490f05a6f42151157099f30feaed28a80ff88a89
   1#include "../cache.h"
   2#include "../refs.h"
   3#include "refs-internal.h"
   4#include "../iterator.h"
   5#include "../dir-iterator.h"
   6#include "../lockfile.h"
   7#include "../object.h"
   8#include "../dir.h"
   9
  10struct ref_lock {
  11        char *ref_name;
  12        struct lock_file *lk;
  13        struct object_id old_oid;
  14};
  15
  16struct ref_entry;
  17
  18/*
  19 * Information used (along with the information in ref_entry) to
  20 * describe a single cached reference.  This data structure only
  21 * occurs embedded in a union in struct ref_entry, and only when
  22 * (ref_entry->flag & REF_DIR) is zero.
  23 */
  24struct ref_value {
  25        /*
  26         * The name of the object to which this reference resolves
  27         * (which may be a tag object).  If REF_ISBROKEN, this is
  28         * null.  If REF_ISSYMREF, then this is the name of the object
  29         * referred to by the last reference in the symlink chain.
  30         */
  31        struct object_id oid;
  32
  33        /*
  34         * If REF_KNOWS_PEELED, then this field holds the peeled value
  35         * of this reference, or null if the reference is known not to
  36         * be peelable.  See the documentation for peel_ref() for an
  37         * exact definition of "peelable".
  38         */
  39        struct object_id peeled;
  40};
  41
  42struct files_ref_store;
  43
  44/*
  45 * Information used (along with the information in ref_entry) to
  46 * describe a level in the hierarchy of references.  This data
  47 * structure only occurs embedded in a union in struct ref_entry, and
  48 * only when (ref_entry.flag & REF_DIR) is set.  In that case,
  49 * (ref_entry.flag & REF_INCOMPLETE) determines whether the references
  50 * in the directory have already been read:
  51 *
  52 *     (ref_entry.flag & REF_INCOMPLETE) unset -- a directory of loose
  53 *         or packed references, already read.
  54 *
  55 *     (ref_entry.flag & REF_INCOMPLETE) set -- a directory of loose
  56 *         references that hasn't been read yet (nor has any of its
  57 *         subdirectories).
  58 *
  59 * Entries within a directory are stored within a growable array of
  60 * pointers to ref_entries (entries, nr, alloc).  Entries 0 <= i <
  61 * sorted are sorted by their component name in strcmp() order and the
  62 * remaining entries are unsorted.
  63 *
  64 * Loose references are read lazily, one directory at a time.  When a
  65 * directory of loose references is read, then all of the references
  66 * in that directory are stored, and REF_INCOMPLETE stubs are created
  67 * for any subdirectories, but the subdirectories themselves are not
  68 * read.  The reading is triggered by get_ref_dir().
  69 */
  70struct ref_dir {
  71        int nr, alloc;
  72
  73        /*
  74         * Entries with index 0 <= i < sorted are sorted by name.  New
  75         * entries are appended to the list unsorted, and are sorted
  76         * only when required; thus we avoid the need to sort the list
  77         * after the addition of every reference.
  78         */
  79        int sorted;
  80
  81        /* A pointer to the files_ref_store that contains this ref_dir. */
  82        struct files_ref_store *ref_store;
  83
  84        struct ref_entry **entries;
  85};
  86
  87/*
  88 * Bit values for ref_entry::flag.  REF_ISSYMREF=0x01,
  89 * REF_ISPACKED=0x02, REF_ISBROKEN=0x04 and REF_BAD_NAME=0x08 are
  90 * public values; see refs.h.
  91 */
  92
  93/*
  94 * The field ref_entry->u.value.peeled of this value entry contains
  95 * the correct peeled value for the reference, which might be
  96 * null_sha1 if the reference is not a tag or if it is broken.
  97 */
  98#define REF_KNOWS_PEELED 0x10
  99
 100/* ref_entry represents a directory of references */
 101#define REF_DIR 0x20
 102
 103/*
 104 * Entry has not yet been read from disk (used only for REF_DIR
 105 * entries representing loose references)
 106 */
 107#define REF_INCOMPLETE 0x40
 108
 109/*
 110 * A ref_entry represents either a reference or a "subdirectory" of
 111 * references.
 112 *
 113 * Each directory in the reference namespace is represented by a
 114 * ref_entry with (flags & REF_DIR) set and containing a subdir member
 115 * that holds the entries in that directory that have been read so
 116 * far.  If (flags & REF_INCOMPLETE) is set, then the directory and
 117 * its subdirectories haven't been read yet.  REF_INCOMPLETE is only
 118 * used for loose reference directories.
 119 *
 120 * References are represented by a ref_entry with (flags & REF_DIR)
 121 * unset and a value member that describes the reference's value.  The
 122 * flag member is at the ref_entry level, but it is also needed to
 123 * interpret the contents of the value field (in other words, a
 124 * ref_value object is not very much use without the enclosing
 125 * ref_entry).
 126 *
 127 * Reference names cannot end with slash and directories' names are
 128 * always stored with a trailing slash (except for the top-level
 129 * directory, which is always denoted by "").  This has two nice
 130 * consequences: (1) when the entries in each subdir are sorted
 131 * lexicographically by name (as they usually are), the references in
 132 * a whole tree can be generated in lexicographic order by traversing
 133 * the tree in left-to-right, depth-first order; (2) the names of
 134 * references and subdirectories cannot conflict, and therefore the
 135 * presence of an empty subdirectory does not block the creation of a
 136 * similarly-named reference.  (The fact that reference names with the
 137 * same leading components can conflict *with each other* is a
 138 * separate issue that is regulated by verify_refname_available().)
 139 *
 140 * Please note that the name field contains the fully-qualified
 141 * reference (or subdirectory) name.  Space could be saved by only
 142 * storing the relative names.  But that would require the full names
 143 * to be generated on the fly when iterating in do_for_each_ref(), and
 144 * would break callback functions, who have always been able to assume
 145 * that the name strings that they are passed will not be freed during
 146 * the iteration.
 147 */
 148struct ref_entry {
 149        unsigned char flag; /* ISSYMREF? ISPACKED? */
 150        union {
 151                struct ref_value value; /* if not (flags&REF_DIR) */
 152                struct ref_dir subdir; /* if (flags&REF_DIR) */
 153        } u;
 154        /*
 155         * The full name of the reference (e.g., "refs/heads/master")
 156         * or the full name of the directory with a trailing slash
 157         * (e.g., "refs/heads/"):
 158         */
 159        char name[FLEX_ARRAY];
 160};
 161
 162static void read_loose_refs(const char *dirname, struct ref_dir *dir);
 163static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len);
 164static struct ref_entry *create_dir_entry(struct files_ref_store *ref_store,
 165                                          const char *dirname, size_t len,
 166                                          int incomplete);
 167static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry);
 168static int files_log_ref_write(struct files_ref_store *refs,
 169                               const char *refname, const unsigned char *old_sha1,
 170                               const unsigned char *new_sha1, const char *msg,
 171                               int flags, struct strbuf *err);
 172
 173static struct ref_dir *get_ref_dir(struct ref_entry *entry)
 174{
 175        struct ref_dir *dir;
 176        assert(entry->flag & REF_DIR);
 177        dir = &entry->u.subdir;
 178        if (entry->flag & REF_INCOMPLETE) {
 179                read_loose_refs(entry->name, dir);
 180
 181                /*
 182                 * Manually add refs/bisect, which, being
 183                 * per-worktree, might not appear in the directory
 184                 * listing for refs/ in the main repo.
 185                 */
 186                if (!strcmp(entry->name, "refs/")) {
 187                        int pos = search_ref_dir(dir, "refs/bisect/", 12);
 188                        if (pos < 0) {
 189                                struct ref_entry *child_entry;
 190                                child_entry = create_dir_entry(dir->ref_store,
 191                                                               "refs/bisect/",
 192                                                               12, 1);
 193                                add_entry_to_dir(dir, child_entry);
 194                                read_loose_refs("refs/bisect",
 195                                                &child_entry->u.subdir);
 196                        }
 197                }
 198                entry->flag &= ~REF_INCOMPLETE;
 199        }
 200        return dir;
 201}
 202
 203static struct ref_entry *create_ref_entry(const char *refname,
 204                                          const unsigned char *sha1, int flag,
 205                                          int check_name)
 206{
 207        struct ref_entry *ref;
 208
 209        if (check_name &&
 210            check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
 211                die("Reference has invalid format: '%s'", refname);
 212        FLEX_ALLOC_STR(ref, name, refname);
 213        hashcpy(ref->u.value.oid.hash, sha1);
 214        oidclr(&ref->u.value.peeled);
 215        ref->flag = flag;
 216        return ref;
 217}
 218
 219static void clear_ref_dir(struct ref_dir *dir);
 220
 221static void free_ref_entry(struct ref_entry *entry)
 222{
 223        if (entry->flag & REF_DIR) {
 224                /*
 225                 * Do not use get_ref_dir() here, as that might
 226                 * trigger the reading of loose refs.
 227                 */
 228                clear_ref_dir(&entry->u.subdir);
 229        }
 230        free(entry);
 231}
 232
 233/*
 234 * Add a ref_entry to the end of dir (unsorted).  Entry is always
 235 * stored directly in dir; no recursion into subdirectories is
 236 * done.
 237 */
 238static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
 239{
 240        ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
 241        dir->entries[dir->nr++] = entry;
 242        /* optimize for the case that entries are added in order */
 243        if (dir->nr == 1 ||
 244            (dir->nr == dir->sorted + 1 &&
 245             strcmp(dir->entries[dir->nr - 2]->name,
 246                    dir->entries[dir->nr - 1]->name) < 0))
 247                dir->sorted = dir->nr;
 248}
 249
 250/*
 251 * Clear and free all entries in dir, recursively.
 252 */
 253static void clear_ref_dir(struct ref_dir *dir)
 254{
 255        int i;
 256        for (i = 0; i < dir->nr; i++)
 257                free_ref_entry(dir->entries[i]);
 258        free(dir->entries);
 259        dir->sorted = dir->nr = dir->alloc = 0;
 260        dir->entries = NULL;
 261}
 262
 263/*
 264 * Create a struct ref_entry object for the specified dirname.
 265 * dirname is the name of the directory with a trailing slash (e.g.,
 266 * "refs/heads/") or "" for the top-level directory.
 267 */
 268static struct ref_entry *create_dir_entry(struct files_ref_store *ref_store,
 269                                          const char *dirname, size_t len,
 270                                          int incomplete)
 271{
 272        struct ref_entry *direntry;
 273        FLEX_ALLOC_MEM(direntry, name, dirname, len);
 274        direntry->u.subdir.ref_store = ref_store;
 275        direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
 276        return direntry;
 277}
 278
 279static int ref_entry_cmp(const void *a, const void *b)
 280{
 281        struct ref_entry *one = *(struct ref_entry **)a;
 282        struct ref_entry *two = *(struct ref_entry **)b;
 283        return strcmp(one->name, two->name);
 284}
 285
 286static void sort_ref_dir(struct ref_dir *dir);
 287
 288struct string_slice {
 289        size_t len;
 290        const char *str;
 291};
 292
 293static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
 294{
 295        const struct string_slice *key = key_;
 296        const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
 297        int cmp = strncmp(key->str, ent->name, key->len);
 298        if (cmp)
 299                return cmp;
 300        return '\0' - (unsigned char)ent->name[key->len];
 301}
 302
 303/*
 304 * Return the index of the entry with the given refname from the
 305 * ref_dir (non-recursively), sorting dir if necessary.  Return -1 if
 306 * no such entry is found.  dir must already be complete.
 307 */
 308static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
 309{
 310        struct ref_entry **r;
 311        struct string_slice key;
 312
 313        if (refname == NULL || !dir->nr)
 314                return -1;
 315
 316        sort_ref_dir(dir);
 317        key.len = len;
 318        key.str = refname;
 319        r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
 320                    ref_entry_cmp_sslice);
 321
 322        if (r == NULL)
 323                return -1;
 324
 325        return r - dir->entries;
 326}
 327
 328/*
 329 * Search for a directory entry directly within dir (without
 330 * recursing).  Sort dir if necessary.  subdirname must be a directory
 331 * name (i.e., end in '/').  If mkdir is set, then create the
 332 * directory if it is missing; otherwise, return NULL if the desired
 333 * directory cannot be found.  dir must already be complete.
 334 */
 335static struct ref_dir *search_for_subdir(struct ref_dir *dir,
 336                                         const char *subdirname, size_t len,
 337                                         int mkdir)
 338{
 339        int entry_index = search_ref_dir(dir, subdirname, len);
 340        struct ref_entry *entry;
 341        if (entry_index == -1) {
 342                if (!mkdir)
 343                        return NULL;
 344                /*
 345                 * Since dir is complete, the absence of a subdir
 346                 * means that the subdir really doesn't exist;
 347                 * therefore, create an empty record for it but mark
 348                 * the record complete.
 349                 */
 350                entry = create_dir_entry(dir->ref_store, subdirname, len, 0);
 351                add_entry_to_dir(dir, entry);
 352        } else {
 353                entry = dir->entries[entry_index];
 354        }
 355        return get_ref_dir(entry);
 356}
 357
 358/*
 359 * If refname is a reference name, find the ref_dir within the dir
 360 * tree that should hold refname.  If refname is a directory name
 361 * (i.e., ends in '/'), then return that ref_dir itself.  dir must
 362 * represent the top-level directory and must already be complete.
 363 * Sort ref_dirs and recurse into subdirectories as necessary.  If
 364 * mkdir is set, then create any missing directories; otherwise,
 365 * return NULL if the desired directory cannot be found.
 366 */
 367static struct ref_dir *find_containing_dir(struct ref_dir *dir,
 368                                           const char *refname, int mkdir)
 369{
 370        const char *slash;
 371        for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
 372                size_t dirnamelen = slash - refname + 1;
 373                struct ref_dir *subdir;
 374                subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
 375                if (!subdir) {
 376                        dir = NULL;
 377                        break;
 378                }
 379                dir = subdir;
 380        }
 381
 382        return dir;
 383}
 384
 385/*
 386 * Find the value entry with the given name in dir, sorting ref_dirs
 387 * and recursing into subdirectories as necessary.  If the name is not
 388 * found or it corresponds to a directory entry, return NULL.
