1#ifndef REFS_REFS_INTERNAL_H 2#define REFS_REFS_INTERNAL_H 3 4/* 5 * Data structures and functions for the internal use of the refs 6 * module. Code outside of the refs module should use only the public 7 * functions defined in "refs.h", and should *not* include this file. 8 */ 9 10/* 11 * Flag passed to lock_ref_sha1_basic() telling it to tolerate broken 12 * refs (i.e., because the reference is about to be deleted anyway). 13 */ 14#define REF_DELETING 0x02 15 16/* 17 * Used as a flag in ref_update::flags when a loose ref is being 18 * pruned. This flag must only be used when REF_NODEREF is set. 19 */ 20#define REF_ISPRUNING 0x04 21 22/* 23 * Used as a flag in ref_update::flags when the reference should be 24 * updated to new_sha1. 25 */ 26#define REF_HAVE_NEW 0x08 27 28/* 29 * Used as a flag in ref_update::flags when old_sha1 should be 30 * checked. 31 */ 32#define REF_HAVE_OLD 0x10 33 34/* 35 * Used as a flag in ref_update::flags when the lockfile needs to be 36 * committed. 37 */ 38#define REF_NEEDS_COMMIT 0x20 39 40/* 41 * 0x40 is REF_FORCE_CREATE_REFLOG, so skip it if you're adding a 42 * value to ref_update::flags 43 */ 44 45/* 46 * Used as a flag in ref_update::flags when we want to log a ref 47 * update but not actually perform it. This is used when a symbolic 48 * ref update is split up. 49 */ 50#define REF_LOG_ONLY 0x80 51 52/* 53 * Internal flag, meaning that the containing ref_update was via an 54 * update to HEAD. 55 */ 56#define REF_UPDATE_VIA_HEAD 0x100 57 58/* 59 * Return true iff refname is minimally safe. "Safe" here means that 60 * deleting a loose reference by this name will not do any damage, for 61 * example by causing a file that is not a reference to be deleted. 62 * This function does not check that the reference name is legal; for 63 * that, use check_refname_format(). 64 * 65 * We consider a refname that starts with "refs/" to be safe as long 66 * as any ".." components that it might contain do not escape "refs/". 67 * Names that do not start with "refs/" are considered safe iff they 68 * consist entirely of upper case characters and '_' (like "HEAD" and 69 * "MERGE_HEAD" but not "config" or "FOO/BAR"). 70 */ 71int refname_is_safe(const char *refname); 72 73enum peel_status { 74 /* object was peeled successfully: */ 75 PEEL_PEELED = 0, 76 77 /* 78 * object cannot be peeled because the named object (or an 79 * object referred to by a tag in the peel chain), does not 80 * exist. 81 */ 82 PEEL_INVALID = -1, 83 84 /* object cannot be peeled because it is not a tag: */ 85 PEEL_NON_TAG = -2, 86 87 /* ref_entry contains no peeled value because it is a symref: */ 88 PEEL_IS_SYMREF = -3, 89 90 /* 91 * ref_entry cannot be peeled because it is broken (i.e., the 92 * symbolic reference cannot even be resolved to an object 93 * name): 94 */ 95 PEEL_BROKEN = -4 96}; 97 98/* 99 * Peel the named object; i.e., if the object is a tag, resolve the 100 * tag recursively until a non-tag is found. If successful, store the 101 * result to sha1 and return PEEL_PEELED. If the object is not a tag 102 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively, 103 * and leave sha1 unchanged. 104 */ 105enum peel_status peel_object(const unsigned char *name, unsigned char *sha1); 106 107/* 108 * Return 0 if a reference named refname could be created without 109 * conflicting with the name of an existing reference. Otherwise, 110 * return a negative value and write an explanation to err. If extras 111 * is non-NULL, it is a list of additional refnames with which refname 112 * is not allowed to conflict. If skip is non-NULL, ignore potential 113 * conflicts with refs in skip (e.g., because they are scheduled for 114 * deletion in the same operation). Behavior is undefined if the same 115 * name is listed in both extras and skip. 116 * 117 * Two reference names conflict if one of them exactly matches the 118 * leading components of the other; e.g., "foo/bar" conflicts with 119 * both "foo" and with "foo/bar/baz" but not with "foo/bar" or 120 * "foo/barbados". 121 * 122 * extras and skip must be sorted. 