1#ifndef REFS_REFS_INTERNAL_H 2#define REFS_REFS_INTERNAL_H 3 4/* 5 * Data structures and functions for the internal use of the refs 6 * module. Code outside of the refs module should use only the public 7 * functions defined in "refs.h", and should *not* include this file. 8 */ 9 10/* 11 * The following flags can appear in `ref_update::flags`. Their 12 * numerical values must not conflict with those of REF_NODEREF and 13 * REF_FORCE_CREATE_REFLOG, which are also stored in 14 * `ref_update::flags`. 15 */ 16 17/* 18 * The reference should be updated to new_sha1. 19 */ 20#define REF_HAVE_NEW (1 << 2) 21 22/* 23 * The current reference's value should be checked to make sure that 24 * it agrees with old_sha1. 25 */ 26#define REF_HAVE_OLD (1 << 3) 27 28/* 29 * Return the length of time to retry acquiring a loose reference lock 30 * before giving up, in milliseconds: 31 */ 32long get_files_ref_lock_timeout_ms(void); 33 34/* 35 * Return true iff refname is minimally safe. "Safe" here means that 36 * deleting a loose reference by this name will not do any damage, for 37 * example by causing a file that is not a reference to be deleted. 38 * This function does not check that the reference name is legal; for 39 * that, use check_refname_format(). 40 * 41 * A refname that starts with "refs/" is considered safe iff it 42 * doesn't contain any "." or ".." components or consecutive '/' 43 * characters, end with '/', or (on Windows) contain any '\' 44 * characters. Names that do not start with "refs/" are considered 45 * safe iff they consist entirely of upper case characters and '_' 46 * (like "HEAD" and "MERGE_HEAD" but not "config" or "FOO/BAR"). 47 */ 48int refname_is_safe(const char *refname); 49 50/* 51 * Helper function: return true if refname, which has the specified 52 * oid and flags, can be resolved to an object in the database. If the 53 * referred-to object does not exist, emit a warning and return false. 54 */ 55int ref_resolves_to_object(const char *refname, 56 const struct object_id *oid, 57 unsigned int flags); 58 59enum peel_status { 60 /* object was peeled successfully: */ 61 PEEL_PEELED = 0, 62 63 /* 64 * object cannot be peeled because the named object (or an 65 * object referred to by a tag in the peel chain), does not 66 * exist. 67 */ 68 PEEL_INVALID = -1, 69 70 /* object cannot be peeled because it is not a tag: */ 71 PEEL_NON_TAG = -2, 72 73 /* ref_entry contains no peeled value because it is a symref: */ 74 PEEL_IS_SYMREF = -3, 75 76 /* 77 * ref_entry cannot be peeled because it is broken (i.e., the 78 * symbolic reference cannot even be resolved to an object 79 * name): 80 */ 81 PEEL_BROKEN = -4 82}; 83 84/* 85 * Peel the named object; i.e., if the object is a tag, resolve the 86 * tag recursively until a non-tag is found. If successful, store the 87 * result to oid and return PEEL_PEELED. If the object is not a tag 88 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively, 89 * and leave sha1 unchanged. 90 */ 91enum peel_status peel_object(const struct object_id *name, struct object_id *oid); 92 93/* 94 * Copy the reflog message msg to buf, which has been allocated sufficiently 95 * large, while cleaning up the whitespaces. Especially, convert LF to space, 96 * because reflog file is one line per entry. 97 */ 98int copy_reflog_msg(char *buf, const char *msg); 99 100/** 101 * Information needed for a single ref update. Set new_sha1 to the new 102 * value or to null_sha1 to delete the ref. To check the old value 103 * while the ref is locked, set (flags & REF_HAVE_OLD) and set 104 * old_sha1 to the old value, or to null_sha1 to ensure the ref does 105 * not exist before update. 106 */ 107struct ref_update { 108 /* 109 * If (flags & REF_HAVE_NEW), set the reference to this value 110 * (or delete it, if `new_oid` is `null_oid`). 111 */ 112 struct object_id new_oid; 113 114 /* 115 * If (flags & REF_HAVE_OLD), check that the reference 116 * previously had this value (or didn't previously exist, if 117 * `old_oid` is `null_oid`). 118 */ 119 struct object_id old_oid; 120 121 /* 122 * One or more of REF_NODEREF, REF_FORCE_CREATE_REFLOG, 123 * REF_HAVE_NEW, REF_HAVE_OLD, or backend-specific flags. 