 389 */
 390static struct ref_entry *find_ref(struct ref_dir *dir, const char *refname)
 391{
 392        int entry_index;
 393        struct ref_entry *entry;
 394        dir = find_containing_dir(dir, refname, 0);
 395        if (!dir)
 396                return NULL;
 397        entry_index = search_ref_dir(dir, refname, strlen(refname));
 398        if (entry_index == -1)
 399                return NULL;
 400        entry = dir->entries[entry_index];
 401        return (entry->flag & REF_DIR) ? NULL : entry;
 402}
 403
 404/*
 405 * Remove the entry with the given name from dir, recursing into
 406 * subdirectories as necessary.  If refname is the name of a directory
 407 * (i.e., ends with '/'), then remove the directory and its contents.
 408 * If the removal was successful, return the number of entries
 409 * remaining in the directory entry that contained the deleted entry.
 410 * If the name was not found, return -1.  Please note that this
 411 * function only deletes the entry from the cache; it does not delete
 412 * it from the filesystem or ensure that other cache entries (which
 413 * might be symbolic references to the removed entry) are updated.
 414 * Nor does it remove any containing dir entries that might be made
 415 * empty by the removal.  dir must represent the top-level directory
 416 * and must already be complete.
 417 */
 418static int remove_entry(struct ref_dir *dir, const char *refname)
 419{
 420        int refname_len = strlen(refname);
 421        int entry_index;
 422        struct ref_entry *entry;
 423        int is_dir = refname[refname_len - 1] == '/';
 424        if (is_dir) {
 425                /*
 426                 * refname represents a reference directory.  Remove
 427                 * the trailing slash; otherwise we will get the
 428                 * directory *representing* refname rather than the
 429                 * one *containing* it.
 430                 */
 431                char *dirname = xmemdupz(refname, refname_len - 1);
 432                dir = find_containing_dir(dir, dirname, 0);
 433                free(dirname);
 434        } else {
 435                dir = find_containing_dir(dir, refname, 0);
 436        }
 437        if (!dir)
 438                return -1;
 439        entry_index = search_ref_dir(dir, refname, refname_len);
 440        if (entry_index == -1)
 441                return -1;
 442        entry = dir->entries[entry_index];
 443
 444        memmove(&dir->entries[entry_index],
 445                &dir->entries[entry_index + 1],
 446                (dir->nr - entry_index - 1) * sizeof(*dir->entries)
 447                );
 448        dir->nr--;
 449        if (dir->sorted > entry_index)
 450                dir->sorted--;
 451        free_ref_entry(entry);
 452        return dir->nr;
 453}
 454
 455/*
 456 * Add a ref_entry to the ref_dir (unsorted), recursing into
 457 * subdirectories as necessary.  dir must represent the top-level
 458 * directory.  Return 0 on success.
 459 */
 460static int add_ref(struct ref_dir *dir, struct ref_entry *ref)
 461{
 462        dir = find_containing_dir(dir, ref->name, 1);
 463        if (!dir)
 464                return -1;
 465        add_entry_to_dir(dir, ref);
 466        return 0;
 467}
 468
 469/*
 470 * Emit a warning and return true iff ref1 and ref2 have the same name
 471 * and the same sha1.  Die if they have the same name but different
 472 * sha1s.
 473 */
 474static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
 475{
 476        if (strcmp(ref1->name, ref2->name))
 477                return 0;
 478
 479        /* Duplicate name; make sure that they don't conflict: */
 480
 481        if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
 482                /* This is impossible by construction */
 483                die("Reference directory conflict: %s", ref1->name);
 484
 485        if (oidcmp(&ref1->u.value.oid, &ref2->u.value.oid))
 486                die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
 487
 488        warning("Duplicated ref: %s", ref1->name);
 489        return 1;
 490}
 491
 492/*
 493 * Sort the entries in dir non-recursively (if they are not already
 494 * sorted) and remove any duplicate entries.
 495 */
 496static void sort_ref_dir(struct ref_dir *dir)
 497{
 498        int i, j;
 499        struct ref_entry *last = NULL;
 500
 501        /*
 502         * This check also prevents passing a zero-length array to qsort(),
 503         * which is a problem on some platforms.
 504         */
 505        if (dir->sorted == dir->nr)
 506                return;
 507
 508        QSORT(dir->entries, dir->nr, ref_entry_cmp);
 509
 510        /* Remove any duplicates: */
 511        for (i = 0, j = 0; j < dir->nr; j++) {
 512                struct ref_entry *entry = dir->entries[j];
 513                if (last && is_dup_ref(last, entry))
 514                        free_ref_entry(entry);
 515                else
 516                        last = dir->entries[i++] = entry;
 517        }
 518        dir->sorted = dir->nr = i;
 519}
 520
 521/*
 522 * Return true if refname, which has the specified oid and flags, can
 523 * be resolved to an object in the database. If the referred-to object
 524 * does not exist, emit a warning and return false.
 525 */
 526static int ref_resolves_to_object(const char *refname,
 527                                  const struct object_id *oid,
 528                                  unsigned int flags)
 529{
 530        if (flags & REF_ISBROKEN)
 531                return 0;
 532        if (!has_sha1_file(oid->hash)) {
 533                error("%s does not point to a valid object!", refname);
 534                return 0;
 535        }
 536        return 1;
 537}
 538
 539/*
 540 * Return true if the reference described by entry can be resolved to
 541 * an object in the database; otherwise, emit a warning and return
 542 * false.
 543 */
 544static int entry_resolves_to_object(struct ref_entry *entry)
 545{
 546        return ref_resolves_to_object(entry->name,
 547                                      &entry->u.value.oid, entry->flag);
 548}
 549
 550typedef int each_ref_entry_fn(struct ref_entry *entry, void *cb_data);
 551
 552/*
 553 * Call fn for each reference in dir that has index in the range
 554 * offset <= index < dir->nr.  Recurse into subdirectories that are in
 555 * that index range, sorting them before iterating.  This function
 556 * does not sort dir itself; it should be sorted beforehand.  fn is
 557 * called for all references, including broken ones.
 558 */
 559static int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
 560                                    each_ref_entry_fn fn, void *cb_data)
 561{
 562        int i;
 563        assert(dir->sorted == dir->nr);
 564        for (i = offset; i < dir->nr; i++) {
 565                struct ref_entry *entry = dir->entries[i];
 566                int retval;
 567                if (entry->flag & REF_DIR) {
 568                        struct ref_dir *subdir = get_ref_dir(entry);
 569                        sort_ref_dir(subdir);
 570                        retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
 571                } else {
 572                        retval = fn(entry, cb_data);
 573                }
 574                if (retval)
 575                        return retval;
 576        }
 577        return 0;
 578}
 579
 580/*
 581 * Load all of the refs from the dir into our in-memory cache. The hard work
 582 * of loading loose refs is done by get_ref_dir(), so we just need to recurse
 583 * through all of the sub-directories. We do not even need to care about
 584 * sorting, as traversal order does not matter to us.
 585 */
 586static void prime_ref_dir(struct ref_dir *dir)
 587{
 588        int i;
 589        for (i = 0; i < dir->nr; i++) {
 590                struct ref_entry *entry = dir->entries[i];
 591                if (entry->flag & REF_DIR)
 592                        prime_ref_dir(get_ref_dir(entry));
 593        }
 594}
 595
 596/*
 597 * A level in the reference hierarchy that is currently being iterated
 598 * through.
 599 */
 600struct cache_ref_iterator_level {
 601        /*
 602         * The ref_dir being iterated over at this level. The ref_dir
 603         * is sorted before being stored here.
 604         */
 605        struct ref_dir *dir;
 606
 607        /*
 608         * The index of the current entry within dir (which might
 609         * itself be a directory). If index == -1, then the iteration
 610         * hasn't yet begun. If index == dir->nr, then the iteration
 611         * through this level is over.
 612         */
 613        int index;
 614};
 615
 616/*
 617 * Represent an iteration through a ref_dir in the memory cache. The
 618 * iteration recurses through subdirectories.
 619 */
 620struct cache_ref_iterator {
 621        struct ref_iterator base;
 622
 623        /*
 624         * The number of levels currently on the stack. This is always
 625         * at least 1, because when it becomes zero the iteration is
 626         * ended and this struct is freed.
 627         */
 628        size_t levels_nr;
 629
 630        /* The number of levels that have been allocated on the stack */
 631        size_t levels_alloc;
 632
 633        /*
 634         * A stack of levels. levels[0] is the uppermost level that is
 635         * being iterated over in this iteration. (This is not
 636         * necessary the top level in the references hierarchy. If we
 637         * are iterating through a subtree, then levels[0] will hold
 638         * the ref_dir for that subtree, and subsequent levels will go
 639         * on from there.)
 640         */
 641        struct cache_ref_iterator_level *levels;
 642};
 643
 644static int cache_ref_iterator_advance(struct ref_iterator *ref_iterator)
 645{
 646        struct cache_ref_iterator *iter =
 647                (struct cache_ref_iterator *)ref_iterator;
 648
 649        while (1) {
 650                struct cache_ref_iterator_level *level =
 651                        &iter->levels[iter->levels_nr - 1];
 652                struct ref_dir *dir = level->dir;
 653                struct ref_entry *entry;
 654
 655                if (level->index == -1)
 656                        sort_ref_dir(dir);
 657
 658                if (++level->index == level->dir->nr) {
 659                        /* This level is exhausted; pop up a level */
 660                        if (--iter->levels_nr == 0)
 661                                return ref_iterator_abort(ref_iterator);
 662
 663                        continue;
 664                }
 665
 666                entry = dir->entries[level->index];
 667
 668                if (entry->flag & REF_DIR) {
 669                        /* push down a level */
 670                        ALLOC_GROW(iter->levels, iter->levels_nr + 1,
 671                                   iter->levels_alloc);
 672
 673                        level = &iter->levels[iter->levels_nr++];
 674                        level->dir = get_ref_dir(entry);
 675                        level->index = -1;
 676                } else {
 677                        iter->base.refname = entry->name;
 678                        iter->base.oid = &entry->u.value.oid;
 679                        iter->base.flags = entry->flag;
 680                        return ITER_OK;
 681                }
 682        }
 683}
 684
 685static enum peel_status peel_entry(struct ref_entry *entry, int repeel);
 686
 687static int cache_ref_iterator_peel(struct ref_iterator *ref_iterator,
 688                                   struct object_id *peeled)
 689{
 690        struct cache_ref_iterator *iter =
 691                (struct cache_ref_iterator *)ref_iterator;
 692        struct cache_ref_iterator_level *level;
 693        struct ref_entry *entry;
 694
 695        level = &iter->levels[iter->levels_nr - 1];
 696
 697        if (level->index == -1)
 698                die("BUG: peel called before advance for cache iterator");
 699
 700        entry = level->dir->entries[level->index];
 701
 702        if (peel_entry(entry, 0))
 703                return -1;
 704        oidcpy(peeled, &entry->u.value.peeled);
 705        return 0;
 706}
 707
 708static int cache_ref_iterator_abort(struct ref_iterator *ref_iterator)
 709{
 710        struct cache_ref_iterator *iter =
 711                (struct cache_ref_iterator *)ref_iterator;
 712
 713        free(iter->levels);
 714        base_ref_iterator_free(ref_iterator);
 715        return ITER_DONE;
 716}
 717
 718static struct ref_iterator_vtable cache_ref_iterator_vtable = {
 719        cache_ref_iterator_advance,
 720        cache_ref_iterator_peel,
 721        cache_ref_iterator_abort
 722};
 723
 724static struct ref_iterator *cache_ref_iterator_begin(struct ref_dir *dir)
 725{
 726        struct cache_ref_iterator *iter;
 727        struct ref_iterator *ref_iterator;
 728        struct cache_ref_iterator_level *level;
 729
 730        iter = xcalloc(1, sizeof(*iter));
 731        ref_iterator = &iter->base;
 732        base_ref_iterator_init(ref_iterator, &cache_ref_iterator_vtable);
 733        ALLOC_GROW(iter->levels, 10, iter->levels_alloc);
 734
 735        iter->levels_nr = 1;
 736        level = &iter->levels[0];
 737        level->index = -1;
 738        level->dir = dir;
 739
 740        return ref_iterator;
 741}
 742
 743struct nonmatching_ref_data {
 744        const struct string_list *skip;
 745        const char *conflicting_refname;
 746};
 747
 748static int nonmatching_ref_fn(struct ref_entry *entry, void *vdata)
 749{
 750        struct nonmatching_ref_data *data = vdata;
 751
 752        if (data->skip && string_list_has_string(data->skip, entry->name))
 753                return 0;
 754
 755        data->conflicting_refname = entry->name;
 756        return 1;
 757}
 758
 759/*
 760 * Return 0 if a reference named refname could be created without
 761 * conflicting with the name of an existing reference in dir.
 762 * See verify_refname_available for more information.
 763 */
 764static int verify_refname_available_dir(const char *refname,
 765                                        const struct string_list *extras,
 766                                        const struct string_list *skip,
 767                                        struct ref_dir *dir,
 768                                        struct strbuf *err)
 769{
 770        const char *slash;
 771        const char *extra_refname;
 772        int pos;
 773        struct strbuf dirname = STRBUF_INIT;
 774        int ret = -1;
 775
 776        /*
 777         * For the sake of comments in this function, suppose that
 778         * refname is "refs/foo/bar".
 779         */
 780
 781        assert(err);
 782
 783        strbuf_grow(&dirname, strlen(refname) + 1);
 784        for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
 785                /* Expand dirname to the new prefix, not including the trailing slash: */
 786                strbuf_add(&dirname, refname + dirname.len, slash - refname - dirname.len);
 787
 788                /*
 789                 * We are still at a leading dir of the refname (e.g.,
 790                 * "refs/foo"; if there is a reference with that name,
 791                 * it is a conflict, *unless* it is in skip.
 792                 */
 793                if (dir) {
 794                        pos = search_ref_dir(dir, dirname.buf, dirname.len);
 795                        if (pos >= 0 &&
 796                            (!skip || !string_list_has_string(skip, dirname.buf))) {
 797                                /*
 798                                 * We found a reference whose name is
 799                                 * a proper prefix of refname; e.g.,
 800                                 * "refs/foo", and is not in skip.