123 */ 124int verify_refname_available(const char *newname, 125 const struct string_list *extras, 126 const struct string_list *skip, 127 struct strbuf *err); 128 129/* 130 * Copy the reflog message msg to buf, which has been allocated sufficiently 131 * large, while cleaning up the whitespaces. Especially, convert LF to space, 132 * because reflog file is one line per entry. 133 */ 134int copy_reflog_msg(char *buf, const char *msg); 135 136int should_autocreate_reflog(const char *refname); 137 138/** 139 * Information needed for a single ref update. Set new_sha1 to the new 140 * value or to null_sha1 to delete the ref. To check the old value 141 * while the ref is locked, set (flags & REF_HAVE_OLD) and set 142 * old_sha1 to the old value, or to null_sha1 to ensure the ref does 143 * not exist before update. 144 */ 145struct ref_update { 146 147 /* 148 * If (flags & REF_HAVE_NEW), set the reference to this value: 149 */ 150 unsigned char new_sha1[20]; 151 152 /* 153 * If (flags & REF_HAVE_OLD), check that the reference 154 * previously had this value: 155 */ 156 unsigned char old_sha1[20]; 157 158 /* 159 * One or more of REF_HAVE_NEW, REF_HAVE_OLD, REF_NODEREF, 160 * REF_DELETING, REF_ISPRUNING, REF_LOG_ONLY, and 161 * REF_UPDATE_VIA_HEAD: 162 */ 163 unsigned int flags; 164 165 void *backend_data; 166 unsigned int type; 167 char *msg; 168 169 /* 170 * If this ref_update was split off of a symref update via 171 * split_symref_update(), then this member points at that 172 * update. This is used for two purposes: 173 * 1. When reporting errors, we report the refname under which 174 * the update was originally requested. 175 * 2. When we read the old value of this reference, we 176 * propagate it back to its parent update for recording in 177 * the latter's reflog. 178 */ 179 struct ref_update *parent_update; 180 181 const char refname[FLEX_ARRAY]; 182}; 183 184/* 185 * Add a ref_update with the specified properties to transaction, and 186 * return a pointer to the new object. This function does not verify 187 * that refname is well-formed. new_sha1 and old_sha1 are only 188 * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits, 189 * respectively, are set in flags. 190 */ 191struct ref_update *ref_transaction_add_update( 192 struct ref_transaction *transaction, 193 const char *refname, unsigned int flags, 194 const unsigned char *new_sha1, 195 const unsigned char *old_sha1, 196 const char *msg); 197 198/* 199 * Transaction states. 200 * OPEN: The transaction is in a valid state and can accept new updates. 201 * An OPEN transaction can be committed. 202 * CLOSED: A closed transaction is no longer active and no other operations 203 * than free can be used on it in this state. 204 * A transaction can either become closed by successfully committing 205 * an active transaction or if there is a failure while building 206 * the transaction thus rendering it failed/inactive. 207 */ 208enum ref_transaction_state { 209 REF_TRANSACTION_OPEN = 0, 210 REF_TRANSACTION_CLOSED = 1 211}; 212 213/* 214 * Data structure for holding a reference transaction, which can 215 * consist of checks and updates to multiple references, carried out 216 * as atomically as possible. This structure is opaque to callers. 217 */ 218struct ref_transaction { 219 struct ref_update **updates; 220 size_t alloc; 221 size_t nr; 222 enum ref_transaction_state state; 223}; 224 225int files_log_ref_write(const char *refname, const unsigned char *old_sha1, 226 const unsigned char *new_sha1, const char *msg, 227 int flags, struct strbuf *err); 228 229/* 230 * Check for entries in extras that are within the specified 231 * directory, where dirname is a reference directory name including 232 * the trailing slash (e.g., "refs/heads/foo/"). Ignore any 233 * conflicting references that are found in skip. If there is a 234 * conflicting reference, return its name. 235 * 236 * extras and skip must be sorted lists of reference names. Either one 237 * can be NULL, signifying the empty list. 238 */ 239const char *find_descendant_ref(const char *dirname, 240 const struct string_list *extras, 241 const struct string_list *skip); 242 243/* 244 * Check whether an attempt to rename old_refname to new_refname would 245 * cause a D/F conflict with any existing reference (other than 246 * possibly old_refname). If there would be a conflict, emit an error 247 * message and return false; otherwise, return true. 248 * 249 * Note that this function is not safe against all races with other 250 * processes (though rename_ref() catches some races that might get by 251 * this check). 