4274a43a9bb03917c6e08fc98b72de1c3ee7e111
   1#include "../cache.h"
   2#include "../refs.h"
   3#include "refs-internal.h"
   4#include "ref-cache.h"
   5#include "../iterator.h"
   6
   7/* FIXME: This declaration shouldn't be here */
   8void read_loose_refs(const char *dirname, struct ref_dir *dir);
   9
  10void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
  11{
  12        ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
  13        dir->entries[dir->nr++] = entry;
  14        /* optimize for the case that entries are added in order */
  15        if (dir->nr == 1 ||
  16            (dir->nr == dir->sorted + 1 &&
  17             strcmp(dir->entries[dir->nr - 2]->name,
  18                    dir->entries[dir->nr - 1]->name) < 0))
  19                dir->sorted = dir->nr;
  20}
  21
  22struct ref_dir *get_ref_dir(struct ref_entry *entry)
  23{
  24        struct ref_dir *dir;
  25        assert(entry->flag & REF_DIR);
  26        dir = &entry->u.subdir;
  27        if (entry->flag & REF_INCOMPLETE) {
  28                read_loose_refs(entry->name, dir);
  29
  30                /*
  31                 * Manually add refs/bisect, which, being
  32                 * per-worktree, might not appear in the directory
  33                 * listing for refs/ in the main repo.
  34                 */
  35                if (!strcmp(entry->name, "refs/")) {
  36                        int pos = search_ref_dir(dir, "refs/bisect/", 12);
  37                        if (pos < 0) {
  38                                struct ref_entry *child_entry;
  39                                child_entry = create_dir_entry(dir->ref_store,
  40                                                               "refs/bisect/",
  41                                                               12, 1);
  42                                add_entry_to_dir(dir, child_entry);
  43                        }
  44                }
  45                entry->flag &= ~REF_INCOMPLETE;
  46        }
  47        return dir;
  48}
  49
  50struct ref_entry *create_ref_entry(const char *refname,
  51                                   const unsigned char *sha1, int flag,
  52                                   int check_name)
  53{
  54        struct ref_entry *ref;
  55
  56        if (check_name &&
  57            check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
  58                die("Reference has invalid format: '%s'", refname);
  59        FLEX_ALLOC_STR(ref, name, refname);
  60        hashcpy(ref->u.value.oid.hash, sha1);
  61        oidclr(&ref->u.value.peeled);
  62        ref->flag = flag;
  63        return ref;
  64}
  65
  66static void clear_ref_dir(struct ref_dir *dir);
  67
  68void free_ref_entry(struct ref_entry *entry)
  69{
  70        if (entry->flag & REF_DIR) {
  71                /*
  72                 * Do not use get_ref_dir() here, as that might
  73                 * trigger the reading of loose refs.
  74                 */
  75                clear_ref_dir(&entry->u.subdir);
  76        }
  77        free(entry);
  78}
  79
  80/*
  81 * Clear and free all entries in dir, recursively.
  82 */
  83static void clear_ref_dir(struct ref_dir *dir)
  84{
  85        int i;
  86        for (i = 0; i < dir->nr; i++)
  87                free_ref_entry(dir->entries[i]);
  88        free(dir->entries);
  89        dir->sorted = dir->nr = dir->alloc = 0;
  90        dir->entries = NULL;
  91}
  92
  93struct ref_entry *create_dir_entry(struct files_ref_store *ref_store,
  94                                   const char *dirname, size_t len,
  95                                   int incomplete)
  96{
  97        struct ref_entry *direntry;
  98        FLEX_ALLOC_MEM(direntry, name, dirname, len);
  99        direntry->u.subdir.ref_store = ref_store;
 100        direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
 101        return direntry;
 102}
 103
 104static int ref_entry_cmp(const void *a, const void *b)
 105{
 106        struct ref_entry *one = *(struct ref_entry **)a;
 107        struct ref_entry *two = *(struct ref_entry **)b;
 108        return strcmp(one->name, two->name);
 109}
 110
 111static void sort_ref_dir(struct ref_dir *dir);
 112
 113struct string_slice {
 114        size_t len;
 115        const char *str;
 116};
 117
 118static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
 119{
 120        const struct string_slice *key = key_;
 121        const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
 122        int cmp = strncmp(key->str, ent->name, key->len);
 123        if (cmp)
 124                return cmp;
 125        return '\0' - (unsigned char)ent->name[key->len];
 126}
 127
 128int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
 129{
 130        struct ref_entry **r;
 131        struct string_slice key;
 132
 133        if (refname == NULL || !dir->nr)
 134                return -1;
 135
 136        sort_ref_dir(dir);
 137        key.len = len;
 138        key.str = refname;
 139        r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
 140                    ref_entry_cmp_sslice);
 141
 142        if (r == NULL)
 143                return -1;
 144
 145        return r - dir->entries;
 146}
 147
 148/*
 149 * Search for a directory entry directly within dir (without
 150 * recursing).  Sort dir if necessary.  subdirname must be a directory
 151 * name (i.e., end in '/').  If mkdir is set, then create the
 152 * directory if it is missing; otherwise, return NULL if the desired
 153 * directory cannot be found.  dir must already be complete.