 801                                 */
 802                                strbuf_addf(err, "'%s' exists; cannot create '%s'",
 803                                            dirname.buf, refname);
 804                                goto cleanup;
 805                        }
 806                }
 807
 808                if (extras && string_list_has_string(extras, dirname.buf) &&
 809                    (!skip || !string_list_has_string(skip, dirname.buf))) {
 810                        strbuf_addf(err, "cannot process '%s' and '%s' at the same time",
 811                                    refname, dirname.buf);
 812                        goto cleanup;
 813                }
 814
 815                /*
 816                 * Otherwise, we can try to continue our search with
 817                 * the next component. So try to look up the
 818                 * directory, e.g., "refs/foo/". If we come up empty,
 819                 * we know there is nothing under this whole prefix,
 820                 * but even in that case we still have to continue the
 821                 * search for conflicts with extras.
 822                 */
 823                strbuf_addch(&dirname, '/');
 824                if (dir) {
 825                        pos = search_ref_dir(dir, dirname.buf, dirname.len);
 826                        if (pos < 0) {
 827                                /*
 828                                 * There was no directory "refs/foo/",
 829                                 * so there is nothing under this
 830                                 * whole prefix. So there is no need
 831                                 * to continue looking for conflicting
 832                                 * references. But we need to continue
 833                                 * looking for conflicting extras.
 834                                 */
 835                                dir = NULL;
 836                        } else {
 837                                dir = get_ref_dir(dir->entries[pos]);
 838                        }
 839                }
 840        }
 841
 842        /*
 843         * We are at the leaf of our refname (e.g., "refs/foo/bar").
 844         * There is no point in searching for a reference with that
 845         * name, because a refname isn't considered to conflict with
 846         * itself. But we still need to check for references whose
 847         * names are in the "refs/foo/bar/" namespace, because they
 848         * *do* conflict.
 849         */
 850        strbuf_addstr(&dirname, refname + dirname.len);
 851        strbuf_addch(&dirname, '/');
 852
 853        if (dir) {
 854                pos = search_ref_dir(dir, dirname.buf, dirname.len);
 855
 856                if (pos >= 0) {
 857                        /*
 858                         * We found a directory named "$refname/"
 859                         * (e.g., "refs/foo/bar/"). It is a problem
 860                         * iff it contains any ref that is not in
 861                         * "skip".
 862                         */
 863                        struct nonmatching_ref_data data;
 864
 865                        data.skip = skip;
 866                        data.conflicting_refname = NULL;
 867                        dir = get_ref_dir(dir->entries[pos]);
 868                        sort_ref_dir(dir);
 869                        if (do_for_each_entry_in_dir(dir, 0, nonmatching_ref_fn, &data)) {
 870                                strbuf_addf(err, "'%s' exists; cannot create '%s'",
 871                                            data.conflicting_refname, refname);
 872                                goto cleanup;
 873                        }
 874                }
 875        }
 876
 877        extra_refname = find_descendant_ref(dirname.buf, extras, skip);
 878        if (extra_refname)
 879                strbuf_addf(err, "cannot process '%s' and '%s' at the same time",
 880                            refname, extra_refname);
 881        else
 882                ret = 0;
 883
 884cleanup:
 885        strbuf_release(&dirname);
 886        return ret;
 887}
 888
 889struct packed_ref_cache {
 890        struct ref_entry *root;
 891
 892        /*
 893         * Count of references to the data structure in this instance,
 894         * including the pointer from files_ref_store::packed if any.
 895         * The data will not be freed as long as the reference count
 896         * is nonzero.
 897         */
 898        unsigned int referrers;
 899
 900        /*
 901         * Iff the packed-refs file associated with this instance is
 902         * currently locked for writing, this points at the associated
 903         * lock (which is owned by somebody else).  The referrer count
 904         * is also incremented when the file is locked and decremented
 905         * when it is unlocked.
 906         */
 907        struct lock_file *lock;
 908
 909        /* The metadata from when this packed-refs cache was read */
 910        struct stat_validity validity;
 911};
 912
 913/*
 914 * Future: need to be in "struct repository"
 915 * when doing a full libification.
 916 */
 917struct files_ref_store {
 918        struct ref_store base;
 919
 920        char *gitdir;
 921        char *gitcommondir;
 922        char *packed_refs_path;
 923
 924        struct ref_entry *loose;
 925        struct packed_ref_cache *packed;
 926};
 927
 928/* Lock used for the main packed-refs file: */
 929static struct lock_file packlock;
 930
 931/*
 932 * Increment the reference count of *packed_refs.
 933 */
 934static void acquire_packed_ref_cache(struct packed_ref_cache *packed_refs)
 935{
 936        packed_refs->referrers++;
 937}
 938
 939/*
 940 * Decrease the reference count of *packed_refs.  If it goes to zero,
 941 * free *packed_refs and return true; otherwise return false.
 942 */
 943static int release_packed_ref_cache(struct packed_ref_cache *packed_refs)
 944{
 945        if (!--packed_refs->referrers) {
 946                free_ref_entry(packed_refs->root);
 947                stat_validity_clear(&packed_refs->validity);
 948                free(packed_refs);
 949                return 1;
 950        } else {
 951                return 0;
 952        }
 953}
 954
 955static void clear_packed_ref_cache(struct files_ref_store *refs)
 956{
 957        if (refs->packed) {
 958                struct packed_ref_cache *packed_refs = refs->packed;
 959
 960                if (packed_refs->lock)
 961                        die("internal error: packed-ref cache cleared while locked");
 962                refs->packed = NULL;
 963                release_packed_ref_cache(packed_refs);
 964        }
 965}
 966
 967static void clear_loose_ref_cache(struct files_ref_store *refs)
 968{
 969        if (refs->loose) {
 970                free_ref_entry(refs->loose);
 971                refs->loose = NULL;
 972        }
 973}
 974
 975/*
 976 * Create a new submodule ref cache and add it to the internal
 977 * set of caches.
 978 */
 979static struct ref_store *files_ref_store_create(const char *gitdir)
 980{
 981        struct files_ref_store *refs = xcalloc(1, sizeof(*refs));
 982        struct ref_store *ref_store = (struct ref_store *)refs;
 983        struct strbuf sb = STRBUF_INIT;
 984
 985        base_ref_store_init(ref_store, &refs_be_files);
 986
 987        refs->gitdir = xstrdup(gitdir);
 988        get_common_dir_noenv(&sb, gitdir);
 989        refs->gitcommondir = strbuf_detach(&sb, NULL);
 990        strbuf_addf(&sb, "%s/packed-refs", refs->gitcommondir);
 991        refs->packed_refs_path = strbuf_detach(&sb, NULL);
 992
 993        return ref_store;
 994}
 995
 996/*
 997 * Die if refs is for a submodule (i.e., not for the main repository).
 998 * caller is used in any necessary error messages.
 999 */
1000static void files_assert_main_repository(struct files_ref_store *refs,
1001                                         const char *caller)
1002{
1003        /* This function is to be fixed up in the next patch */
1004}
1005
1006/*
1007 * Downcast ref_store to files_ref_store. Die if ref_store is not a
1008 * files_ref_store. If submodule_allowed is not true, then also die if
1009 * files_ref_store is for a submodule (i.e., not for the main
1010 * repository). caller is used in any necessary error messages.
1011 */
1012static struct files_ref_store *files_downcast(
1013                struct ref_store *ref_store, int submodule_allowed,
1014                const char *caller)
1015{
1016        struct files_ref_store *refs;
1017
1018        if (ref_store->be != &refs_be_files)
1019                die("BUG: ref_store is type \"%s\" not \"files\" in %s",
1020                    ref_store->be->name, caller);
1021
1022        refs = (struct files_ref_store *)ref_store;
1023
1024        if (!submodule_allowed)
1025                files_assert_main_repository(refs, caller);
1026
1027        return refs;
1028}
1029
1030/* The length of a peeled reference line in packed-refs, including EOL: */
1031#define PEELED_LINE_LENGTH 42
1032
1033/*
1034 * The packed-refs header line that we write out.  Perhaps other
1035 * traits will be added later.  The trailing space is required.
1036 */
1037static const char PACKED_REFS_HEADER[] =
1038        "# pack-refs with: peeled fully-peeled \n";
1039
1040/*
1041 * Parse one line from a packed-refs file.  Write the SHA1 to sha1.
1042 * Return a pointer to the refname within the line (null-terminated),
1043 * or NULL if there was a problem.
1044 */
1045static const char *parse_ref_line(struct strbuf *line, unsigned char *sha1)
1046{
1047        const char *ref;
1048
1049        /*
1050         * 42: the answer to everything.
1051         *
1052         * In this case, it happens to be the answer to
1053         *  40 (length of sha1 hex representation)
1054         *  +1 (space in between hex and name)
1055         *  +1 (newline at the end of the line)
1056         */
1057        if (line->len <= 42)
1058                return NULL;
1059
1060        if (get_sha1_hex(line->buf, sha1) < 0)
1061                return NULL;
1062        if (!isspace(line->buf[40]))
1063                return NULL;
1064
1065        ref = line->buf + 41;
1066        if (isspace(*ref))
1067                return NULL;
1068
1069        if (line->buf[line->len - 1] != '\n')
1070                return NULL;
1071        line->buf[--line->len] = 0;
1072
1073        return ref;
1074}
1075
1076/*
1077 * Read f, which is a packed-refs file, into dir.
1078 *
1079 * A comment line of the form "# pack-refs with: " may contain zero or
1080 * more traits. We interpret the traits as follows:
1081 *
1082 *   No traits:
1083 *
1084 *      Probably no references are peeled. But if the file contains a
1085 *      peeled value for a reference, we will use it.
1086 *
1087 *   peeled:
1088 *
1089 *      References under "refs/tags/", if they *can* be peeled, *are*
1090 *      peeled in this file. References outside of "refs/tags/" are
1091 *      probably not peeled even if they could have been, but if we find
1092 *      a peeled value for such a reference we will use it.
1093 *
1094 *   fully-peeled:
1095 *
1096 *      All references in the file that can be peeled are peeled.
1097 *      Inversely (and this is more important), any references in the
1098 *      file for which no peeled value is recorded is not peelable. This
1099 *      trait should typically be written alongside "peeled" for
1100 *      compatibility with older clients, but we do not require it
1101 *      (i.e., "peeled" is a no-op if "fully-peeled" is set).
1102 */
1103static void read_packed_refs(FILE *f, struct ref_dir *dir)
1104{
1105        struct ref_entry *last = NULL;
1106        struct strbuf line = STRBUF_INIT;
1107        enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled = PEELED_NONE;
1108
1109        while (strbuf_getwholeline(&line, f, '\n') != EOF) {
1110                unsigned char sha1[20];
1111                const char *refname;
1112                const char *traits;
1113
1114                if (skip_prefix(line.buf, "# pack-refs with:", &traits)) {
1115                        if (strstr(traits, " fully-peeled "))
1116                                peeled = PEELED_FULLY;
1117                        else if (strstr(traits, " peeled "))
1118                                peeled = PEELED_TAGS;
1119                        /* perhaps other traits later as well */
1120                        continue;
1121                }
1122
1123                refname = parse_ref_line(&line, sha1);
1124                if (refname) {
1125                        int flag = REF_ISPACKED;
1126
1127                        if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
1128                                if (!refname_is_safe(refname))
1129                                        die("packed refname is dangerous: %s", refname);
1130                                hashclr(sha1);
1131                                flag |= REF_BAD_NAME | REF_ISBROKEN;
1132                        }
1133                        last = create_ref_entry(refname, sha1, flag, 0);
1134                        if (peeled == PEELED_FULLY ||
1135                            (peeled == PEELED_TAGS && starts_with(refname, "refs/tags/")))
1136                                last->flag |= REF_KNOWS_PEELED;
1137                        add_ref(dir, last);
1138                        continue;
1139                }
1140                if (last &&
1141                    line.buf[0] == '^' &&
1142                    line.len == PEELED_LINE_LENGTH &&
1143                    line.buf[PEELED_LINE_LENGTH - 1] == '\n' &&
1144                    !get_sha1_hex(line.buf + 1, sha1)) {
1145                        hashcpy(last->u.value.peeled.hash, sha1);
1146                        /*
1147                         * Regardless of what the file header said,
1148                         * we definitely know the value of *this*
1149                         * reference:
1150                         */
1151                        last->flag |= REF_KNOWS_PEELED;
1152                }
1153        }
1154
1155        strbuf_release(&line);
1156}
1157
1158static const char *files_packed_refs_path(struct files_ref_store *refs)
1159{
1160        return refs->packed_refs_path;
1161}
1162
1163static void files_reflog_path(struct files_ref_store *refs,
1164                              struct strbuf *sb,
1165                              const char *refname)
1166{
1167        if (!refname) {
1168                /*
1169                 * FIXME: of course this is wrong in multi worktree
1170                 * setting. To be fixed real soon.
1171                 */
1172                strbuf_addf(sb, "%s/logs", refs->gitcommondir);
1173                return;
1174        }
1175
1176        switch (ref_type(refname)) {
1177        case REF_TYPE_PER_WORKTREE:
1178        case REF_TYPE_PSEUDOREF:
1179                strbuf_addf(sb, "%s/logs/%s", refs->gitdir, refname);
1180                break;
1181        case REF_TYPE_NORMAL:
1182                strbuf_addf(sb, "%s/logs/%s", refs->gitcommondir, refname);
1183                break;
1184        default:
1185                die("BUG: unknown ref type %d of ref %s",
1186                    ref_type(refname), refname);
1187        }
1188}
1189
1190static void files_ref_path(struct files_ref_store *refs,
1191                           struct strbuf *sb,
1192                           const char *refname)
1193{
1194        switch (ref_type(refname)) {
1195        case REF_TYPE_PER_WORKTREE:
1196        case REF_TYPE_PSEUDOREF:
1197                strbuf_addf(sb, "%s/%s", refs->gitdir, refname);
1198                break;
1199        case REF_TYPE_NORMAL:
1200                strbuf_addf(sb, "%s/%s", refs->gitcommondir, refname);
1201                break;
1202        default:
1203                die("BUG: unknown ref type %d of ref %s",
1204                    ref_type(refname), refname);
1205        }
1206}
1207
1208/*
1209 * Get the packed_ref_cache for the specified files_ref_store,
1210 * creating it if necessary.