252 */ 253int rename_ref_available(const char *old_refname, const char *new_refname); 254 255/* We allow "recursive" symbolic refs. Only within reason, though */ 256#define SYMREF_MAXDEPTH 5 257 258/* Include broken references in a do_for_each_ref*() iteration: */ 259#define DO_FOR_EACH_INCLUDE_BROKEN 0x01 260 261/* 262 * Reference iterators 263 * 264 * A reference iterator encapsulates the state of an in-progress 265 * iteration over references. Create an instance of `struct 266 * ref_iterator` via one of the functions in this module. 267 * 268 * A freshly-created ref_iterator doesn't yet point at a reference. To 269 * advance the iterator, call ref_iterator_advance(). If successful, 270 * this sets the iterator's refname, oid, and flags fields to describe 271 * the next reference and returns ITER_OK. The data pointed at by 272 * refname and oid belong to the iterator; if you want to retain them 273 * after calling ref_iterator_advance() again or calling 274 * ref_iterator_abort(), you must make a copy. When the iteration has 275 * been exhausted, ref_iterator_advance() releases any resources 276 * assocated with the iteration, frees the ref_iterator object, and 277 * returns ITER_DONE. If you want to abort the iteration early, call 278 * ref_iterator_abort(), which also frees the ref_iterator object and 279 * any associated resources. If there was an internal error advancing 280 * to the next entry, ref_iterator_advance() aborts the iteration, 281 * frees the ref_iterator, and returns ITER_ERROR. 282 * 283 * The reference currently being looked at can be peeled by calling 284 * ref_iterator_peel(). This function is often faster than peel_ref(), 285 * so it should be preferred when iterating over references. 286 * 287 * Putting it all together, a typical iteration looks like this: 288 * 289 * int ok; 290 * struct ref_iterator *iter = ...; 291 * 292 * while ((ok = ref_iterator_advance(iter)) == ITER_OK) { 293 * if (want_to_stop_iteration()) { 294 * ok = ref_iterator_abort(iter); 295 * break; 296 * } 297 * 298 * // Access information about the current reference: 299 * if (!(iter->flags & REF_ISSYMREF)) 300 * printf("%s is %s\n", iter->refname, oid_to_hex(&iter->oid)); 301 * 302 * // If you need to peel the reference: 303 * ref_iterator_peel(iter, &oid); 304 * } 305 * 306 * if (ok != ITER_DONE) 307 * handle_error(); 308 */ 309struct ref_iterator { 310 struct ref_iterator_vtable *vtable; 311 const char *refname; 312 const struct object_id *oid; 313 unsigned int flags; 314}; 315 316/* 317 * Advance the iterator to the first or next item and return ITER_OK. 318 * If the iteration is exhausted, free the resources associated with 319 * the ref_iterator and return ITER_DONE. On errors, free the iterator 320 * resources and return ITER_ERROR. It is a bug to use ref_iterator or 321 * call this function again after it has returned ITER_DONE or 322 * ITER_ERROR. 323 */ 324int ref_iterator_advance(struct ref_iterator *ref_iterator); 325 326/* 327 * If possible, peel the reference currently being viewed by the 328 * iterator. Return 0 on success. 329 */ 330int ref_iterator_peel(struct ref_iterator *ref_iterator, 331 struct object_id *peeled); 332 333/* 334 * End the iteration before it has been exhausted, freeing the 335 * reference iterator and any associated resources and returning 336 * ITER_DONE. If the abort itself failed, return ITER_ERROR. 337 */ 338int ref_iterator_abort(struct ref_iterator *ref_iterator); 339 340/* 341 * An iterator over nothing (its first ref_iterator_advance() call 342 * returns ITER_DONE). 343 */ 344struct ref_iterator *empty_ref_iterator_begin(void); 345 346/* 347 * Return true iff ref_iterator is an empty_ref_iterator. 348 */ 349int is_empty_ref_iterator(struct ref_iterator *ref_iterator); 350 351/* 352 * A callback function used to instruct merge_ref_iterator how to 353 * interleave the entries from iter0 and iter1. The function should 354 * return one of the constants defined in enum iterator_selection. It 355 * must not advance either of the iterators itself. 