 154 */
 155static struct ref_dir *search_for_subdir(struct ref_dir *dir,
 156                                         const char *subdirname, size_t len,
 157                                         int mkdir)
 158{
 159        int entry_index = search_ref_dir(dir, subdirname, len);
 160        struct ref_entry *entry;
 161        if (entry_index == -1) {
 162                if (!mkdir)
 163                        return NULL;
 164                /*
 165                 * Since dir is complete, the absence of a subdir
 166                 * means that the subdir really doesn't exist;
 167                 * therefore, create an empty record for it but mark
 168                 * the record complete.
 169                 */
 170                entry = create_dir_entry(dir->ref_store, subdirname, len, 0);
 171                add_entry_to_dir(dir, entry);
 172        } else {
 173                entry = dir->entries[entry_index];
 174        }
 175        return get_ref_dir(entry);
 176}
 177
 178struct ref_dir *find_containing_dir(struct ref_dir *dir,
 179                                    const char *refname, int mkdir)
 180{
 181        const char *slash;
 182        for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
 183                size_t dirnamelen = slash - refname + 1;
 184                struct ref_dir *subdir;
 185                subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
 186                if (!subdir) {
 187                        dir = NULL;
 188                        break;
 189                }
 190                dir = subdir;
 191        }
 192
 193        return dir;
 194}
 195
 196struct ref_entry *find_ref_entry(struct ref_dir *dir, const char *refname)
 197{
 198        int entry_index;
 199        struct ref_entry *entry;
 200        dir = find_containing_dir(dir, refname, 0);
 201        if (!dir)
 202                return NULL;
 203        entry_index = search_ref_dir(dir, refname, strlen(refname));
 204        if (entry_index == -1)
 205                return NULL;
 206        entry = dir->entries[entry_index];
 207        return (entry->flag & REF_DIR) ? NULL : entry;
 208}
 209
 210int remove_entry_from_dir(struct ref_dir *dir, const char *refname)
 211{
 212        int refname_len = strlen(refname);
 213        int entry_index;
 214        struct ref_entry *entry;
 215        int is_dir = refname[refname_len - 1] == '/';
 216        if (is_dir) {
 217                /*
 218                 * refname represents a reference directory.  Remove
 219                 * the trailing slash; otherwise we will get the
 220                 * directory *representing* refname rather than the
 221                 * one *containing* it.
 222                 */
 223                char *dirname = xmemdupz(refname, refname_len - 1);
 224                dir = find_containing_dir(dir, dirname, 0);
 225                free(dirname);
 226        } else {
 227                dir = find_containing_dir(dir, refname, 0);
 228        }
 229        if (!dir)
 230                return -1;
 231        entry_index = search_ref_dir(dir, refname, refname_len);
 232        if (entry_index == -1)
 233                return -1;
 234        entry = dir->entries[entry_index];
 235
 236        memmove(&dir->entries[entry_index],
 237                &dir->entries[entry_index + 1],
 238                (dir->nr - entry_index - 1) * sizeof(*dir->entries)
 239                );
 240        dir->nr--;
 241        if (dir->sorted > entry_index)
 242                dir->sorted--;
 243        free_ref_entry(entry);
 244        return dir->nr;
 245}
 246
 247int add_ref_entry(struct ref_dir *dir, struct ref_entry *ref)
 248{
 249        dir = find_containing_dir(dir, ref->name, 1);
 250        if (!dir)
 251                return -1;
 252        add_entry_to_dir(dir, ref);
 253        return 0;
 254}
 255
 256/*
 257 * Emit a warning and return true iff ref1 and ref2 have the same name
 258 * and the same sha1.  Die if they have the same name but different
 259 * sha1s.