1211 */
1212static struct packed_ref_cache *get_packed_ref_cache(struct files_ref_store *refs)
1213{
1214        const char *packed_refs_file = files_packed_refs_path(refs);
1215
1216        if (refs->packed &&
1217            !stat_validity_check(&refs->packed->validity, packed_refs_file))
1218                clear_packed_ref_cache(refs);
1219
1220        if (!refs->packed) {
1221                FILE *f;
1222
1223                refs->packed = xcalloc(1, sizeof(*refs->packed));
1224                acquire_packed_ref_cache(refs->packed);
1225                refs->packed->root = create_dir_entry(refs, "", 0, 0);
1226                f = fopen(packed_refs_file, "r");
1227                if (f) {
1228                        stat_validity_update(&refs->packed->validity, fileno(f));
1229                        read_packed_refs(f, get_ref_dir(refs->packed->root));
1230                        fclose(f);
1231                }
1232        }
1233        return refs->packed;
1234}
1235
1236static struct ref_dir *get_packed_ref_dir(struct packed_ref_cache *packed_ref_cache)
1237{
1238        return get_ref_dir(packed_ref_cache->root);
1239}
1240
1241static struct ref_dir *get_packed_refs(struct files_ref_store *refs)
1242{
1243        return get_packed_ref_dir(get_packed_ref_cache(refs));
1244}
1245
1246/*
1247 * Add a reference to the in-memory packed reference cache.  This may
1248 * only be called while the packed-refs file is locked (see
1249 * lock_packed_refs()).  To actually write the packed-refs file, call
1250 * commit_packed_refs().
1251 */
1252static void add_packed_ref(struct files_ref_store *refs,
1253                           const char *refname, const unsigned char *sha1)
1254{
1255        struct packed_ref_cache *packed_ref_cache = get_packed_ref_cache(refs);
1256
1257        if (!packed_ref_cache->lock)
1258                die("internal error: packed refs not locked");
1259        add_ref(get_packed_ref_dir(packed_ref_cache),
1260                create_ref_entry(refname, sha1, REF_ISPACKED, 1));
1261}
1262
1263/*
1264 * Read the loose references from the namespace dirname into dir
1265 * (without recursing).  dirname must end with '/'.  dir must be the
1266 * directory entry corresponding to dirname.
1267 */
1268static void read_loose_refs(const char *dirname, struct ref_dir *dir)
1269{
1270        struct files_ref_store *refs = dir->ref_store;
1271        DIR *d;
1272        struct dirent *de;
1273        int dirnamelen = strlen(dirname);
1274        struct strbuf refname;
1275        struct strbuf path = STRBUF_INIT;
1276        size_t path_baselen;
1277
1278        files_ref_path(refs, &path, dirname);
1279        path_baselen = path.len;
1280
1281        d = opendir(path.buf);
1282        if (!d) {
1283                strbuf_release(&path);
1284                return;
1285        }
1286
1287        strbuf_init(&refname, dirnamelen + 257);
1288        strbuf_add(&refname, dirname, dirnamelen);
1289
1290        while ((de = readdir(d)) != NULL) {
1291                unsigned char sha1[20];
1292                struct stat st;
1293                int flag;
1294
1295                if (de->d_name[0] == '.')
1296                        continue;
1297                if (ends_with(de->d_name, ".lock"))
1298                        continue;
1299                strbuf_addstr(&refname, de->d_name);
1300                strbuf_addstr(&path, de->d_name);
1301                if (stat(path.buf, &st) < 0) {
1302                        ; /* silently ignore */
1303                } else if (S_ISDIR(st.st_mode)) {
1304                        strbuf_addch(&refname, '/');
1305                        add_entry_to_dir(dir,
1306                                         create_dir_entry(refs, refname.buf,
1307                                                          refname.len, 1));
1308                } else {
1309                        if (!resolve_ref_recursively(&refs->base,
1310                                                     refname.buf,
1311                                                     RESOLVE_REF_READING,
1312                                                     sha1, &flag)) {
1313                                hashclr(sha1);
1314                                flag |= REF_ISBROKEN;
1315                        } else if (is_null_sha1(sha1)) {
1316                                /*
1317                                 * It is so astronomically unlikely
1318                                 * that NULL_SHA1 is the SHA-1 of an
1319                                 * actual object that we consider its
1320                                 * appearance in a loose reference
1321                                 * file to be repo corruption
1322                                 * (probably due to a software bug).
1323                                 */
1324                                flag |= REF_ISBROKEN;
1325                        }
1326
1327                        if (check_refname_format(refname.buf,
1328                                                 REFNAME_ALLOW_ONELEVEL)) {
1329                                if (!refname_is_safe(refname.buf))
1330                                        die("loose refname is dangerous: %s", refname.buf);
1331                                hashclr(sha1);
1332                                flag |= REF_BAD_NAME | REF_ISBROKEN;
1333                        }
1334                        add_entry_to_dir(dir,
1335                                         create_ref_entry(refname.buf, sha1, flag, 0));
1336                }
1337                strbuf_setlen(&refname, dirnamelen);
1338                strbuf_setlen(&path, path_baselen);
1339        }
1340        strbuf_release(&refname);
1341        strbuf_release(&path);
1342        closedir(d);
1343}
1344
1345static struct ref_dir *get_loose_refs(struct files_ref_store *refs)
1346{
1347        if (!refs->loose) {
1348                /*
1349                 * Mark the top-level directory complete because we
1350                 * are about to read the only subdirectory that can
1351                 * hold references:
1352                 */
1353                refs->loose = create_dir_entry(refs, "", 0, 0);
1354                /*
1355                 * Create an incomplete entry for "refs/":
1356                 */
1357                add_entry_to_dir(get_ref_dir(refs->loose),
1358                                 create_dir_entry(refs, "refs/", 5, 1));
1359        }
1360        return get_ref_dir(refs->loose);
1361}
1362
1363/*
1364 * Return the ref_entry for the given refname from the packed
1365 * references.  If it does not exist, return NULL.
1366 */
1367static struct ref_entry *get_packed_ref(struct files_ref_store *refs,
1368                                        const char *refname)
1369{
1370        return find_ref(get_packed_refs(refs), refname);
1371}
1372
1373/*
1374 * A loose ref file doesn't exist; check for a packed ref.
1375 */
1376static int resolve_packed_ref(struct files_ref_store *refs,
1377                              const char *refname,
1378                              unsigned char *sha1, unsigned int *flags)
1379{
1380        struct ref_entry *entry;
1381
1382        /*
1383         * The loose reference file does not exist; check for a packed
1384         * reference.
1385         */
1386        entry = get_packed_ref(refs, refname);
1387        if (entry) {
1388                hashcpy(sha1, entry->u.value.oid.hash);
1389                *flags |= REF_ISPACKED;
1390                return 0;
1391        }
1392        /* refname is not a packed reference. */
1393        return -1;
1394}
1395
1396static int files_read_raw_ref(struct ref_store *ref_store,
1397                              const char *refname, unsigned char *sha1,
1398                              struct strbuf *referent, unsigned int *type)
1399{
1400        struct files_ref_store *refs =
1401                files_downcast(ref_store, 1, "read_raw_ref");
1402        struct strbuf sb_contents = STRBUF_INIT;
1403        struct strbuf sb_path = STRBUF_INIT;
1404        const char *path;
1405        const char *buf;
1406        struct stat st;
1407        int fd;
1408        int ret = -1;
1409        int save_errno;
1410        int remaining_retries = 3;
1411
1412        *type = 0;
1413        strbuf_reset(&sb_path);
1414
1415        files_ref_path(refs, &sb_path, refname);
1416
1417        path = sb_path.buf;
1418
1419stat_ref:
1420        /*
1421         * We might have to loop back here to avoid a race
1422         * condition: first we lstat() the file, then we try
1423         * to read it as a link or as a file.  But if somebody
1424         * changes the type of the file (file <-> directory
1425         * <-> symlink) between the lstat() and reading, then
1426         * we don't want to report that as an error but rather
1427         * try again starting with the lstat().
1428         *
1429         * We'll keep a count of the retries, though, just to avoid
1430         * any confusing situation sending us into an infinite loop.
1431         */
1432
1433        if (remaining_retries-- <= 0)
1434                goto out;
1435
1436        if (lstat(path, &st) < 0) {
1437                if (errno != ENOENT)
1438                        goto out;
1439                if (resolve_packed_ref(refs, refname, sha1, type)) {
1440                        errno = ENOENT;
1441                        goto out;
1442                }
1443                ret = 0;
1444                goto out;
1445        }
1446
1447        /* Follow "normalized" - ie "refs/.." symlinks by hand */
1448        if (S_ISLNK(st.st_mode)) {
1449                strbuf_reset(&sb_contents);
1450                if (strbuf_readlink(&sb_contents, path, 0) < 0) {
1451                        if (errno == ENOENT || errno == EINVAL)
1452                                /* inconsistent with lstat; retry */
1453                                goto stat_ref;
1454                        else
1455                                goto out;
1456                }
1457                if (starts_with(sb_contents.buf, "refs/") &&
1458                    !check_refname_format(sb_contents.buf, 0)) {
1459                        strbuf_swap(&sb_contents, referent);
1460                        *type |= REF_ISSYMREF;
1461                        ret = 0;
1462                        goto out;
1463                }
1464                /*
1465                 * It doesn't look like a refname; fall through to just
1466                 * treating it like a non-symlink, and reading whatever it
1467                 * points to.
1468                 */
1469        }
1470
1471        /* Is it a directory? */
1472        if (S_ISDIR(st.st_mode)) {
1473                /*
1474                 * Even though there is a directory where the loose
1475                 * ref is supposed to be, there could still be a
1476                 * packed ref:
1477                 */
1478                if (resolve_packed_ref(refs, refname, sha1, type)) {
1479                        errno = EISDIR;
1480                        goto out;
1481                }
1482                ret = 0;
1483                goto out;
1484        }
1485
1486        /*
1487         * Anything else, just open it and try to use it as
1488         * a ref
1489         */
1490        fd = open(path, O_RDONLY);
1491        if (fd < 0) {
1492                if (errno == ENOENT && !S_ISLNK(st.st_mode))
1493                        /* inconsistent with lstat; retry */
1494                        goto stat_ref;
1495                else
1496                        goto out;
1497        }
1498        strbuf_reset(&sb_contents);
1499        if (strbuf_read(&sb_contents, fd, 256) < 0) {
1500                int save_errno = errno;
1501                close(fd);
1502                errno = save_errno;
1503                goto out;
1504        }
1505        close(fd);
1506        strbuf_rtrim(&sb_contents);
1507        buf = sb_contents.buf;
1508        if (starts_with(buf, "ref:")) {
1509                buf += 4;
1510                while (isspace(*buf))
1511                        buf++;
1512
1513                strbuf_reset(referent);
1514                strbuf_addstr(referent, buf);
1515                *type |= REF_ISSYMREF;
1516                ret = 0;
1517                goto out;
1518        }
1519
1520        /*
1521         * Please note that FETCH_HEAD has additional
1522         * data after the sha.
1523         */
1524        if (get_sha1_hex(buf, sha1) ||
1525            (buf[40] != '\0' && !isspace(buf[40]))) {
1526                *type |= REF_ISBROKEN;
1527                errno = EINVAL;
1528                goto out;
1529        }
1530
1531        ret = 0;
1532
1533out:
1534        save_errno = errno;
1535        strbuf_release(&sb_path);
1536        strbuf_release(&sb_contents);
1537        errno = save_errno;
1538        return ret;
1539}
1540
1541static void unlock_ref(struct ref_lock *lock)
1542{
1543        /* Do not free lock->lk -- atexit() still looks at them */
1544        if (lock->lk)
1545                rollback_lock_file(lock->lk);
1546        free(lock->ref_name);
1547        free(lock);
1548}
1549
1550/*
1551 * Lock refname, without following symrefs, and set *lock_p to point
1552 * at a newly-allocated lock object. Fill in lock->old_oid, referent,
1553 * and type similarly to read_raw_ref().
1554 *
1555 * The caller must verify that refname is a "safe" reference name (in
1556 * the sense of refname_is_safe()) before calling this function.
1557 *
1558 * If the reference doesn't already exist, verify that refname doesn't
1559 * have a D/F conflict with any existing references. extras and skip
1560 * are passed to verify_refname_available_dir() for this check.
1561 *
1562 * If mustexist is not set and the reference is not found or is
1563 * broken, lock the reference anyway but clear sha1.
1564 *
1565 * Return 0 on success. On failure, write an error message to err and
1566 * return TRANSACTION_NAME_CONFLICT or TRANSACTION_GENERIC_ERROR.
1567 *
1568 * Implementation note: This function is basically
1569 *
1570 *     lock reference
1571 *     read_raw_ref()
1572 *
1573 * but it includes a lot more code to
1574 * - Deal with possible races with other processes
1575 * - Avoid calling verify_refname_available_dir() when it can be
1576 *   avoided, namely if we were successfully able to read the ref
1577 * - Generate informative error messages in the case of failure
1578 */
1579static int lock_raw_ref(struct files_ref_store *refs,
1580                        const char *refname, int mustexist,
1581                        const struct string_list *extras,
1582                        const struct string_list *skip,
1583                        struct ref_lock **lock_p,
1584                        struct strbuf *referent,
1585                        unsigned int *type,
1586                        struct strbuf *err)
1587{
1588        struct ref_lock *lock;
1589        struct strbuf ref_file = STRBUF_INIT;
1590        int attempts_remaining = 3;
1591        int ret = TRANSACTION_GENERIC_ERROR;
1592
1593        assert(err);
1594        files_assert_main_repository(refs, "lock_raw_ref");
1595
1596        *type = 0;
1597
1598        /* First lock the file so it can't change out from under us. */
1599
1600        *lock_p = lock = xcalloc(1, sizeof(*lock));
1601
1602        lock->ref_name = xstrdup(refname);
1603        files_ref_path(refs, &ref_file, refname);
1604
1605retry:
1606        switch (safe_create_leading_directories(ref_file.buf)) {
1607        case SCLD_OK:
1608                break; /* success */
1609        case SCLD_EXISTS:
1610                /*
1611                 * Suppose refname is "refs/foo/bar". We just failed
1612                 * to create the containing directory, "refs/foo",
1613                 * because there was a non-directory in the way. This
1614                 * indicates a D/F conflict, probably because of
1615                 * another reference such as "refs/foo". There is no
1616                 * reason to expect this error to be transitory.