356 * 357 * The function must be prepared to handle the case that iter0 and/or 358 * iter1 is NULL, which indicates that the corresponding sub-iterator 359 * has been exhausted. Its return value must be consistent with the 360 * current states of the iterators; e.g., it must not return 361 * ITER_SKIP_1 if iter1 has already been exhausted. 362 */ 363typedef enum iterator_selection ref_iterator_select_fn( 364 struct ref_iterator *iter0, struct ref_iterator *iter1, 365 void *cb_data); 366 367/* 368 * Iterate over the entries from iter0 and iter1, with the values 369 * interleaved as directed by the select function. The iterator takes 370 * ownership of iter0 and iter1 and frees them when the iteration is 371 * over. 372 */ 373struct ref_iterator *merge_ref_iterator_begin( 374 struct ref_iterator *iter0, struct ref_iterator *iter1, 375 ref_iterator_select_fn *select, void *cb_data); 376 377/* 378 * An iterator consisting of the union of the entries from front and 379 * back. If there are entries common to the two sub-iterators, use the 380 * one from front. Each iterator must iterate over its entries in 381 * strcmp() order by refname for this to work. 382 * 383 * The new iterator takes ownership of its arguments and frees them 384 * when the iteration is over. As a convenience to callers, if front 385 * or back is an empty_ref_iterator, then abort that one immediately 386 * and return the other iterator directly, without wrapping it. 387 */ 388struct ref_iterator *overlay_ref_iterator_begin( 389 struct ref_iterator *front, struct ref_iterator *back); 390 391/* 392 * Wrap iter0, only letting through the references whose names start 393 * with prefix. If trim is set, set iter->refname to the name of the 394 * reference with that many characters trimmed off the front; 395 * otherwise set it to the full refname. The new iterator takes over 396 * ownership of iter0 and frees it when iteration is over. It makes 397 * its own copy of prefix. 398 * 399 * As an convenience to callers, if prefix is the empty string and 400 * trim is zero, this function returns iter0 directly, without 401 * wrapping it. 402 */ 403struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0, 404 const char *prefix, 405 int trim); 406 407/* Internal implementation of reference iteration: */ 408 409/* 410 * Base class constructor for ref_iterators. Initialize the 411 * ref_iterator part of iter, setting its vtable pointer as specified. 412 * This is meant to be called only by the initializers of derived 413 * classes. 414 */ 415void base_ref_iterator_init(struct ref_iterator *iter, 416 struct ref_iterator_vtable *vtable); 417 418/* 419 * Base class destructor for ref_iterators. Destroy the ref_iterator 420 * part of iter and shallow-free the object. This is meant to be 421 * called only by the destructors of derived classes. 422 */ 423void base_ref_iterator_free(struct ref_iterator *iter); 424 425/* Virtual function declarations for ref_iterators: */ 426 427typedef int ref_iterator_advance_fn(struct ref_iterator *ref_iterator); 428 429typedef int ref_iterator_peel_fn(struct ref_iterator *ref_iterator, 430 struct object_id *peeled); 431 432/* 433 * Implementations of this function should free any resources specific 434 * to the derived class, then call base_ref_iterator_free() to clean 435 * up and free the ref_iterator object. 436 */ 437typedef int ref_iterator_abort_fn(struct ref_iterator *ref_iterator); 438 439struct ref_iterator_vtable { 440 ref_iterator_advance_fn *advance; 441 ref_iterator_peel_fn *peel; 442 ref_iterator_abort_fn *abort; 443}; 444 445/* 446 * current_ref_iter is a performance hack: when iterating over 447 * references using the for_each_ref*() functions, current_ref_iter is 448 * set to the reference iterator before calling the callback function. 