124 */ 125 unsigned int flags; 126 127 void *backend_data; 128 unsigned int type; 129 char *msg; 130 131 /* 132 * If this ref_update was split off of a symref update via 133 * split_symref_update(), then this member points at that 134 * update. This is used for two purposes: 135 * 1. When reporting errors, we report the refname under which 136 * the update was originally requested. 137 * 2. When we read the old value of this reference, we 138 * propagate it back to its parent update for recording in 139 * the latter's reflog. 140 */ 141 struct ref_update *parent_update; 142 143 const char refname[FLEX_ARRAY]; 144}; 145 146int refs_read_raw_ref(struct ref_store *ref_store, 147 const char *refname, struct object_id *oid, 148 struct strbuf *referent, unsigned int *type); 149 150/* 151 * Write an error to `err` and return a nonzero value iff the same 152 * refname appears multiple times in `refnames`. `refnames` must be 153 * sorted on entry to this function. 154 */ 155int ref_update_reject_duplicates(struct string_list *refnames, 156 struct strbuf *err); 157 158/* 159 * Add a ref_update with the specified properties to transaction, and 160 * return a pointer to the new object. This function does not verify 161 * that refname is well-formed. new_sha1 and old_sha1 are only 162 * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits, 163 * respectively, are set in flags. 164 */ 165struct ref_update *ref_transaction_add_update( 166 struct ref_transaction *transaction, 167 const char *refname, unsigned int flags, 168 const struct object_id *new_oid, 169 const struct object_id *old_oid, 170 const char *msg); 171 172/* 173 * Transaction states. 174 * 175 * OPEN: The transaction is initialized and new updates can still be 176 * added to it. An OPEN transaction can be prepared, 177 * committed, freed, or aborted (freeing and aborting an open 178 * transaction are equivalent). 179 * 180 * PREPARED: ref_transaction_prepare(), which locks all of the 181 * references involved in the update and checks that the 182 * update has no errors, has been called successfully for the 183 * transaction. A PREPARED transaction can be committed or 184 * aborted. 185 * 186 * CLOSED: The transaction is no longer active. A transaction becomes 187 * CLOSED if there is a failure while building the transaction 188 * or if a transaction is committed or aborted. A CLOSED 189 * transaction can only be freed. 190 */ 191enum ref_transaction_state { 192 REF_TRANSACTION_OPEN = 0, 193 REF_TRANSACTION_PREPARED = 1, 194 REF_TRANSACTION_CLOSED = 2 195}; 196 197/* 198 * Data structure for holding a reference transaction, which can 199 * consist of checks and updates to multiple references, carried out 200 * as atomically as possible. This structure is opaque to callers. 201 */ 202struct ref_transaction { 203 struct ref_store *ref_store; 204 struct ref_update **updates; 205 size_t alloc; 206 size_t nr; 207 enum ref_transaction_state state; 208 void *backend_data; 209}; 210 211/* 212 * Check for entries in extras that are within the specified 213 * directory, where dirname is a reference directory name including 214 * the trailing slash (e.g., "refs/heads/foo/"). Ignore any 215 * conflicting references that are found in skip. If there is a 216 * conflicting reference, return its name. 217 * 218 * extras and skip must be sorted lists of reference names. Either one 219 * can be NULL, signifying the empty list. 220 */ 221const char *find_descendant_ref(const char *dirname, 222 const struct string_list *extras, 223 const struct string_list *skip); 224 225/* 226 * Check whether an attempt to rename old_refname to new_refname would 227 * cause a D/F conflict with any existing reference (other than 228 * possibly old_refname). If there would be a conflict, emit an error 229 * message and return false; otherwise, return true. 230 * 231 * Note that this function is not safe against all races with other 232 * processes (though rename_ref() catches some races that might get by 233 * this check). 234 */ 235int refs_rename_ref_available(struct ref_store *refs, 236 const char *old_refname, 237 const char *new_refname); 238 239/* We allow "recursive" symbolic refs. Only within reason, though */ 240#define SYMREF_MAXDEPTH 5 241 242/* Include broken references in a do_for_each_ref*() iteration: */ 243#define DO_FOR_EACH_INCLUDE_BROKEN 0x01 244 245/* 246 * Reference iterators 247 * 248 * A reference iterator encapsulates the state of an in-progress 249 * iteration over references. Create an instance of `struct 250 * ref_iterator` via one of the functions in this module. 