1617                 */
1618                if (verify_refname_available(refname, extras, skip, err)) {
1619                        if (mustexist) {
1620                                /*
1621                                 * To the user the relevant error is
1622                                 * that the "mustexist" reference is
1623                                 * missing:
1624                                 */
1625                                strbuf_reset(err);
1626                                strbuf_addf(err, "unable to resolve reference '%s'",
1627                                            refname);
1628                        } else {
1629                                /*
1630                                 * The error message set by
1631                                 * verify_refname_available_dir() is OK.
1632                                 */
1633                                ret = TRANSACTION_NAME_CONFLICT;
1634                        }
1635                } else {
1636                        /*
1637                         * The file that is in the way isn't a loose
1638                         * reference. Report it as a low-level
1639                         * failure.
1640                         */
1641                        strbuf_addf(err, "unable to create lock file %s.lock; "
1642                                    "non-directory in the way",
1643                                    ref_file.buf);
1644                }
1645                goto error_return;
1646        case SCLD_VANISHED:
1647                /* Maybe another process was tidying up. Try again. */
1648                if (--attempts_remaining > 0)
1649                        goto retry;
1650                /* fall through */
1651        default:
1652                strbuf_addf(err, "unable to create directory for %s",
1653                            ref_file.buf);
1654                goto error_return;
1655        }
1656
1657        if (!lock->lk)
1658                lock->lk = xcalloc(1, sizeof(struct lock_file));
1659
1660        if (hold_lock_file_for_update(lock->lk, ref_file.buf, LOCK_NO_DEREF) < 0) {
1661                if (errno == ENOENT && --attempts_remaining > 0) {
1662                        /*
1663                         * Maybe somebody just deleted one of the
1664                         * directories leading to ref_file.  Try
1665                         * again:
1666                         */
1667                        goto retry;
1668                } else {
1669                        unable_to_lock_message(ref_file.buf, errno, err);
1670                        goto error_return;
1671                }
1672        }
1673
1674        /*
1675         * Now we hold the lock and can read the reference without
1676         * fear that its value will change.
1677         */
1678
1679        if (files_read_raw_ref(&refs->base, refname,
1680                               lock->old_oid.hash, referent, type)) {
1681                if (errno == ENOENT) {
1682                        if (mustexist) {
1683                                /* Garden variety missing reference. */
1684                                strbuf_addf(err, "unable to resolve reference '%s'",
1685                                            refname);
1686                                goto error_return;
1687                        } else {
1688                                /*
1689                                 * Reference is missing, but that's OK. We
1690                                 * know that there is not a conflict with
1691                                 * another loose reference because
1692                                 * (supposing that we are trying to lock
1693                                 * reference "refs/foo/bar"):
1694                                 *
1695                                 * - We were successfully able to create
1696                                 *   the lockfile refs/foo/bar.lock, so we
1697                                 *   know there cannot be a loose reference
1698                                 *   named "refs/foo".
1699                                 *
1700                                 * - We got ENOENT and not EISDIR, so we
1701                                 *   know that there cannot be a loose
1702                                 *   reference named "refs/foo/bar/baz".
1703                                 */
1704                        }
1705                } else if (errno == EISDIR) {
1706                        /*
1707                         * There is a directory in the way. It might have
1708                         * contained references that have been deleted. If
1709                         * we don't require that the reference already
1710                         * exists, try to remove the directory so that it
1711                         * doesn't cause trouble when we want to rename the
1712                         * lockfile into place later.
1713                         */
1714                        if (mustexist) {
1715                                /* Garden variety missing reference. */
1716                                strbuf_addf(err, "unable to resolve reference '%s'",
1717                                            refname);
1718                                goto error_return;
1719                        } else if (remove_dir_recursively(&ref_file,
1720                                                          REMOVE_DIR_EMPTY_ONLY)) {
1721                                if (verify_refname_available_dir(
1722                                                    refname, extras, skip,
1723                                                    get_loose_refs(refs),
1724                                                    err)) {
1725                                        /*
1726                                         * The error message set by
1727                                         * verify_refname_available() is OK.
1728                                         */
1729                                        ret = TRANSACTION_NAME_CONFLICT;
1730                                        goto error_return;
1731                                } else {
1732                                        /*
1733                                         * We can't delete the directory,
1734                                         * but we also don't know of any
1735                                         * references that it should
1736                                         * contain.
1737                                         */
1738                                        strbuf_addf(err, "there is a non-empty directory '%s' "
1739                                                    "blocking reference '%s'",
1740                                                    ref_file.buf, refname);
1741                                        goto error_return;
1742                                }
1743                        }
1744                } else if (errno == EINVAL && (*type & REF_ISBROKEN)) {
1745                        strbuf_addf(err, "unable to resolve reference '%s': "
1746                                    "reference broken", refname);
1747                        goto error_return;
1748                } else {
1749                        strbuf_addf(err, "unable to resolve reference '%s': %s",
1750                                    refname, strerror(errno));
1751                        goto error_return;
1752                }
1753
1754                /*
1755                 * If the ref did not exist and we are creating it,
1756                 * make sure there is no existing packed ref whose
1757                 * name begins with our refname, nor a packed ref
1758                 * whose name is a proper prefix of our refname.
1759                 */
1760                if (verify_refname_available_dir(
1761                                    refname, extras, skip,
1762                                    get_packed_refs(refs),
1763                                    err)) {
1764                        goto error_return;
1765                }
1766        }
1767
1768        ret = 0;
1769        goto out;
1770
1771error_return:
1772        unlock_ref(lock);
1773        *lock_p = NULL;
1774
1775out:
1776        strbuf_release(&ref_file);
1777        return ret;
1778}
1779
1780/*
1781 * Peel the entry (if possible) and return its new peel_status.  If
1782 * repeel is true, re-peel the entry even if there is an old peeled
1783 * value that is already stored in it.
1784 *
1785 * It is OK to call this function with a packed reference entry that
1786 * might be stale and might even refer to an object that has since
1787 * been garbage-collected.  In such a case, if the entry has
1788 * REF_KNOWS_PEELED then leave the status unchanged and return
1789 * PEEL_PEELED or PEEL_NON_TAG; otherwise, return PEEL_INVALID.
1790 */
1791static enum peel_status peel_entry(struct ref_entry *entry, int repeel)
1792{
1793        enum peel_status status;
1794
1795        if (entry->flag & REF_KNOWS_PEELED) {
1796                if (repeel) {
1797                        entry->flag &= ~REF_KNOWS_PEELED;
1798                        oidclr(&entry->u.value.peeled);
1799                } else {
1800                        return is_null_oid(&entry->u.value.peeled) ?
1801                                PEEL_NON_TAG : PEEL_PEELED;
1802                }
1803        }
1804        if (entry->flag & REF_ISBROKEN)
1805                return PEEL_BROKEN;
1806        if (entry->flag & REF_ISSYMREF)
1807                return PEEL_IS_SYMREF;
1808
1809        status = peel_object(entry->u.value.oid.hash, entry->u.value.peeled.hash);
1810        if (status == PEEL_PEELED || status == PEEL_NON_TAG)
1811                entry->flag |= REF_KNOWS_PEELED;
1812        return status;
1813}
1814
1815static int files_peel_ref(struct ref_store *ref_store,
1816                          const char *refname, unsigned char *sha1)
1817{
1818        struct files_ref_store *refs = files_downcast(ref_store, 0, "peel_ref");
1819        int flag;
1820        unsigned char base[20];
1821
1822        if (current_ref_iter && current_ref_iter->refname == refname) {
1823                struct object_id peeled;
1824
1825                if (ref_iterator_peel(current_ref_iter, &peeled))
1826                        return -1;
1827                hashcpy(sha1, peeled.hash);
1828                return 0;
1829        }
1830
1831        if (read_ref_full(refname, RESOLVE_REF_READING, base, &flag))
1832                return -1;
1833
1834        /*
1835         * If the reference is packed, read its ref_entry from the
1836         * cache in the hope that we already know its peeled value.
1837         * We only try this optimization on packed references because
1838         * (a) forcing the filling of the loose reference cache could
1839         * be expensive and (b) loose references anyway usually do not
1840         * have REF_KNOWS_PEELED.
1841         */
1842        if (flag & REF_ISPACKED) {
1843                struct ref_entry *r = get_packed_ref(refs, refname);
1844                if (r) {
1845                        if (peel_entry(r, 0))
1846                                return -1;
1847                        hashcpy(sha1, r->u.value.peeled.hash);
1848                        return 0;
1849                }
1850        }
1851
1852        return peel_object(base, sha1);
1853}
1854
1855struct files_ref_iterator {
1856        struct ref_iterator base;
1857
1858        struct packed_ref_cache *packed_ref_cache;
1859        struct ref_iterator *iter0;
1860        unsigned int flags;
1861};
1862
1863static int files_ref_iterator_advance(struct ref_iterator *ref_iterator)
1864{
1865        struct files_ref_iterator *iter =
1866                (struct files_ref_iterator *)ref_iterator;
1867        int ok;
1868
1869        while ((ok = ref_iterator_advance(iter->iter0)) == ITER_OK) {
1870                if (iter->flags & DO_FOR_EACH_PER_WORKTREE_ONLY &&
1871                    ref_type(iter->iter0->refname) != REF_TYPE_PER_WORKTREE)
1872                        continue;
1873
1874                if (!(iter->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
1875                    !ref_resolves_to_object(iter->iter0->refname,
1876                                            iter->iter0->oid,
1877                                            iter->iter0->flags))
1878                        continue;
1879
1880                iter->base.refname = iter->iter0->refname;
1881                iter->base.oid = iter->iter0->oid;
1882                iter->base.flags = iter->iter0->flags;
1883                return ITER_OK;
1884        }
1885
1886        iter->iter0 = NULL;
1887        if (ref_iterator_abort(ref_iterator) != ITER_DONE)
1888                ok = ITER_ERROR;
1889
1890        return ok;
1891}
1892
1893static int files_ref_iterator_peel(struct ref_iterator *ref_iterator,
1894                                   struct object_id *peeled)
1895{
1896        struct files_ref_iterator *iter =
1897                (struct files_ref_iterator *)ref_iterator;
1898
1899        return ref_iterator_peel(iter->iter0, peeled);
1900}
1901
1902static int files_ref_iterator_abort(struct ref_iterator *ref_iterator)
1903{
1904        struct files_ref_iterator *iter =
1905                (struct files_ref_iterator *)ref_iterator;
1906        int ok = ITER_DONE;
1907
1908        if (iter->iter0)
1909                ok = ref_iterator_abort(iter->iter0);
1910
1911        release_packed_ref_cache(iter->packed_ref_cache);
1912        base_ref_iterator_free(ref_iterator);
1913        return ok;
1914}
1915
1916static struct ref_iterator_vtable files_ref_iterator_vtable = {
1917        files_ref_iterator_advance,
1918        files_ref_iterator_peel,
1919        files_ref_iterator_abort
1920};
1921
1922static struct ref_iterator *files_ref_iterator_begin(
1923                struct ref_store *ref_store,
1924                const char *prefix, unsigned int flags)
1925{
1926        struct files_ref_store *refs =
1927                files_downcast(ref_store, 1, "ref_iterator_begin");
1928        struct ref_dir *loose_dir, *packed_dir;
1929        struct ref_iterator *loose_iter, *packed_iter;
1930        struct files_ref_iterator *iter;
1931        struct ref_iterator *ref_iterator;
1932
1933        if (ref_paranoia < 0)
1934                ref_paranoia = git_env_bool("GIT_REF_PARANOIA", 0);
1935        if (ref_paranoia)
1936                flags |= DO_FOR_EACH_INCLUDE_BROKEN;
1937
1938        iter = xcalloc(1, sizeof(*iter));
1939        ref_iterator = &iter->base;
1940        base_ref_iterator_init(ref_iterator, &files_ref_iterator_vtable);
1941
1942        /*
1943         * We must make sure that all loose refs are read before
1944         * accessing the packed-refs file; this avoids a race
1945         * condition if loose refs are migrated to the packed-refs
1946         * file by a simultaneous process, but our in-memory view is
1947         * from before the migration. We ensure this as follows:
1948         * First, we call prime_ref_dir(), which pre-reads the loose
1949         * references for the subtree into the cache. (If they've
1950         * already been read, that's OK; we only need to guarantee
1951         * that they're read before the packed refs, not *how much*
1952         * before.) After that, we call get_packed_ref_cache(), which
1953         * internally checks whether the packed-ref cache is up to
1954         * date with what is on disk, and re-reads it if not.
1955         */
1956
1957        loose_dir = get_loose_refs(refs);
1958
1959        if (prefix && *prefix)
1960                loose_dir = find_containing_dir(loose_dir, prefix, 0);
1961
1962        if (loose_dir) {
1963                prime_ref_dir(loose_dir);
1964                loose_iter = cache_ref_iterator_begin(loose_dir);
1965        } else {
1966                /* There's nothing to iterate over. */
1967                loose_iter = empty_ref_iterator_begin();
1968        }
1969
1970        iter->packed_ref_cache = get_packed_ref_cache(refs);
1971        acquire_packed_ref_cache(iter->packed_ref_cache);
1972        packed_dir = get_packed_ref_dir(iter->packed_ref_cache);
1973
1974        if (prefix && *prefix)
1975                packed_dir = find_containing_dir(packed_dir, prefix, 0);
1976
1977        if (packed_dir) {
1978                packed_iter = cache_ref_iterator_begin(packed_dir);
1979        } else {
1980                /* There's nothing to iterate over. */
1981                packed_iter = empty_ref_iterator_begin();
1982        }
1983
1984        iter->iter0 = overlay_ref_iterator_begin(loose_iter, packed_iter);
1985        iter->flags = flags;
1986
1987        return ref_iterator;
1988}
1989
1990/*
1991 * Verify that the reference locked by lock has the value old_sha1.