449 * If the callback function calls peel_ref(), then peel_ref() first 450 * checks whether the reference to be peeled is the one referred to by 451 * the iterator (it usually is) and if so, asks the iterator for the 452 * peeled version of the reference if it is available. This avoids a 453 * refname lookup in a common case. current_ref_iter is set to NULL 454 * when the iteration is over. 455 */ 456extern struct ref_iterator *current_ref_iter; 457 458/* 459 * The common backend for the for_each_*ref* functions. Call fn for 460 * each reference in iter. If the iterator itself ever returns 461 * ITER_ERROR, return -1. If fn ever returns a non-zero value, stop 462 * the iteration and return that value. Otherwise, return 0. In any 463 * case, free the iterator when done. This function is basically an 464 * adapter between the callback style of reference iteration and the 465 * iterator style. 466 */ 467int do_for_each_ref_iterator(struct ref_iterator *iter, 468 each_ref_fn fn, void *cb_data); 469 470/* 471 * Only include per-worktree refs in a do_for_each_ref*() iteration. 472 * Normally this will be used with a files ref_store, since that's 473 * where all reference backends will presumably store their 474 * per-worktree refs. 475 */ 476#define DO_FOR_EACH_PER_WORKTREE_ONLY 0x02 477 478struct ref_store; 479 480/* refs backends */ 481 482/* 483 * Initialize the ref_store for the specified submodule, or for the 484 * main repository if submodule == NULL. These functions should call 485 * base_ref_store_init() to initialize the shared part of the 486 * ref_store and to record the ref_store for later lookup. 487 */ 488typedef struct ref_store *ref_store_init_fn(const char *submodule); 489 490typedef int ref_init_db_fn(struct ref_store *refs, struct strbuf *err); 491 492typedef int ref_transaction_commit_fn(struct ref_store *refs, 493 struct ref_transaction *transaction, 494 struct strbuf *err); 495 496typedef int pack_refs_fn(struct ref_store *ref_store, unsigned int flags); 497typedef int peel_ref_fn(struct ref_store *ref_store, 498 const char *refname, unsigned char *sha1); 499typedef int create_symref_fn(struct ref_store *ref_store, 500 const char *ref_target, 501 const char *refs_heads_master, 502 const char *logmsg); 503typedef int delete_refs_fn(struct ref_store *ref_store, 504 struct string_list *refnames, unsigned int flags); 505typedef int rename_ref_fn(struct ref_store *ref_store, 506 const char *oldref, const char *newref, 507 const char *logmsg); 508 509/* 510 * Iterate over the references in the specified ref_store that are 511 * within find_containing_dir(prefix). If prefix is NULL or the empty 512 * string, iterate over all references in the submodule. 513 */ 514typedef struct ref_iterator *ref_iterator_begin_fn( 515 struct ref_store *ref_store, 516 const char *prefix, unsigned int flags); 517 518/* reflog functions */ 519 520/* 521 * Iterate over the references in the specified ref_store that have a 522 * reflog. The refs are iterated over in arbitrary order. 523 */ 524typedef struct ref_iterator *reflog_iterator_begin_fn( 525 struct ref_store *ref_store); 526 527typedef int for_each_reflog_ent_fn(struct ref_store *ref_store, 528 const char *refname, 529 each_reflog_ent_fn fn, 530 void *cb_data); 531typedef int for_each_reflog_ent_reverse_fn(struct ref_store *ref_store, 532 const char *refname, 533 each_reflog_ent_fn fn, 534 void *cb_data); 535typedef int reflog_exists_fn(struct ref_store *ref_store, const char *refname); 536typedef int create_reflog_fn(struct ref_store *ref_store, const char *refname, 537 int force_create, struct strbuf *err); 538typedef int delete_reflog_fn(struct ref_store *ref_store, const char *refname); 539typedef int reflog_expire_fn(struct ref_store *ref_store, 540 const char *refname, const unsigned char *sha1, 541 unsigned int flags, 542 reflog_expiry_prepare_fn prepare_fn, 543 reflog_expiry_should_prune_fn should_prune_fn, 544 reflog_expiry_cleanup_fn cleanup_fn, 545 void *policy_cb_data); 546 547/* 548 * Read a reference from the specified reference store, non-recursively. 549 * Set type to describe the reference, and: 550 * 551 * - If refname is the name of a normal reference, fill in sha1 552 * (leaving referent unchanged). 