) "rjmp .+0" "\n\t" // 2 nop nop (T = 6) "rjmp .+0" "\n\t" // 2 nop nop (T = 8) "st %a[port], %[next]" "\n\t" // 2 PORT = next (T = 10) "rjmp .+0" "\n\t" // 2 nop nop (T = 12) "rjmp .+0" "\n\t" // 2 nop nop (T = 14) "rjmp .+0" "\n\t" // 2 nop nop (T = 16) "rjmp .+0" "\n\t" // 2 nop nop (T = 18) "rjmp .+0" "\n\t" // 2 nop nop (T = 20) "st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 22) "nop" "\n\t" // 1 nop (T = 23) "mov %[next] , %[lo]" "\n\t" // 1 next = lo (T = 24) "dec %[bit]" "\n\t" // 1 bit-- (T = 25) "breq nextbyte40" "\n\t" // 1-2 if(bit == 0) "rol %[byte]" "\n\t" // 1 b <<= 1 (T = 27) "nop" "\n\t" // 1 nop (T = 28) "rjmp .+0" "\n\t" // 2 nop nop (T = 30) "rjmp .+0" "\n\t" // 2 nop nop (T = 32) "rjmp .+0" "\n\t" // 2 nop nop (T = 34) "rjmp .+0" "\n\t" // 2 nop nop (T = 36) "rjmp .+0" "\n\t" // 2 nop nop (T = 38) "rjmp head40" "\n\t" // 2 -> head40 (next bit out) "nextbyte40:" "\n\t" // (T = 27) "ldi %[bit] , 8" "\n\t" // 1 bit = 8 (T = 28) "ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 30) "rjmp .+0" "\n\t" // 2 nop nop (T = 32) "st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 34) "rjmp .+0" "\n\t" // 2 nop nop (T = 36) "sbiw %[count], 1" "\n\t" // 2 i-- (T = 38) "brne head40" "\n" // 1-2 if(i != 0) -> (next byte) : [port] "+e" (port), [byte] "+r" (b), [bit] "+r" (bit), [next] "+r" (next), [count] "+w" (i) : [ptr] "e" (ptr), [hi] "r" (hi), [lo] "r" (lo)); } #endif #else #error "CPU SPEED NOT SUPPORTED" #endif #elif defined(__arm__) #if defined(__MK20DX128__) || defined(__MK20DX256__) // Teensy 3.0 & 3.1 #define CYCLES_800_T0H (F_CPU / 4000000) #define CYCLES_800_T1H (F_CPU / 1250000) #define CYCLES_800 (F_CPU / 800000) #define CYCLES_400_T0H (F_CPU / 2000000) #define CYCLES_400_T1H (F_CPU / 833333) #define CYCLES_400 (F_CPU / 400000) uint8_t *p = pixels, *end = p + numBytes, pix, mask; volatile uint8_t *set = portSetRegister(pin), *clr = portClearRegister(pin); uint32_t cyc; ARM_DEMCR |= ARM_DEMCR_TRCENA; ARM_DWT_CTRL |= ARM_DWT_CTRL_CYCCNTENA; #ifdef NEO_KHZ400 if((type & NEO_SPDMASK) == NEO_KHZ800) { // 800 KHz bitstream #endif cyc = ARM_DWT_CYCCNT + CYCLES_800; while(p < end) { pix = *p++; for(mask = 0x80; mask; mask >>= 1) { while(ARM_DWT_CYCCNT - cyc < CYCLES_800); cyc = ARM_DWT_CYCCNT; *set = 1; if(pix & mask) { while(ARM_DWT_CYCCNT - cyc < CYCLES_800_T1H); } else { while(ARM_DWT_CYCCNT - cyc < CYCLES_800_T0H); } *clr = 1; } } while(ARM_DWT_CYCCNT - cyc < CYCLES_800); #ifdef NEO_KHZ400 } else { // 400 kHz bitstream cyc = ARM_DWT_CYCCNT + CYCLES_400; while(p < end) { pix = *p++; for(mask = 0x80; mask; mask >>= 1) { while(ARM_DWT_CYCCNT - cyc < CYCLES_400); cyc = ARM_DWT_CYCCNT; *set = 1; if(pix & mask) { while(ARM_DWT_CYCCNT - cyc < CYCLES_400_T1H); } else { while(ARM_DWT_CYCCNT - cyc < CYCLES_400_T0H); } *clr = 1; } } while(ARM_DWT_CYCCNT - cyc < CYCLES_400); } #endif #elif