251 * 252 * A freshly-created ref_iterator doesn't yet point at a reference. To 253 * advance the iterator, call ref_iterator_advance(). If successful, 254 * this sets the iterator's refname, oid, and flags fields to describe 255 * the next reference and returns ITER_OK. The data pointed at by 256 * refname and oid belong to the iterator; if you want to retain them 257 * after calling ref_iterator_advance() again or calling 258 * ref_iterator_abort(), you must make a copy. When the iteration has 259 * been exhausted, ref_iterator_advance() releases any resources 260 * assocated with the iteration, frees the ref_iterator object, and 261 * returns ITER_DONE. If you want to abort the iteration early, call 262 * ref_iterator_abort(), which also frees the ref_iterator object and 263 * any associated resources. If there was an internal error advancing 264 * to the next entry, ref_iterator_advance() aborts the iteration, 265 * frees the ref_iterator, and returns ITER_ERROR. 266 * 267 * The reference currently being looked at can be peeled by calling 268 * ref_iterator_peel(). This function is often faster than peel_ref(), 269 * so it should be preferred when iterating over references. 270 * 271 * Putting it all together, a typical iteration looks like this: 272 * 273 * int ok; 274 * struct ref_iterator *iter = ...; 275 * 276 * while ((ok = ref_iterator_advance(iter)) == ITER_OK) { 277 * if (want_to_stop_iteration()) { 278 * ok = ref_iterator_abort(iter); 279 * break; 280 * } 281 * 282 * // Access information about the current reference: 283 * if (!(iter->flags & REF_ISSYMREF)) 284 * printf("%s is %s\n", iter->refname, oid_to_hex(&iter->oid)); 285 * 286 * // If you need to peel the reference: 287 * ref_iterator_peel(iter, &oid); 288 * } 289 * 290 * if (ok != ITER_DONE) 291 * handle_error(); 292 */ 293struct ref_iterator { 294 struct ref_iterator_vtable *vtable; 295 296 /* 297 * Does this `ref_iterator` iterate over references in order 298 * by refname? 299 */ 300 unsigned int ordered : 1; 301 302 const char *refname; 303 const struct object_id *oid; 304 unsigned int flags; 305}; 306 307/* 308 * Advance the iterator to the first or next item and return ITER_OK. 309 * If the iteration is exhausted, free the resources associated with 310 * the ref_iterator and return ITER_DONE. On errors, free the iterator 311 * resources and return ITER_ERROR. It is a bug to use ref_iterator or 312 * call this function again after it has returned ITER_DONE or 313 * ITER_ERROR. 314 */ 315int ref_iterator_advance(struct ref_iterator *ref_iterator); 316 317/* 318 * If possible, peel the reference currently being viewed by the 319 * iterator. Return 0 on success. 320 */ 321int ref_iterator_peel(struct ref_iterator *ref_iterator, 322 struct object_id *peeled); 323 324/* 325 * End the iteration before it has been exhausted, freeing the 326 * reference iterator and any associated resources and returning 327 * ITER_DONE. If the abort itself failed, return ITER_ERROR. 328 */ 329int ref_iterator_abort(struct ref_iterator *ref_iterator); 330 331/* 332 * An iterator over nothing (its first ref_iterator_advance() call 333 * returns ITER_DONE). 334 */ 335struct ref_iterator *empty_ref_iterator_begin(void); 336 337/* 338 * Return true iff ref_iterator is an empty_ref_iterator. 339 */ 340int is_empty_ref_iterator(struct ref_iterator *ref_iterator); 341 342/* 343 * Return an iterator that goes over each reference in `refs` for 344 * which the refname begins with prefix. If trim is non-zero, then 345 * trim that many characters off the beginning of each refname. flags 346 * can be DO_FOR_EACH_INCLUDE_BROKEN to include broken references in 347 * the iteration. The output is ordered by refname. 348 */ 349struct ref_iterator *refs_ref_iterator_begin( 350 struct ref_store *refs, 351 const char *prefix, int trim, int flags); 352 353/* 354 * A callback function used to instruct merge_ref_iterator how to 355 * interleave the entries from iter0 and iter1. The function should 356 * return one of the constants defined in enum iterator_selection. It 357 * must not advance either of the iterators itself. 