1992 * Fail if the reference doesn't exist and mustexist is set. Return 0
1993 * on success. On error, write an error message to err, set errno, and
1994 * return a negative value.
1995 */
1996static int verify_lock(struct ref_lock *lock,
1997                       const unsigned char *old_sha1, int mustexist,
1998                       struct strbuf *err)
1999{
2000        assert(err);
2001
2002        if (read_ref_full(lock->ref_name,
2003                          mustexist ? RESOLVE_REF_READING : 0,
2004                          lock->old_oid.hash, NULL)) {
2005                if (old_sha1) {
2006                        int save_errno = errno;
2007                        strbuf_addf(err, "can't verify ref '%s'", lock->ref_name);
2008                        errno = save_errno;
2009                        return -1;
2010                } else {
2011                        oidclr(&lock->old_oid);
2012                        return 0;
2013                }
2014        }
2015        if (old_sha1 && hashcmp(lock->old_oid.hash, old_sha1)) {
2016                strbuf_addf(err, "ref '%s' is at %s but expected %s",
2017                            lock->ref_name,
2018                            oid_to_hex(&lock->old_oid),
2019                            sha1_to_hex(old_sha1));
2020                errno = EBUSY;
2021                return -1;
2022        }
2023        return 0;
2024}
2025
2026static int remove_empty_directories(struct strbuf *path)
2027{
2028        /*
2029         * we want to create a file but there is a directory there;
2030         * if that is an empty directory (or a directory that contains
2031         * only empty directories), remove them.
2032         */
2033        return remove_dir_recursively(path, REMOVE_DIR_EMPTY_ONLY);
2034}
2035
2036static int create_reflock(const char *path, void *cb)
2037{
2038        struct lock_file *lk = cb;
2039
2040        return hold_lock_file_for_update(lk, path, LOCK_NO_DEREF) < 0 ? -1 : 0;
2041}
2042
2043/*
2044 * Locks a ref returning the lock on success and NULL on failure.
2045 * On failure errno is set to something meaningful.
2046 */
2047static struct ref_lock *lock_ref_sha1_basic(struct files_ref_store *refs,
2048                                            const char *refname,
2049                                            const unsigned char *old_sha1,
2050                                            const struct string_list *extras,
2051                                            const struct string_list *skip,
2052                                            unsigned int flags, int *type,
2053                                            struct strbuf *err)
2054{
2055        struct strbuf ref_file = STRBUF_INIT;
2056        struct ref_lock *lock;
2057        int last_errno = 0;
2058        int mustexist = (old_sha1 && !is_null_sha1(old_sha1));
2059        int resolve_flags = RESOLVE_REF_NO_RECURSE;
2060        int resolved;
2061
2062        files_assert_main_repository(refs, "lock_ref_sha1_basic");
2063        assert(err);
2064
2065        lock = xcalloc(1, sizeof(struct ref_lock));
2066
2067        if (mustexist)
2068                resolve_flags |= RESOLVE_REF_READING;
2069        if (flags & REF_DELETING)
2070                resolve_flags |= RESOLVE_REF_ALLOW_BAD_NAME;
2071
2072        files_ref_path(refs, &ref_file, refname);
2073        resolved = !!resolve_ref_unsafe(refname, resolve_flags,
2074                                        lock->old_oid.hash, type);
2075        if (!resolved && errno == EISDIR) {
2076                /*
2077                 * we are trying to lock foo but we used to
2078                 * have foo/bar which now does not exist;
2079                 * it is normal for the empty directory 'foo'
2080                 * to remain.
2081                 */
2082                if (remove_empty_directories(&ref_file)) {
2083                        last_errno = errno;
2084                        if (!verify_refname_available_dir(
2085                                            refname, extras, skip,
2086                                            get_loose_refs(refs), err))
2087                                strbuf_addf(err, "there are still refs under '%s'",
2088                                            refname);
2089                        goto error_return;
2090                }
2091                resolved = !!resolve_ref_unsafe(refname, resolve_flags,
2092                                                lock->old_oid.hash, type);
2093        }
2094        if (!resolved) {
2095                last_errno = errno;
2096                if (last_errno != ENOTDIR ||
2097                    !verify_refname_available_dir(
2098                                    refname, extras, skip,
2099                                    get_loose_refs(refs), err))
2100                        strbuf_addf(err, "unable to resolve reference '%s': %s",
2101                                    refname, strerror(last_errno));
2102
2103                goto error_return;
2104        }
2105
2106        /*
2107         * If the ref did not exist and we are creating it, make sure
2108         * there is no existing packed ref whose name begins with our
2109         * refname, nor a packed ref whose name is a proper prefix of
2110         * our refname.
2111         */
2112        if (is_null_oid(&lock->old_oid) &&
2113            verify_refname_available_dir(refname, extras, skip,
2114                                         get_packed_refs(refs),
2115                                         err)) {
2116                last_errno = ENOTDIR;
2117                goto error_return;
2118        }
2119
2120        lock->lk = xcalloc(1, sizeof(struct lock_file));
2121
2122        lock->ref_name = xstrdup(refname);
2123
2124        if (raceproof_create_file(ref_file.buf, create_reflock, lock->lk)) {
2125                last_errno = errno;
2126                unable_to_lock_message(ref_file.buf, errno, err);
2127                goto error_return;
2128        }
2129
2130        if (verify_lock(lock, old_sha1, mustexist, err)) {
2131                last_errno = errno;
2132                goto error_return;
2133        }
2134        goto out;
2135
2136 error_return:
2137        unlock_ref(lock);
2138        lock = NULL;
2139
2140 out:
2141        strbuf_release(&ref_file);
2142        errno = last_errno;
2143        return lock;
2144}
2145
2146/*
2147 * Write an entry to the packed-refs file for the specified refname.
2148 * If peeled is non-NULL, write it as the entry's peeled value.
2149 */
2150static void write_packed_entry(FILE *fh, char *refname, unsigned char *sha1,
2151                               unsigned char *peeled)
2152{
2153        fprintf_or_die(fh, "%s %s\n", sha1_to_hex(sha1), refname);
2154        if (peeled)
2155                fprintf_or_die(fh, "^%s\n", sha1_to_hex(peeled));
2156}
2157
2158/*
2159 * An each_ref_entry_fn that writes the entry to a packed-refs file.
2160 */
2161static int write_packed_entry_fn(struct ref_entry *entry, void *cb_data)
2162{
2163        enum peel_status peel_status = peel_entry(entry, 0);
2164
2165        if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2166                error("internal error: %s is not a valid packed reference!",
2167                      entry->name);
2168        write_packed_entry(cb_data, entry->name, entry->u.value.oid.hash,
2169                           peel_status == PEEL_PEELED ?
2170                           entry->u.value.peeled.hash : NULL);
2171        return 0;
2172}
2173
2174/*
2175 * Lock the packed-refs file for writing. Flags is passed to
2176 * hold_lock_file_for_update(). Return 0 on success. On errors, set
2177 * errno appropriately and return a nonzero value.
2178 */
2179static int lock_packed_refs(struct files_ref_store *refs, int flags)
2180{
2181        static int timeout_configured = 0;
2182        static int timeout_value = 1000;
2183        struct packed_ref_cache *packed_ref_cache;
2184
2185        files_assert_main_repository(refs, "lock_packed_refs");
2186
2187        if (!timeout_configured) {
2188                git_config_get_int("core.packedrefstimeout", &timeout_value);
2189                timeout_configured = 1;
2190        }
2191
2192        if (hold_lock_file_for_update_timeout(
2193                            &packlock, files_packed_refs_path(refs),
2194                            flags, timeout_value) < 0)
2195                return -1;
2196        /*
2197         * Get the current packed-refs while holding the lock.  If the
2198         * packed-refs file has been modified since we last read it,
2199         * this will automatically invalidate the cache and re-read
2200         * the packed-refs file.
2201         */
2202        packed_ref_cache = get_packed_ref_cache(refs);
2203        packed_ref_cache->lock = &packlock;
2204        /* Increment the reference count to prevent it from being freed: */
2205        acquire_packed_ref_cache(packed_ref_cache);
2206        return 0;
2207}
2208
2209/*
2210 * Write the current version of the packed refs cache from memory to
2211 * disk. The packed-refs file must already be locked for writing (see
2212 * lock_packed_refs()). Return zero on success. On errors, set errno
2213 * and return a nonzero value
2214 */
2215static int commit_packed_refs(struct files_ref_store *refs)
2216{
2217        struct packed_ref_cache *packed_ref_cache =
2218                get_packed_ref_cache(refs);
2219        int error = 0;
2220        int save_errno = 0;
2221        FILE *out;
2222
2223        files_assert_main_repository(refs, "commit_packed_refs");
2224
2225        if (!packed_ref_cache->lock)
2226                die("internal error: packed-refs not locked");
2227
2228        out = fdopen_lock_file(packed_ref_cache->lock, "w");
2229        if (!out)
2230                die_errno("unable to fdopen packed-refs descriptor");
2231
2232        fprintf_or_die(out, "%s", PACKED_REFS_HEADER);
2233        do_for_each_entry_in_dir(get_packed_ref_dir(packed_ref_cache),
2234                                 0, write_packed_entry_fn, out);
2235
2236        if (commit_lock_file(packed_ref_cache->lock)) {
2237                save_errno = errno;
2238                error = -1;
2239        }
2240        packed_ref_cache->lock = NULL;
2241        release_packed_ref_cache(packed_ref_cache);
2242        errno = save_errno;
2243        return error;
2244}
2245
2246/*
2247 * Rollback the lockfile for the packed-refs file, and discard the
2248 * in-memory packed reference cache.  (The packed-refs file will be
2249 * read anew if it is needed again after this function is called.)
2250 */
2251static void rollback_packed_refs(struct files_ref_store *refs)
2252{
2253        struct packed_ref_cache *packed_ref_cache =
2254                get_packed_ref_cache(refs);
2255
2256        files_assert_main_repository(refs, "rollback_packed_refs");
2257
2258        if (!packed_ref_cache->lock)
2259                die("internal error: packed-refs not locked");
2260        rollback_lock_file(packed_ref_cache->lock);
2261        packed_ref_cache->lock = NULL;
2262        release_packed_ref_cache(packed_ref_cache);
2263        clear_packed_ref_cache(refs);
2264}
2265
2266struct ref_to_prune {
2267        struct ref_to_prune *next;
2268        unsigned char sha1[20];
2269        char name[FLEX_ARRAY];
2270};
2271
2272struct pack_refs_cb_data {
2273        unsigned int flags;
2274        struct ref_dir *packed_refs;
2275        struct ref_to_prune *ref_to_prune;
2276};
2277
2278/*
2279 * An each_ref_entry_fn that is run over loose references only.  If
2280 * the loose reference can be packed, add an entry in the packed ref
2281 * cache.  If the reference should be pruned, also add it to
2282 * ref_to_prune in the pack_refs_cb_data.
2283 */
2284static int pack_if_possible_fn(struct ref_entry *entry, void *cb_data)
2285{
2286        struct pack_refs_cb_data *cb = cb_data;
2287        enum peel_status peel_status;
2288        struct ref_entry *packed_entry;
2289        int is_tag_ref = starts_with(entry->name, "refs/tags/");
2290
2291        /* Do not pack per-worktree refs: */
2292        if (ref_type(entry->name) != REF_TYPE_NORMAL)
2293                return 0;
2294
2295        /* ALWAYS pack tags */
2296        if (!(cb->flags & PACK_REFS_ALL) && !is_tag_ref)
2297                return 0;
2298
2299        /* Do not pack symbolic or broken refs: */
2300        if ((entry->flag & REF_ISSYMREF) || !entry_resolves_to_object(entry))
2301                return 0;
2302
2303        /* Add a packed ref cache entry equivalent to the loose entry. */
2304        peel_status = peel_entry(entry, 1);
2305        if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2306                die("internal error peeling reference %s (%s)",
2307                    entry->name, oid_to_hex(&entry->u.value.oid));
2308        packed_entry = find_ref(cb->packed_refs, entry->name);
2309        if (packed_entry) {
2310                /* Overwrite existing packed entry with info from loose entry */
2311                packed_entry->flag = REF_ISPACKED | REF_KNOWS_PEELED;
2312                oidcpy(&packed_entry->u.value.oid, &entry->u.value.oid);
2313        } else {
2314                packed_entry = create_ref_entry(entry->name, entry->u.value.oid.hash,
2315                                                REF_ISPACKED | REF_KNOWS_PEELED, 0);
2316                add_ref(cb->packed_refs, packed_entry);
2317        }
2318        oidcpy(&packed_entry->u.value.peeled, &entry->u.value.peeled);
2319
2320        /* Schedule the loose reference for pruning if requested. */
2321        if ((cb->flags & PACK_REFS_PRUNE)) {
2322                struct ref_to_prune *n;
2323                FLEX_ALLOC_STR(n, name, entry->name);
2324                hashcpy(n->sha1, entry->u.value.oid.hash);
2325                n->next = cb->ref_to_prune;
2326                cb->ref_to_prune = n;
2327        }
2328        return 0;
2329}
2330
2331enum {
2332        REMOVE_EMPTY_PARENTS_REF = 0x01,
2333        REMOVE_EMPTY_PARENTS_REFLOG = 0x02
2334};
2335
2336/*
2337 * Remove empty parent directories associated with the specified
2338 * reference and/or its reflog, but spare [logs/]refs/ and immediate
2339 * subdirs. flags is a combination of REMOVE_EMPTY_PARENTS_REF and/or
2340 * REMOVE_EMPTY_PARENTS_REFLOG.