defined(__MKL26Z64__) // Teensy-LC #if F_CPU == 48000000 uint8_t *p = pixels, pix, count, dly, bitmask = digitalPinToBitMask(pin); volatile uint8_t *reg = portSetRegister(pin); uint32_t num = numBytes; asm volatile( "L%=_begin:" "\n\t" "ldrb %[pix], [%[p], #0]" "\n\t" "lsl %[pix], #24" "\n\t" "movs %[count], #7" "\n\t" "L%=_loop:" "\n\t" "lsl %[pix], #1" "\n\t" "bcs L%=_loop_one" "\n\t" "L%=_loop_zero:" "strb %[bitmask], [%[reg], #0]" "\n\t" "movs %[dly], #4" "\n\t" "L%=_loop_delay_T0H:" "\n\t" "sub %[dly], #1" "\n\t" "bne L%=_loop_delay_T0H" "\n\t" "strb %[bitmask], [%[reg], #4]" "\n\t" "movs %[dly], #13" "\n\t" "L%=_loop_delay_T0L:" "\n\t" "sub %[dly], #1" "\n\t" "bne L%=_loop_delay_T0L" "\n\t" "b L%=_next" "\n\t" "L%=_loop_one:" "strb %[bitmask], [%[reg], #0]" "\n\t" "movs %[dly], #13" "\n\t" "L%=_loop_delay_T1H:" "\n\t" "sub %[dly], #1" "\n\t" "bne L%=_loop_delay_T1H" "\n\t" "strb %[bitmask], [%[reg], #4]" "\n\t" "movs %[dly], #4" "\n\t" "L%=_loop_delay_T1L:" "\n\t" "sub %[dly], #1" "\n\t" "bne L%=_loop_delay_T1L" "\n\t" "nop" "\n\t" "L%=_next:" "\n\t" "sub %[count], #1" "\n\t" "bne L%=_loop" "\n\t" "lsl %[pix], #1" "\n\t" "bcs L%=_last_one" "\n\t" "L%=_last_zero:" "strb %[bitmask], [%[reg], #0]" "\n\t" "movs %[dly], #4" "\n\t" "L%=_last_delay_T0H:" "\n\t" "sub %[dly], #1" "\n\t" "bne L%=_last_delay_T0H" "\n\t" "strb %[bitmask], [%[reg], #4]" "\n\t" "movs %[dly], #10" "\n\t" "L%=_last_delay_T0L:" "\n\t" "sub %[dly], #1" "\n\t" "bne L%=_last_delay_T0L" "\n\t" "b L%=_repeat" "\n\t" "L%=_last_one:" "strb %[bitmask], [%[reg], #0]" "\n\t" "movs %[dly], #13" "\n\t" "L%=_last_delay_T1H:" "\n\t" "sub %[dly], #1" "\n\t" "bne L%=_last_delay_T1H" "\n\t" "strb %[bitmask], [%[reg], #4]" "\n\t" "movs %[dly], #1" "\n\t" "L%=_last_delay_T1L:" "\n\t" "sub %[dly], #1" "\n\t" "bne L%=_last_delay_T1L" "\n\t" "nop" "\n\t" "L%=_repeat:" "\n\t" "add %[p], #1" "\n\t" "sub %[num], #1" "\n\t" "bne L%=_begin" "\n\t" "L%=_done:" "\n\t" : [p] "+r" (p), [pix] "=&r" (pix), [count] "=&r" (count), [dly] "=&r" (dly), [num] "+r" (num) : [bitmask] "r" (bitmask), [reg] "r" (reg) ); #else #error "Sorry, only 48 MHz is supported, please set Tools > CPU Speed to 48 MHz" #endif #else // Arduino Due #define SCALE VARIANT_MCK / 2UL / 1000000UL #define INST (2UL * F_CPU / VARIANT_MCK) #define TIME_800_0 ((int)(0.40 * SCALE + 0.5) - (5 * INST)) #define TIME_800_1 ((int)(0.80 * SCALE + 0.5) - (5 * INST)) #define PERIOD_800 ((int)(1.25 * SCALE + 0.5) - (5 * INST)) #define TIME_400_0 ((int)(0.50 * SCALE + 0.5) - (5 * INST)) #define TIME_400_1 ((int)(1.20 * SCALE + 0.5) - (5 * INST)) #define PERIOD_400 ((int)(2.50 * SCALE + 0.5) - (5 * INST)) int pinMask, time0, time1, period, t; Pio *port; volatile WoReg *portSet, *portClear, *timeValue, *timeReset; uint8_t *p, *end, pix, mask; pmc_set_writeprotect(false); pmc_enable_periph_clk((uint32_t)TC3_IRQn); TC_Configure(TC1, 0, TC_CMR_WAVE | TC_CMR_WAVSEL_UP | TC_CMR_TCCLKS_TIMER_CLOCK1); TC_Start(TC1, 0); pinMask = g_APinDescription[pin].ulPin; // Don't 'optimize' these into port = g_APinDescription[pin].pPort; // declarations above. Want to portSet = &(port->PIO_SODR); // burn a few cycles after portClear = &(port->PIO_CODR); // starting timer to minimize timeValue = &(TC1->TC_CHANNEL[0].TC_CV); // the initial 'while'. timeReset = &(TC1->TC_CHANNEL[0].TC_CCR); p = pixels; end = p + numBytes; pix = *p++; mask = 0x80; #ifdef NEO_KHZ400 if((type & NEO_SPDMASK) == NEO_KHZ800) { // 800 KHz bitstream #endif time0 = TIME_800_0; time1 = TIME_800_1; period = PERIOD_800; #ifdef NEO_KHZ400 } else { // 400 KHz bitstream time0 = TIME_400_0; time1 = TIME_400_1; period = PERIOD_400; } #endif for(t = time0;; t = time0) { if(pix & mask) t = time1; while(*timeValue < period); *portSet = pinMask; *timeReset = TC_CCR_CLKEN | TC_CCR_SWTRG; while(*timeValue < t); *portClear = pinMask; if(!(mask >>= 1)) { // This 'inside-out' loop logic utilizes if(p >= end) break; // idle time to minimize inter-byte delays. pix = *p++; mask = 0x80; } } while(*timeValue < period); // Wait for last bit TC_Stop(TC1, 0); #endif // end Arduino Due #endif // end Architecture select interrupts(); endTime = micros(); // Save EOD time for latch on next call } // Set the output pin number void MitovEmbedded_Adafruit_NeoPixel::setPin(uint8_t p) { pinMode(pin, INPUT); pin = p; pinMode(p, OUTPUT); digitalWrite(p, LOW); #ifdef __AVR__ port = portOutputRegister(digitalPinToPort(p)); pinMask = digitalPinToBitMask(p); #endif } // Set pixel color from separate R,G,B components: void MitovEmbedded_Adafruit_NeoPixel::setPixelColor( uint16_t n, uint8_t r, uint8_t g, uint8_t b) { if(n < numLEDs) { if(brightness) { // See notes in setBrightness() r = (r * brightness) >> 8; g = (g * brightness) >> 8; b = (b * brightness) >> 8; } uint8_t *p = &pixels[n * 3]; p[rOffset] = r; p[gOffset] = g; p[bOffset] = b; } } // Set pixel color from 'packed' 32-bit RGB color: void MitovEmbedded_Adafruit_NeoPixel::setPixelColor(uint16_t n, uint32_t c) { if(n < numLEDs) { uint8_t r = (uint8_t)(c >> 16), g = (uint8_t)(c >> 8), b = (uint8_t)c; if(brightness) { // See notes in setBrightness() r = (r * brightness) >> 8; g = (g * brightness) >> 8; b = (b * brightness) >> 8; } uint8_t *p = &pixels[n * 3]; p[rOffset] = r; p[gOffset] = g; p[bOffset] = b; } } // Convert separate R,G,B into packed 32-bit RGB color. // Packed format is always RGB, regardless of LED strand color order. uint32_t MitovEmbedded_Adafruit_NeoPixel::Color(uint8_t r, uint8_t g, uint8_t b) { return ((uint32_t)r << 16) | ((uint32_t)g << 8) | b; } // Query color from previously-set pixel (returns packed 32-bit RGB value) uint32_t MitovEmbedded_Adafruit_NeoPixel::getPixelColor(uint16_t n) const { if(n >= numLEDs) { // Out of bounds, return no color. return 0; } uint8_t *p = &pixels[n * 3]; uint32_t c = ((uint32_t)p[rOffset] << 16) | ((uint32_t)p[gOffset] << 8) | (uint32_t)p[bOffset]; // Adjust this back up to the true color, as setting a pixel color will // scale it back down again. if(brightness) { // See notes in setBrightness() //Cast the color to a byte array uint8_t * c_ptr =reinterpret_cast(&c); c_ptr[0] = (c_ptr[0] << 8)/brightness; c_ptr[1] = (c_ptr[1] << 8)/brightness; c_ptr[2] = (c_ptr[2] << 8)/brightness; } return c; // Pixel # is out of bounds } // Returns pointer to pixels[] array. Pixel data is stored in device- // native format and is not translated here. Application will need to be // aware whether pixels are RGB vs. GRB and handle colors appropriately. uint8_t *MitovEmbedded_Adafruit_NeoPixel::getPixels(void) const { return pixels; } uint16_t MitovEmbedded_Adafruit_NeoPixel::numPixels(void) const { return numLEDs; } // Adjust output brightness; 0=darkest (off), 255=brightest. This does // NOT immediately affect what's currently displayed on the LEDs. The // next call to show() will refresh the LEDs at this level. However, // this process is potentially "lossy," especially when increasing // brightness. The tight timing in the WS2811/WS2812 code means there // aren't enough free cycles to perform this scaling on the fly as data // is issued. So we make a pass through the existing color data in RAM // and scale it (subsequent graphics commands also work at this // brightness level). If there's a significant step up in brightness, // the limited number of steps (quantization) in the old data will be // quite visible in the re-scaled version. For a non-destructive // change, you'll need to re-render the full strip data. C'est la vie. void MitovEmbedded_Adafruit_NeoPixel::setBrightness(uint8_t b) { // Stored brightness value is different than what's passed. // This simplifies the actual scaling math later, allowing a fast // 8x8-bit multiply and taking the MSB. 'brightness' is a uint8_t, // adding 1 here may (intentionally) roll over...so 0 = max brightness // (color values are interpreted literally; no scaling), 1 = min // brightness (off), 255 = just below max brightness. uint8_t newBrightness = b + 1; if(newBrightness != brightness) { // Compare against prior value // Brightness has changed -- re-scale existing data in RAM uint8_t c, *ptr = pixels, oldBrightness = brightness - 1; // De-wrap old brightness value uint16_t scale; if(oldBrightness == 0) scale = 0; // Avoid /0 else if(b == 255) scale = 65535 / oldBrightness; else scale = (((uint16_t)newBrightness << 8) - 1) / oldBrightness; for(uint16_t i=0; i> 8; } brightness = newBrightness; } } //Return the brightness value uint8_t MitovEmbedded_Adafruit_NeoPixel::getBrightness(void) const { return brightness - 1; } void MitovEmbedded_Adafruit_NeoPixel::clear() { memset(pixels, 0, numBytes); } #endif // ADAFRUIT_NEOPIXEL_H