358 * 359 * The function must be prepared to handle the case that iter0 and/or 360 * iter1 is NULL, which indicates that the corresponding sub-iterator 361 * has been exhausted. Its return value must be consistent with the 362 * current states of the iterators; e.g., it must not return 363 * ITER_SKIP_1 if iter1 has already been exhausted. 364 */ 365typedef enum iterator_selection ref_iterator_select_fn( 366 struct ref_iterator *iter0, struct ref_iterator *iter1, 367 void *cb_data); 368 369/* 370 * Iterate over the entries from iter0 and iter1, with the values 371 * interleaved as directed by the select function. The iterator takes 372 * ownership of iter0 and iter1 and frees them when the iteration is 373 * over. A derived class should set `ordered` to 1 or 0 based on 374 * whether it generates its output in order by reference name. 375 */ 376struct ref_iterator *merge_ref_iterator_begin( 377 int ordered, 378 struct ref_iterator *iter0, struct ref_iterator *iter1, 379 ref_iterator_select_fn *select, void *cb_data); 380 381/* 382 * An iterator consisting of the union of the entries from front and 383 * back. If there are entries common to the two sub-iterators, use the 384 * one from front. Each iterator must iterate over its entries in 385 * strcmp() order by refname for this to work. 386 * 387 * The new iterator takes ownership of its arguments and frees them 388 * when the iteration is over. As a convenience to callers, if front 389 * or back is an empty_ref_iterator, then abort that one immediately 390 * and return the other iterator directly, without wrapping it. 391 */ 392struct ref_iterator *overlay_ref_iterator_begin( 393 struct ref_iterator *front, struct ref_iterator *back); 394 395/* 396 * Wrap iter0, only letting through the references whose names start 397 * with prefix. If trim is set, set iter->refname to the name of the 398 * reference with that many characters trimmed off the front; 399 * otherwise set it to the full refname. The new iterator takes over 400 * ownership of iter0 and frees it when iteration is over. It makes 401 * its own copy of prefix. 402 * 403 * As an convenience to callers, if prefix is the empty string and 404 * trim is zero, this function returns iter0 directly, without 405 * wrapping it. 406 * 407 * The resulting ref_iterator is ordered if iter0 is. 408 */ 409struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0, 410 const char *prefix, 411 int trim); 412 413/* Internal implementation of reference iteration: */ 414 415/* 416 * Base class constructor for ref_iterators. Initialize the 417 * ref_iterator part of iter, setting its vtable pointer as specified. 418 * `ordered` should be set to 1 if the iterator will iterate over 419 * references in order by refname; otherwise it should be set to 0. 420 * This is meant to be called only by the initializers of derived 421 * classes. 422 */ 423void base_ref_iterator_init(struct ref_iterator *iter, 424 struct ref_iterator_vtable *vtable, 425 int ordered); 426 427/* 428 * Base class destructor for ref_iterators. Destroy the ref_iterator 429 * part of iter and shallow-free the object. This is meant to be 430 * called only by the destructors of derived classes. 431 */ 432void base_ref_iterator_free(struct ref_iterator *iter); 433 434/* Virtual function declarations for ref_iterators: */ 435 436typedef int ref_iterator_advance_fn(struct ref_iterator *ref_iterator); 437 438typedef int ref_iterator_peel_fn(struct ref_iterator *ref_iterator, 439 struct object_id *peeled); 440 441/* 442 * Implementations of this function should free any resources specific 443 * to the derived class, then call base_ref_iterator_free() to clean 444 * up and free the ref_iterator object. 445 */ 446typedef int ref_iterator_abort_fn(struct ref_iterator *ref_iterator); 447 448struct ref_iterator_vtable { 449 ref_iterator_advance_fn *advance; 450 ref_iterator_peel_fn *peel; 451 ref_iterator_abort_fn *abort; 452}; 453 454/* 455 * current_ref_iter is a performance hack: when iterating over 456 * references using the for_each_ref*() functions, current_ref_iter is 457 * set to the reference iterator before calling the callback function. 