 260 */
 261static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
 262{
 263        if (strcmp(ref1->name, ref2->name))
 264                return 0;
 265
 266        /* Duplicate name; make sure that they don't conflict: */
 267
 268        if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
 269                /* This is impossible by construction */
 270                die("Reference directory conflict: %s", ref1->name);
 271
 272        if (oidcmp(&ref1->u.value.oid, &ref2->u.value.oid))
 273                die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
 274
 275        warning("Duplicated ref: %s", ref1->name);
 276        return 1;
 277}
 278
 279/*
 280 * Sort the entries in dir non-recursively (if they are not already
 281 * sorted) and remove any duplicate entries.
 282 */
 283static void sort_ref_dir(struct ref_dir *dir)
 284{
 285        int i, j;
 286        struct ref_entry *last = NULL;
 287
 288        /*
 289         * This check also prevents passing a zero-length array to qsort(),
 290         * which is a problem on some platforms.
 291         */
 292        if (dir->sorted == dir->nr)
 293                return;
 294
 295        QSORT(dir->entries, dir->nr, ref_entry_cmp);
 296
 297        /* Remove any duplicates: */
 298        for (i = 0, j = 0; j < dir->nr; j++) {
 299                struct ref_entry *entry = dir->entries[j];
 300                if (last && is_dup_ref(last, entry))
 301                        free_ref_entry(entry);
 302                else
 303                        last = dir->entries[i++] = entry;
 304        }
 305        dir->sorted = dir->nr = i;
 306}
 307
 308int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
 309                             each_ref_entry_fn fn, void *cb_data)
 310{
 311        int i;
 312        assert(dir->sorted == dir->nr);
 313        for (i = offset; i < dir->nr; i++) {
 314                struct ref_entry *entry = dir->entries[i];
 315                int retval;
 316                if (entry->flag & REF_DIR) {
 317                        struct ref_dir *subdir = get_ref_dir(entry);
 318                        sort_ref_dir(subdir);
 319                        retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
 320                } else {
 321                        retval = fn(entry, cb_data);
 322                }
 323                if (retval)
 324                        return retval;
 325        }
 326        return 0;
 327}
 328
 329void prime_ref_dir(struct ref_dir *dir)
 330{
 331        /*
 332         * The hard work of loading loose refs is done by get_ref_dir(), so we
 333         * just need to recurse through all of the sub-directories. We do not
 334         * even need to care about sorting, as traversal order does not matter
 335         * to us.
 336         */
 337        int i;
 338        for (i = 0; i < dir->nr; i++) {
 339                struct ref_entry *entry = dir->entries[i];
 340                if (entry->flag & REF_DIR)
 341                        prime_ref_dir(get_ref_dir(entry));
 342        }
 343}
 344
 345/*
 346 * A level in the reference hierarchy that is currently being iterated
 347 * through.
 348 */
 349struct cache_ref_iterator_level {
 350        /*
 351         * The ref_dir being iterated over at this level. The ref_dir
 352         * is sorted before being stored here.
 353         */
 354        struct ref_dir *dir;
 355
 356        /*
 357         * The index of the current entry within dir (which might
 358         * itself be a directory). If index == -1, then the iteration
 359         * hasn't yet begun. If index == dir->nr, then the iteration
 360         * through this level is over.
 361         */
 362        int index;
 363};
 364
 365/*
 366 * Represent an iteration through a ref_dir in the memory cache. The
 367 * iteration recurses through subdirectories.
 368 */
 369struct cache_ref_iterator {
 370        struct ref_iterator base;
 371
 372        /*
 373         * The number of levels currently on the stack. This is always
 374         * at least 1, because when it becomes zero the iteration is
 375         * ended and this struct is freed.
 376         */
 377        size_t levels_nr;
 378
 379        /* The number of levels that have been allocated on the stack */
 380        size_t levels_alloc;
 381
 382        /*
 383         * A stack of levels. levels[0] is the uppermost level that is
 384         * being iterated over in this iteration. (This is not
 385         * necessary the top level in the references hierarchy. If we
 386         * are iterating through a subtree, then levels[0] will hold
 387         * the ref_dir for that subtree, and subsequent levels will go
 388         * on from there.)