2341 */
2342static void try_remove_empty_parents(struct files_ref_store *refs,
2343                                     const char *refname,
2344                                     unsigned int flags)
2345{
2346        struct strbuf buf = STRBUF_INIT;
2347        struct strbuf sb = STRBUF_INIT;
2348        char *p, *q;
2349        int i;
2350
2351        strbuf_addstr(&buf, refname);
2352        p = buf.buf;
2353        for (i = 0; i < 2; i++) { /* refs/{heads,tags,...}/ */
2354                while (*p && *p != '/')
2355                        p++;
2356                /* tolerate duplicate slashes; see check_refname_format() */
2357                while (*p == '/')
2358                        p++;
2359        }
2360        q = buf.buf + buf.len;
2361        while (flags & (REMOVE_EMPTY_PARENTS_REF | REMOVE_EMPTY_PARENTS_REFLOG)) {
2362                while (q > p && *q != '/')
2363                        q--;
2364                while (q > p && *(q-1) == '/')
2365                        q--;
2366                if (q == p)
2367                        break;
2368                strbuf_setlen(&buf, q - buf.buf);
2369
2370                strbuf_reset(&sb);
2371                files_ref_path(refs, &sb, buf.buf);
2372                if ((flags & REMOVE_EMPTY_PARENTS_REF) && rmdir(sb.buf))
2373                        flags &= ~REMOVE_EMPTY_PARENTS_REF;
2374
2375                strbuf_reset(&sb);
2376                files_reflog_path(refs, &sb, buf.buf);
2377                if ((flags & REMOVE_EMPTY_PARENTS_REFLOG) && rmdir(sb.buf))
2378                        flags &= ~REMOVE_EMPTY_PARENTS_REFLOG;
2379        }
2380        strbuf_release(&buf);
2381        strbuf_release(&sb);
2382}
2383
2384/* make sure nobody touched the ref, and unlink */
2385static void prune_ref(struct ref_to_prune *r)
2386{
2387        struct ref_transaction *transaction;
2388        struct strbuf err = STRBUF_INIT;
2389
2390        if (check_refname_format(r->name, 0))
2391                return;
2392
2393        transaction = ref_transaction_begin(&err);
2394        if (!transaction ||
2395            ref_transaction_delete(transaction, r->name, r->sha1,
2396                                   REF_ISPRUNING | REF_NODEREF, NULL, &err) ||
2397            ref_transaction_commit(transaction, &err)) {
2398                ref_transaction_free(transaction);
2399                error("%s", err.buf);
2400                strbuf_release(&err);
2401                return;
2402        }
2403        ref_transaction_free(transaction);
2404        strbuf_release(&err);
2405}
2406
2407static void prune_refs(struct ref_to_prune *r)
2408{
2409        while (r) {
2410                prune_ref(r);
2411                r = r->next;
2412        }
2413}
2414
2415static int files_pack_refs(struct ref_store *ref_store, unsigned int flags)
2416{
2417        struct files_ref_store *refs =
2418                files_downcast(ref_store, 0, "pack_refs");
2419        struct pack_refs_cb_data cbdata;
2420
2421        memset(&cbdata, 0, sizeof(cbdata));
2422        cbdata.flags = flags;
2423
2424        lock_packed_refs(refs, LOCK_DIE_ON_ERROR);
2425        cbdata.packed_refs = get_packed_refs(refs);
2426
2427        do_for_each_entry_in_dir(get_loose_refs(refs), 0,
2428                                 pack_if_possible_fn, &cbdata);
2429
2430        if (commit_packed_refs(refs))
2431                die_errno("unable to overwrite old ref-pack file");
2432
2433        prune_refs(cbdata.ref_to_prune);
2434        return 0;
2435}
2436
2437/*
2438 * Rewrite the packed-refs file, omitting any refs listed in
2439 * 'refnames'. On error, leave packed-refs unchanged, write an error
2440 * message to 'err', and return a nonzero value.
2441 *
2442 * The refs in 'refnames' needn't be sorted. `err` must not be NULL.
2443 */
2444static int repack_without_refs(struct files_ref_store *refs,
2445                               struct string_list *refnames, struct strbuf *err)
2446{
2447        struct ref_dir *packed;
2448        struct string_list_item *refname;
2449        int ret, needs_repacking = 0, removed = 0;
2450
2451        files_assert_main_repository(refs, "repack_without_refs");
2452        assert(err);
2453
2454        /* Look for a packed ref */
2455        for_each_string_list_item(refname, refnames) {
2456                if (get_packed_ref(refs, refname->string)) {
2457                        needs_repacking = 1;
2458                        break;
2459                }
2460        }
2461
2462        /* Avoid locking if we have nothing to do */
2463        if (!needs_repacking)
2464                return 0; /* no refname exists in packed refs */
2465
2466        if (lock_packed_refs(refs, 0)) {
2467                unable_to_lock_message(files_packed_refs_path(refs), errno, err);
2468                return -1;
2469        }
2470        packed = get_packed_refs(refs);
2471
2472        /* Remove refnames from the cache */
2473        for_each_string_list_item(refname, refnames)
2474                if (remove_entry(packed, refname->string) != -1)
2475                        removed = 1;
2476        if (!removed) {
2477                /*
2478                 * All packed entries disappeared while we were
2479                 * acquiring the lock.
2480                 */
2481                rollback_packed_refs(refs);
2482                return 0;
2483        }
2484
2485        /* Write what remains */
2486        ret = commit_packed_refs(refs);
2487        if (ret)
2488                strbuf_addf(err, "unable to overwrite old ref-pack file: %s",
2489                            strerror(errno));
2490        return ret;
2491}
2492
2493static int files_delete_refs(struct ref_store *ref_store,
2494                             struct string_list *refnames, unsigned int flags)
2495{
2496        struct files_ref_store *refs =
2497                files_downcast(ref_store, 0, "delete_refs");
2498        struct strbuf err = STRBUF_INIT;
2499        int i, result = 0;
2500
2501        if (!refnames->nr)
2502                return 0;
2503
2504        result = repack_without_refs(refs, refnames, &err);
2505        if (result) {
2506                /*
2507                 * If we failed to rewrite the packed-refs file, then
2508                 * it is unsafe to try to remove loose refs, because
2509                 * doing so might expose an obsolete packed value for
2510                 * a reference that might even point at an object that
2511                 * has been garbage collected.
2512                 */
2513                if (refnames->nr == 1)
2514                        error(_("could not delete reference %s: %s"),
2515                              refnames->items[0].string, err.buf);
2516                else
2517                        error(_("could not delete references: %s"), err.buf);
2518
2519                goto out;
2520        }
2521
2522        for (i = 0; i < refnames->nr; i++) {
2523                const char *refname = refnames->items[i].string;
2524
2525                if (delete_ref(NULL, refname, NULL, flags))
2526                        result |= error(_("could not remove reference %s"), refname);
2527        }
2528
2529out:
2530        strbuf_release(&err);
2531        return result;
2532}
2533
2534/*
2535 * People using contrib's git-new-workdir have .git/logs/refs ->
2536 * /some/other/path/.git/logs/refs, and that may live on another device.
2537 *
2538 * IOW, to avoid cross device rename errors, the temporary renamed log must
2539 * live into logs/refs.
2540 */
2541#define TMP_RENAMED_LOG  "refs/.tmp-renamed-log"
2542
2543struct rename_cb {
2544        const char *tmp_renamed_log;
2545        int true_errno;
2546};
2547
2548static int rename_tmp_log_callback(const char *path, void *cb_data)
2549{
2550        struct rename_cb *cb = cb_data;
2551
2552        if (rename(cb->tmp_renamed_log, path)) {
2553                /*
2554                 * rename(a, b) when b is an existing directory ought
2555                 * to result in ISDIR, but Solaris 5.8 gives ENOTDIR.
2556                 * Sheesh. Record the true errno for error reporting,
2557                 * but report EISDIR to raceproof_create_file() so
2558                 * that it knows to retry.
2559                 */
2560                cb->true_errno = errno;
2561                if (errno == ENOTDIR)
2562                        errno = EISDIR;
2563                return -1;
2564        } else {
2565                return 0;
2566        }
2567}
2568
2569static int rename_tmp_log(struct files_ref_store *refs, const char *newrefname)
2570{
2571        struct strbuf path = STRBUF_INIT;
2572        struct strbuf tmp = STRBUF_INIT;
2573        struct rename_cb cb;
2574        int ret;
2575
2576        files_reflog_path(refs, &path, newrefname);
2577        files_reflog_path(refs, &tmp, TMP_RENAMED_LOG);
2578        cb.tmp_renamed_log = tmp.buf;
2579        ret = raceproof_create_file(path.buf, rename_tmp_log_callback, &cb);
2580        if (ret) {
2581                if (errno == EISDIR)
2582                        error("directory not empty: %s", path.buf);
2583                else
2584                        error("unable to move logfile %s to %s: %s",
2585                              tmp.buf, path.buf,
2586                              strerror(cb.true_errno));
2587        }
2588
2589        strbuf_release(&path);
2590        strbuf_release(&tmp);
2591        return ret;
2592}
2593
2594static int files_verify_refname_available(struct ref_store *ref_store,
2595                                          const char *newname,
2596                                          const struct string_list *extras,
2597                                          const struct string_list *skip,
2598                                          struct strbuf *err)
2599{
2600        struct files_ref_store *refs =
2601                files_downcast(ref_store, 1, "verify_refname_available");
2602        struct ref_dir *packed_refs = get_packed_refs(refs);
2603        struct ref_dir *loose_refs = get_loose_refs(refs);
2604
2605        if (verify_refname_available_dir(newname, extras, skip,
2606                                         packed_refs, err) ||
2607            verify_refname_available_dir(newname, extras, skip,
2608                                         loose_refs, err))
2609                return -1;
2610
2611        return 0;
2612}
2613
2614static int write_ref_to_lockfile(struct ref_lock *lock,
2615                                 const unsigned char *sha1, struct strbuf *err);
2616static int commit_ref_update(struct files_ref_store *refs,
2617                             struct ref_lock *lock,
2618                             const unsigned char *sha1, const char *logmsg,
2619                             struct strbuf *err);
2620
2621static int files_rename_ref(struct ref_store *ref_store,
2622                            const char *oldrefname, const char *newrefname,
2623                            const char *logmsg)
2624{
2625        struct files_ref_store *refs =
2626                files_downcast(ref_store, 0, "rename_ref");
2627        unsigned char sha1[20], orig_sha1[20];
2628        int flag = 0, logmoved = 0;
2629        struct ref_lock *lock;
2630        struct stat loginfo;
2631        struct strbuf sb_oldref = STRBUF_INIT;
2632        struct strbuf sb_newref = STRBUF_INIT;
2633        struct strbuf tmp_renamed_log = STRBUF_INIT;
2634        int log, ret;
2635        struct strbuf err = STRBUF_INIT;
2636
2637        files_reflog_path(refs, &sb_oldref, oldrefname);
2638        files_reflog_path(refs, &sb_newref, newrefname);
2639        files_reflog_path(refs, &tmp_renamed_log, TMP_RENAMED_LOG);
2640
2641        log = !lstat(sb_oldref.buf, &loginfo);
2642        if (log && S_ISLNK(loginfo.st_mode)) {
2643                ret = error("reflog for %s is a symlink", oldrefname);
2644                goto out;
2645        }
2646
2647        if (!resolve_ref_unsafe(oldrefname, RESOLVE_REF_READING | RESOLVE_REF_NO_RECURSE,
2648                                orig_sha1, &flag)) {
2649                ret = error("refname %s not found", oldrefname);
2650                goto out;
2651        }
2652
2653        if (flag & REF_ISSYMREF) {
2654                ret = error("refname %s is a symbolic ref, renaming it is not supported",
2655                            oldrefname);
2656                goto out;
2657        }
2658        if (!rename_ref_available(oldrefname, newrefname)) {
2659                ret = 1;
2660                goto out;
2661        }
2662
2663        if (log && rename(sb_oldref.buf, tmp_renamed_log.buf)) {
2664                ret = error("unable to move logfile logs/%s to logs/"TMP_RENAMED_LOG": %s",
2665                            oldrefname, strerror(errno));
2666                goto out;
2667        }
2668
2669        if (delete_ref(logmsg, oldrefname, orig_sha1, REF_NODEREF)) {
2670                error("unable to delete old %s", oldrefname);
2671                goto rollback;
2672        }
2673
2674        /*
2675         * Since we are doing a shallow lookup, sha1 is not the
2676         * correct value to pass to delete_ref as old_sha1. But that
2677         * doesn't matter, because an old_sha1 check wouldn't add to
2678         * the safety anyway; we want to delete the reference whatever
2679         * its current value.
2680         */
2681        if (!read_ref_full(newrefname, RESOLVE_REF_READING | RESOLVE_REF_NO_RECURSE,
2682                           sha1, NULL) &&
2683            delete_ref(NULL, newrefname, NULL, REF_NODEREF)) {
2684                if (errno == EISDIR) {
2685                        struct strbuf path = STRBUF_INIT;
2686                        int result;
2687
2688                        files_ref_path(refs, &path, newrefname);
2689                        result = remove_empty_directories(&path);
2690                        strbuf_release(&path);
2691
2692                        if (result) {
2693                                error("Directory not empty: %s", newrefname);
2694                                goto rollback;
2695                        }
2696                } else {
2697                        error("unable to delete existing %s", newrefname);
2698                        goto rollback;
2699                }
2700        }
2701
2702        if (log && rename_tmp_log(refs, newrefname))
2703                goto rollback;
2704
2705        logmoved = log;
2706
2707        lock = lock_ref_sha1_basic(refs, newrefname, NULL, NULL, NULL,
2708                                   REF_NODEREF, NULL, &err);
2709        if (!lock) {
2710                error("unable to rename '%s' to '%s': %s", oldrefname, newrefname, err.buf);
2711                strbuf_release(&err);
2712                goto rollback;
2713        }
2714        hashcpy(lock->old_oid.hash, orig_sha1);
2715
2716        if (write_ref_to_lockfile(lock, orig_sha1, &err) ||
2717            commit_ref_update(refs, lock, orig_sha1, logmsg, &err)) {
2718                error("unable to write current sha1 into %s: %s", newrefname, err.buf);
2719                strbuf_release(&err);
2720                goto rollback;
2721        }
2722
2723        ret = 0;
2724        goto out;
2725
2726 rollback:
2727        lock = lock_ref_sha1_basic(refs, oldrefname, NULL, NULL, NULL,
2728                                   REF_NODEREF, NULL, &err);
2729        if (!lock) {
2730                error("unable to lock %s for rollback: %s", oldrefname, err.buf);
2731                strbuf_release(&err);
2732                goto rollbacklog;
2733        }
2734
2735        flag = log_all_ref_updates;
2736        log_all_ref_updates = LOG_REFS_NONE;
2737        if (write_ref_to_lockfile(lock, orig_sha1, &err) ||
2738            commit_ref_update(refs, lock, orig_sha1, NULL, &err)) {
2739                error("unable to write current sha1 into %s: %s", oldrefname, err.buf);
2740                strbuf_release(&err);
2741        }
2742        log_all_ref_updates = flag;
2743
2744 rollbacklog:
2745        if (logmoved && rename(sb_newref.buf, sb_oldref.buf))
2746                error("unable to restore logfile %s from %s: %s",
2747                        oldrefname, newrefname, strerror(errno));
2748        if (!logmoved && log &&
2749            rename(tmp_renamed_log.buf, sb_oldref.buf))
2750                error("unable to restore logfile %s from logs/"TMP_RENAMED_LOG": %s",
2751                        oldrefname, strerror(errno));
2752        ret = 1;
2753 out:
2754        strbuf_release(&sb_newref);
2755        strbuf_release(&sb_oldref);
2756        strbuf_release(&tmp_renamed_log);
2757
2758        return ret;
2759}
2760
2761static int close_ref(struct ref_lock *lock)
2762{
2763        if (close_lock_file(lock->lk))
2764                return -1;
2765        return 0;
2766}
2767
2768static int commit_ref(struct ref_lock *lock)
2769{
2770        char *path = get_locked_file_path(lock->lk);
2771        struct stat st;
2772
2773        if (!lstat(path, &st) && S_ISDIR(st.st_mode)) {
2774                /*
2775                 * There is a directory at the path we want to rename
2776                 * the lockfile to. Hopefully it is empty; try to
2777                 * delete it.