553 * 554 * - If refname is the name of a symbolic reference, write the full 555 * name of the reference to which it refers (e.g. 556 * "refs/heads/master") to referent and set the REF_ISSYMREF bit in 557 * type (leaving sha1 unchanged). The caller is responsible for 558 * validating that referent is a valid reference name. 559 * 560 * WARNING: refname might be used as part of a filename, so it is 561 * important from a security standpoint that it be safe in the sense 562 * of refname_is_safe(). Moreover, for symrefs this function sets 563 * referent to whatever the repository says, which might not be a 564 * properly-formatted or even safe reference name. NEITHER INPUT NOR 565 * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION. 566 * 567 * Return 0 on success. If the ref doesn't exist, set errno to ENOENT 568 * and return -1. If the ref exists but is neither a symbolic ref nor 569 * a sha1, it is broken; set REF_ISBROKEN in type, set errno to 570 * EINVAL, and return -1. If there is another error reading the ref, 571 * set errno appropriately and return -1. 572 * 573 * Backend-specific flags might be set in type as well, regardless of 574 * outcome. 575 * 576 * It is OK for refname to point into referent. If so: 577 * 578 * - if the function succeeds with REF_ISSYMREF, referent will be 579 * overwritten and the memory formerly pointed to by it might be 580 * changed or even freed. 581 * 582 * - in all other cases, referent will be untouched, and therefore 583 * refname will still be valid and unchanged. 584 */ 585typedef int read_raw_ref_fn(struct ref_store *ref_store, 586 const char *refname, unsigned char *sha1, 587 struct strbuf *referent, unsigned int *type); 588 589typedef int verify_refname_available_fn(struct ref_store *ref_store, 590 const char *newname, 591 const struct string_list *extras, 592 const struct string_list *skip, 593 struct strbuf *err); 594 595struct ref_storage_be { 596 struct ref_storage_be *next; 597 const char *name; 598 ref_store_init_fn *init; 599 ref_init_db_fn *init_db; 600 ref_transaction_commit_fn *transaction_commit; 601 ref_transaction_commit_fn *initial_transaction_commit; 602 603 pack_refs_fn *pack_refs; 604 peel_ref_fn *peel_ref; 605 create_symref_fn *create_symref; 606 delete_refs_fn *delete_refs; 607 rename_ref_fn *rename_ref; 608 609 ref_iterator_begin_fn *iterator_begin; 610 read_raw_ref_fn *read_raw_ref; 611 verify_refname_available_fn *verify_refname_available; 612 613 reflog_iterator_begin_fn *reflog_iterator_begin; 614 for_each_reflog_ent_fn *for_each_reflog_ent; 615 for_each_reflog_ent_reverse_fn *for_each_reflog_ent_reverse; 616 reflog_exists_fn *reflog_exists; 617 create_reflog_fn *create_reflog; 618 delete_reflog_fn *delete_reflog; 619 reflog_expire_fn *reflog_expire; 620}; 621 622extern struct ref_storage_be refs_be_files; 623 624/* 625 * A representation of the reference store for the main repository or 626 * a submodule. The ref_store instances for submodules are kept in a 627 * linked list. 628 */ 629struct ref_store { 630 /* The backend describing this ref_store's storage scheme: */ 631 const struct ref_storage_be *be; 632 633 /* 634 * The name of the submodule represented by this object, or 635 * the empty string if it represents the main repository's 636 * reference store: 637 */ 638 const char *submodule; 639}; 640 641/* 642 * Fill in the generic part of refs for the specified submodule and 643 * add it to our collection of reference stores. 644 */ 645void base_ref_store_init(struct ref_store *refs, 646 const struct ref_storage_be *be, 647 const char *submodule); 648 649/* 650 * Return the ref_store instance for the specified submodule. For the 651 * main repository, use submodule==NULL; such a call cannot fail. For 652 * a submodule, the submodule must exist and be a nonbare repository, 653 * otherwise return NULL. If the requested reference store has not yet 654 * been initialized, initialize it first. 655 * 656 * For backwards compatibility, submodule=="" is treated the same as 657 * submodule==NULL. 658 */ 659struct ref_store *get_ref_store(const char *submodule); 660 661/* 662 * Die if refs is for a submodule (i.e., not for the main repository). 663 * caller is used in any necessary error messages. 664 */ 665void assert_main_repository(struct ref_store *refs, const char *caller); 666 667#endif /* REFS_REFS_INTERNAL_H */