458 * If the callback function calls peel_ref(), then peel_ref() first 459 * checks whether the reference to be peeled is the one referred to by 460 * the iterator (it usually is) and if so, asks the iterator for the 461 * peeled version of the reference if it is available. This avoids a 462 * refname lookup in a common case. current_ref_iter is set to NULL 463 * when the iteration is over. 464 */ 465extern struct ref_iterator *current_ref_iter; 466 467/* 468 * The common backend for the for_each_*ref* functions. Call fn for 469 * each reference in iter. If the iterator itself ever returns 470 * ITER_ERROR, return -1. If fn ever returns a non-zero value, stop 471 * the iteration and return that value. Otherwise, return 0. In any 472 * case, free the iterator when done. This function is basically an 473 * adapter between the callback style of reference iteration and the 474 * iterator style. 475 */ 476int do_for_each_ref_iterator(struct ref_iterator *iter, 477 each_ref_fn fn, void *cb_data); 478 479/* 480 * Only include per-worktree refs in a do_for_each_ref*() iteration. 481 * Normally this will be used with a files ref_store, since that's 482 * where all reference backends will presumably store their 483 * per-worktree refs. 484 */ 485#define DO_FOR_EACH_PER_WORKTREE_ONLY 0x02 486 487struct ref_store; 488 489/* refs backends */ 490 491/* ref_store_init flags */ 492#define REF_STORE_READ (1 << 0) 493#define REF_STORE_WRITE (1 << 1) /* can perform update operations */ 494#define REF_STORE_ODB (1 << 2) /* has access to object database */ 495#define REF_STORE_MAIN (1 << 3) 496#define REF_STORE_ALL_CAPS (REF_STORE_READ | \ 497 REF_STORE_WRITE | \ 498 REF_STORE_ODB | \ 499 REF_STORE_MAIN) 500 501/* 502 * Initialize the ref_store for the specified gitdir. These functions 503 * should call base_ref_store_init() to initialize the shared part of 504 * the ref_store and to record the ref_store for later lookup. 505 */ 506typedef struct ref_store *ref_store_init_fn(const char *gitdir, 507 unsigned int flags); 508 509typedef int ref_init_db_fn(struct ref_store *refs, struct strbuf *err); 510 511typedef int ref_transaction_prepare_fn(struct ref_store *refs, 512 struct ref_transaction *transaction, 513 struct strbuf *err); 514 515typedef int ref_transaction_finish_fn(struct ref_store *refs, 516 struct ref_transaction *transaction, 517 struct strbuf *err); 518 519typedef int ref_transaction_abort_fn(struct ref_store *refs, 520 struct ref_transaction *transaction, 521 struct strbuf *err); 522 523typedef int ref_transaction_commit_fn(struct ref_store *refs, 524 struct ref_transaction *transaction, 525 struct strbuf *err); 526 527typedef int pack_refs_fn(struct ref_store *ref_store, unsigned int flags); 528typedef int create_symref_fn(struct ref_store *ref_store, 529 const char *ref_target, 530 const char *refs_heads_master, 531 const char *logmsg); 532typedef int delete_refs_fn(struct ref_store *ref_store, const char *msg, 533 struct string_list *refnames, unsigned int flags); 534typedef int rename_ref_fn(struct ref_store *ref_store, 535 const char *oldref, const char *newref, 536 const char *logmsg); 537typedef int copy_ref_fn(struct ref_store *ref_store, 538 const char *oldref, const char *newref, 539 const char *logmsg); 540 541/* 542 * Iterate over the references in `ref_store` whose names start with 543 * `prefix`. `prefix` is matched as a literal string, without regard 544 * for path separators. If prefix is NULL or the empty string, iterate 545 * over all references in `ref_store`. The output is ordered by 546 * refname. 547 */ 548typedef struct ref_iterator *ref_iterator_begin_fn( 549 struct ref_store *ref_store, 550 const char *prefix, unsigned int flags); 551 552/* reflog functions */ 553 554/* 555 * Iterate over the references in the specified ref_store that have a 556 * reflog. The refs are iterated over in arbitrary order. 