 389         */
 390        struct cache_ref_iterator_level *levels;
 391};
 392
 393static int cache_ref_iterator_advance(struct ref_iterator *ref_iterator)
 394{
 395        struct cache_ref_iterator *iter =
 396                (struct cache_ref_iterator *)ref_iterator;
 397
 398        while (1) {
 399                struct cache_ref_iterator_level *level =
 400                        &iter->levels[iter->levels_nr - 1];
 401                struct ref_dir *dir = level->dir;
 402                struct ref_entry *entry;
 403
 404                if (level->index == -1)
 405                        sort_ref_dir(dir);
 406
 407                if (++level->index == level->dir->nr) {
 408                        /* This level is exhausted; pop up a level */
 409                        if (--iter->levels_nr == 0)
 410                                return ref_iterator_abort(ref_iterator);
 411
 412                        continue;
 413                }
 414
 415                entry = dir->entries[level->index];
 416
 417                if (entry->flag & REF_DIR) {
 418                        /* push down a level */
 419                        ALLOC_GROW(iter->levels, iter->levels_nr + 1,
 420                                   iter->levels_alloc);
 421
 422                        level = &iter->levels[iter->levels_nr++];
 423                        level->dir = get_ref_dir(entry);
 424                        level->index = -1;
 425                } else {
 426                        iter->base.refname = entry->name;
 427                        iter->base.oid = &entry->u.value.oid;
 428                        iter->base.flags = entry->flag;
 429                        return ITER_OK;
 430                }
 431        }
 432}
 433
 434enum peel_status peel_entry(struct ref_entry *entry, int repeel)
 435{
 436        enum peel_status status;
 437
 438        if (entry->flag & REF_KNOWS_PEELED) {
 439                if (repeel) {
 440                        entry->flag &= ~REF_KNOWS_PEELED;
 441                        oidclr(&entry->u.value.peeled);
 442                } else {
 443                        return is_null_oid(&entry->u.value.peeled) ?
 444                                PEEL_NON_TAG : PEEL_PEELED;
 445                }
 446        }
 447        if (entry->flag & REF_ISBROKEN)
 448                return PEEL_BROKEN;
 449        if (entry->flag & REF_ISSYMREF)
 450                return PEEL_IS_SYMREF;
 451
 452        status = peel_object(entry->u.value.oid.hash, entry->u.value.peeled.hash);
 453        if (status == PEEL_PEELED || status == PEEL_NON_TAG)
 454                entry->flag |= REF_KNOWS_PEELED;
 455        return status;
 456}
 457
 458static int cache_ref_iterator_peel(struct ref_iterator *ref_iterator,
 459                                   struct object_id *peeled)
 460{
 461        struct cache_ref_iterator *iter =
 462                (struct cache_ref_iterator *)ref_iterator;
 463        struct cache_ref_iterator_level *level;
 464        struct ref_entry *entry;
 465
 466        level = &iter->levels[iter->levels_nr - 1];
 467
 468        if (level->index == -1)
 469                die("BUG: peel called before advance for cache iterator");
 470
 471        entry = level->dir->entries[level->index];
 472
 473        if (peel_entry(entry, 0))
 474                return -1;
 475        oidcpy(peeled, &entry->u.value.peeled);
 476        return 0;
 477}
 478
 479static int cache_ref_iterator_abort(struct ref_iterator *ref_iterator)
 480{
 481        struct cache_ref_iterator *iter =
 482                (struct cache_ref_iterator *)ref_iterator;
 483
 484        free(iter->levels);
 485        base_ref_iterator_free(ref_iterator);
 486        return ITER_DONE;
 487}
 488
 489static struct ref_iterator_vtable cache_ref_iterator_vtable = {
 490        cache_ref_iterator_advance,
 491        cache_ref_iterator_peel,
 492        cache_ref_iterator_abort
 493};
 494
 495struct ref_iterator *cache_ref_iterator_begin(struct ref_dir *dir)
 496{
 497        struct cache_ref_iterator *iter;
 498        struct ref_iterator *ref_iterator;
 499        struct cache_ref_iterator_level *level;
 500
 501        iter = xcalloc(1, sizeof(*iter));
 502        ref_iterator = &iter->base;
 503        base_ref_iterator_init(ref_iterator, &cache_ref_iterator_vtable);
 504        ALLOC_GROW(iter->levels, 10, iter->levels_alloc);
 505
 506        iter->levels_nr = 1;
 507        level = &iter->levels[0];
 508        level->index = -1;
 509        level->dir = dir;
 510
 511        return ref_iterator;
 512}