557 */ 558typedef struct ref_iterator *reflog_iterator_begin_fn( 559 struct ref_store *ref_store); 560 561typedef int for_each_reflog_ent_fn(struct ref_store *ref_store, 562 const char *refname, 563 each_reflog_ent_fn fn, 564 void *cb_data); 565typedef int for_each_reflog_ent_reverse_fn(struct ref_store *ref_store, 566 const char *refname, 567 each_reflog_ent_fn fn, 568 void *cb_data); 569typedef int reflog_exists_fn(struct ref_store *ref_store, const char *refname); 570typedef int create_reflog_fn(struct ref_store *ref_store, const char *refname, 571 int force_create, struct strbuf *err); 572typedef int delete_reflog_fn(struct ref_store *ref_store, const char *refname); 573typedef int reflog_expire_fn(struct ref_store *ref_store, 574 const char *refname, const struct object_id *oid, 575 unsigned int flags, 576 reflog_expiry_prepare_fn prepare_fn, 577 reflog_expiry_should_prune_fn should_prune_fn, 578 reflog_expiry_cleanup_fn cleanup_fn, 579 void *policy_cb_data); 580 581/* 582 * Read a reference from the specified reference store, non-recursively. 583 * Set type to describe the reference, and: 584 * 585 * - If refname is the name of a normal reference, fill in oid 586 * (leaving referent unchanged). 587 * 588 * - If refname is the name of a symbolic reference, write the full 589 * name of the reference to which it refers (e.g. 590 * "refs/heads/master") to referent and set the REF_ISSYMREF bit in 591 * type (leaving oid unchanged). The caller is responsible for 592 * validating that referent is a valid reference name. 593 * 594 * WARNING: refname might be used as part of a filename, so it is 595 * important from a security standpoint that it be safe in the sense 596 * of refname_is_safe(). Moreover, for symrefs this function sets 597 * referent to whatever the repository says, which might not be a 598 * properly-formatted or even safe reference name. NEITHER INPUT NOR 599 * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION. 600 * 601 * Return 0 on success. If the ref doesn't exist, set errno to ENOENT 602 * and return -1. If the ref exists but is neither a symbolic ref nor 603 * an object ID, it is broken; set REF_ISBROKEN in type, set errno to 604 * EINVAL, and return -1. If there is another error reading the ref, 605 * set errno appropriately and return -1. 606 * 607 * Backend-specific flags might be set in type as well, regardless of 608 * outcome. 609 * 610 * It is OK for refname to point into referent. If so: 611 * 612 * - if the function succeeds with REF_ISSYMREF, referent will be 613 * overwritten and the memory formerly pointed to by it might be 614 * changed or even freed. 615 * 616 * - in all other cases, referent will be untouched, and therefore 617 * refname will still be valid and unchanged. 618 */ 619typedef int read_raw_ref_fn(struct ref_store *ref_store, 620 const char *refname, struct object_id *oid, 621 struct strbuf *referent, unsigned int *type); 622 623struct ref_storage_be { 624 struct ref_storage_be *next; 625 const char *name; 626 ref_store_init_fn *init; 627 ref_init_db_fn *init_db; 628 629 ref_transaction_prepare_fn *transaction_prepare; 630 ref_transaction_finish_fn *transaction_finish; 631 ref_transaction_abort_fn *transaction_abort; 632 ref_transaction_commit_fn *initial_transaction_commit; 633 634 pack_refs_fn *pack_refs; 635 create_symref_fn *create_symref; 636 delete_refs_fn *delete_refs; 637 rename_ref_fn *rename_ref; 638 copy_ref_fn *copy_ref; 639 640 ref_iterator_begin_fn *iterator_begin; 641 read_raw_ref_fn *read_raw_ref; 642 643 reflog_iterator_begin_fn *reflog_iterator_begin; 644 for_each_reflog_ent_fn *for_each_reflog_ent; 645 for_each_reflog_ent_reverse_fn *for_each_reflog_ent_reverse; 646 reflog_exists_fn *reflog_exists; 647 create_reflog_fn *create_reflog; 648 delete_reflog_fn *delete_reflog; 649 reflog_expire_fn *reflog_expire; 650}; 651 652extern struct ref_storage_be refs_be_files; 653extern struct ref_storage_be refs_be_packed; 654 655/* 656 * A representation of the reference store for the main repository or 657 * a submodule. The ref_store instances for submodules are kept in a 658 * linked list. 659 */ 660struct ref_store { 661 /* The backend describing this ref_store's storage scheme: */ 662 const struct ref_storage_be *be; 663}; 664 665/* 666 * Fill in the generic part of refs and add it to our collection of 667 * reference stores. 668 */ 669void base_ref_store_init(struct ref_store *refs, 670 const struct ref_storage_be *be); 671 672#endif /* REFS_REFS_INTERNAL_H */