2778                 */
2779                size_t len = strlen(path);
2780                struct strbuf sb_path = STRBUF_INIT;
2781
2782                strbuf_attach(&sb_path, path, len, len);
2783
2784                /*
2785                 * If this fails, commit_lock_file() will also fail
2786                 * and will report the problem.
2787                 */
2788                remove_empty_directories(&sb_path);
2789                strbuf_release(&sb_path);
2790        } else {
2791                free(path);
2792        }
2793
2794        if (commit_lock_file(lock->lk))
2795                return -1;
2796        return 0;
2797}
2798
2799static int open_or_create_logfile(const char *path, void *cb)
2800{
2801        int *fd = cb;
2802
2803        *fd = open(path, O_APPEND | O_WRONLY | O_CREAT, 0666);
2804        return (*fd < 0) ? -1 : 0;
2805}
2806
2807/*
2808 * Create a reflog for a ref. If force_create = 0, only create the
2809 * reflog for certain refs (those for which should_autocreate_reflog
2810 * returns non-zero). Otherwise, create it regardless of the reference
2811 * name. If the logfile already existed or was created, return 0 and
2812 * set *logfd to the file descriptor opened for appending to the file.
2813 * If no logfile exists and we decided not to create one, return 0 and
2814 * set *logfd to -1. On failure, fill in *err, set *logfd to -1, and
2815 * return -1.
2816 */
2817static int log_ref_setup(struct files_ref_store *refs,
2818                         const char *refname, int force_create,
2819                         int *logfd, struct strbuf *err)
2820{
2821        struct strbuf logfile_sb = STRBUF_INIT;
2822        char *logfile;
2823
2824        files_reflog_path(refs, &logfile_sb, refname);
2825        logfile = strbuf_detach(&logfile_sb, NULL);
2826
2827        if (force_create || should_autocreate_reflog(refname)) {
2828                if (raceproof_create_file(logfile, open_or_create_logfile, logfd)) {
2829                        if (errno == ENOENT)
2830                                strbuf_addf(err, "unable to create directory for '%s': "
2831                                            "%s", logfile, strerror(errno));
2832                        else if (errno == EISDIR)
2833                                strbuf_addf(err, "there are still logs under '%s'",
2834                                            logfile);
2835                        else
2836                                strbuf_addf(err, "unable to append to '%s': %s",
2837                                            logfile, strerror(errno));
2838
2839                        goto error;
2840                }
2841        } else {
2842                *logfd = open(logfile, O_APPEND | O_WRONLY, 0666);
2843                if (*logfd < 0) {
2844                        if (errno == ENOENT || errno == EISDIR) {
2845                                /*
2846                                 * The logfile doesn't already exist,
2847                                 * but that is not an error; it only
2848                                 * means that we won't write log
2849                                 * entries to it.
2850                                 */
2851                                ;
2852                        } else {
2853                                strbuf_addf(err, "unable to append to '%s': %s",
2854                                            logfile, strerror(errno));
2855                                goto error;
2856                        }
2857                }
2858        }
2859
2860        if (*logfd >= 0)
2861                adjust_shared_perm(logfile);
2862
2863        free(logfile);
2864        return 0;
2865
2866error:
2867        free(logfile);
2868        return -1;
2869}
2870
2871static int files_create_reflog(struct ref_store *ref_store,
2872                               const char *refname, int force_create,
2873                               struct strbuf *err)
2874{
2875        struct files_ref_store *refs =
2876                files_downcast(ref_store, 0, "create_reflog");
2877        int fd;
2878
2879        if (log_ref_setup(refs, refname, force_create, &fd, err))
2880                return -1;
2881
2882        if (fd >= 0)
2883                close(fd);
2884
2885        return 0;
2886}
2887
2888static int log_ref_write_fd(int fd, const unsigned char *old_sha1,
2889                            const unsigned char *new_sha1,
2890                            const char *committer, const char *msg)
2891{
2892        int msglen, written;
2893        unsigned maxlen, len;
2894        char *logrec;
2895
2896        msglen = msg ? strlen(msg) : 0;
2897        maxlen = strlen(committer) + msglen + 100;
2898        logrec = xmalloc(maxlen);
2899        len = xsnprintf(logrec, maxlen, "%s %s %s\n",
2900                        sha1_to_hex(old_sha1),
2901                        sha1_to_hex(new_sha1),
2902                        committer);
2903        if (msglen)
2904                len += copy_reflog_msg(logrec + len - 1, msg) - 1;
2905
2906        written = len <= maxlen ? write_in_full(fd, logrec, len) : -1;
2907        free(logrec);
2908        if (written != len)
2909                return -1;
2910
2911        return 0;
2912}
2913
2914static int files_log_ref_write(struct files_ref_store *refs,
2915                               const char *refname, const unsigned char *old_sha1,
2916                               const unsigned char *new_sha1, const char *msg,
2917                               int flags, struct strbuf *err)
2918{
2919        int logfd, result;
2920
2921        if (log_all_ref_updates == LOG_REFS_UNSET)
2922                log_all_ref_updates = is_bare_repository() ? LOG_REFS_NONE : LOG_REFS_NORMAL;
2923
2924        result = log_ref_setup(refs, refname,
2925                               flags & REF_FORCE_CREATE_REFLOG,
2926                               &logfd, err);
2927
2928        if (result)
2929                return result;
2930
2931        if (logfd < 0)
2932                return 0;
2933        result = log_ref_write_fd(logfd, old_sha1, new_sha1,
2934                                  git_committer_info(0), msg);
2935        if (result) {
2936                struct strbuf sb = STRBUF_INIT;
2937                int save_errno = errno;
2938
2939                files_reflog_path(refs, &sb, refname);
2940                strbuf_addf(err, "unable to append to '%s': %s",
2941                            sb.buf, strerror(save_errno));
2942                strbuf_release(&sb);
2943                close(logfd);
2944                return -1;
2945        }
2946        if (close(logfd)) {
2947                struct strbuf sb = STRBUF_INIT;
2948                int save_errno = errno;
2949
2950                files_reflog_path(refs, &sb, refname);
2951                strbuf_addf(err, "unable to append to '%s': %s",
2952                            sb.buf, strerror(save_errno));
2953                strbuf_release(&sb);
2954                return -1;
2955        }
2956        return 0;
2957}
2958
2959/*
2960 * Write sha1 into the open lockfile, then close the lockfile. On
2961 * errors, rollback the lockfile, fill in *err and
2962 * return -1.
2963 */
2964static int write_ref_to_lockfile(struct ref_lock *lock,
2965                                 const unsigned char *sha1, struct strbuf *err)
2966{
2967        static char term = '\n';
2968        struct object *o;
2969        int fd;
2970
2971        o = parse_object(sha1);
2972        if (!o) {
2973                strbuf_addf(err,
2974                            "trying to write ref '%s' with nonexistent object %s",
2975                            lock->ref_name, sha1_to_hex(sha1));
2976                unlock_ref(lock);
2977                return -1;
2978        }
2979        if (o->type != OBJ_COMMIT && is_branch(lock->ref_name)) {
2980                strbuf_addf(err,
2981                            "trying to write non-commit object %s to branch '%s'",
2982                            sha1_to_hex(sha1), lock->ref_name);
2983                unlock_ref(lock);
2984                return -1;
2985        }
2986        fd = get_lock_file_fd(lock->lk);
2987        if (write_in_full(fd, sha1_to_hex(sha1), 40) != 40 ||
2988            write_in_full(fd, &term, 1) != 1 ||
2989            close_ref(lock) < 0) {
2990                strbuf_addf(err,
2991                            "couldn't write '%s'", get_lock_file_path(lock->lk));
2992                unlock_ref(lock);
2993                return -1;
2994        }
2995        return 0;
2996}
2997
2998/*
2999 * Commit a change to a loose reference that has already been written
3000 * to the loose reference lockfile. Also update the reflogs if
3001 * necessary, using the specified lockmsg (which can be NULL).
3002 */
3003static int commit_ref_update(struct files_ref_store *refs,
3004                             struct ref_lock *lock,
3005                             const unsigned char *sha1, const char *logmsg,
3006                             struct strbuf *err)
3007{
3008        files_assert_main_repository(refs, "commit_ref_update");
3009
3010        clear_loose_ref_cache(refs);
3011        if (files_log_ref_write(refs, lock->ref_name,
3012                                lock->old_oid.hash, sha1,
3013                                logmsg, 0, err)) {
3014                char *old_msg = strbuf_detach(err, NULL);
3015                strbuf_addf(err, "cannot update the ref '%s': %s",
3016                            lock->ref_name, old_msg);
3017                free(old_msg);
3018                unlock_ref(lock);
3019                return -1;
3020        }
3021
3022        if (strcmp(lock->ref_name, "HEAD") != 0) {
3023                /*
3024                 * Special hack: If a branch is updated directly and HEAD
3025                 * points to it (may happen on the remote side of a push
3026                 * for example) then logically the HEAD reflog should be
3027                 * updated too.
3028                 * A generic solution implies reverse symref information,
3029                 * but finding all symrefs pointing to the given branch
3030                 * would be rather costly for this rare event (the direct
3031                 * update of a branch) to be worth it.  So let's cheat and
3032                 * check with HEAD only which should cover 99% of all usage
3033                 * scenarios (even 100% of the default ones).
3034                 */
3035                unsigned char head_sha1[20];
3036                int head_flag;
3037                const char *head_ref;
3038
3039                head_ref = resolve_ref_unsafe("HEAD", RESOLVE_REF_READING,
3040                                              head_sha1, &head_flag);
3041                if (head_ref && (head_flag & REF_ISSYMREF) &&
3042                    !strcmp(head_ref, lock->ref_name)) {
3043                        struct strbuf log_err = STRBUF_INIT;
3044                        if (files_log_ref_write(refs, "HEAD",
3045                                                lock->old_oid.hash, sha1,
3046                                                logmsg, 0, &log_err)) {
3047                                error("%s", log_err.buf);
3048                                strbuf_release(&log_err);
3049                        }
3050                }
3051        }
3052
3053        if (commit_ref(lock)) {
3054                strbuf_addf(err, "couldn't set '%s'", lock->ref_name);
3055                unlock_ref(lock);
3056                return -1;
3057        }
3058
3059        unlock_ref(lock);
3060        return 0;
3061}
3062
3063static int create_ref_symlink(struct ref_lock *lock, const char *target)
3064{
3065        int ret = -1;
3066#ifndef NO_SYMLINK_HEAD
3067        char *ref_path = get_locked_file_path(lock->lk);
3068        unlink(ref_path);
3069        ret = symlink(target, ref_path);
3070        free(ref_path);
3071
3072        if (ret)
3073                fprintf(stderr, "no symlink - falling back to symbolic ref\n");
3074#endif
3075        return ret;
3076}
3077
3078static void update_symref_reflog(struct files_ref_store *refs,
3079                                 struct ref_lock *lock, const char *refname,
3080                                 const char *target, const char *logmsg)
3081{
3082        struct strbuf err = STRBUF_INIT;
3083        unsigned char new_sha1[20];
3084        if (logmsg && !read_ref(target, new_sha1) &&
3085            files_log_ref_write(refs, refname, lock->old_oid.hash,
3086                                new_sha1, logmsg, 0, &err)) {
3087                error("%s", err.buf);
3088                strbuf_release(&err);
3089        }
3090}
3091
3092static int create_symref_locked(struct files_ref_store *refs,
3093                                struct ref_lock *lock, const char *refname,
3094                                const char *target, const char *logmsg)
3095{
3096        if (prefer_symlink_refs && !create_ref_symlink(lock, target)) {
3097                update_symref_reflog(refs, lock, refname, target, logmsg);
3098                return 0;
3099        }
3100
3101        if (!fdopen_lock_file(lock->lk, "w"))
3102                return error("unable to fdopen %s: %s",
3103                             lock->lk->tempfile.filename.buf, strerror(errno));
3104
3105        update_symref_reflog(refs, lock, refname, target, logmsg);
3106
3107        /* no error check; commit_ref will check ferror */
3108        fprintf(lock->lk->tempfile.fp, "ref: %s\n", target);
3109        if (commit_ref(lock) < 0)
3110                return error("unable to write symref for %s: %s", refname,
3111                             strerror(errno));
3112        return 0;
3113}
3114
3115static int files_create_symref(struct ref_store *ref_store,
3116                               const char *refname, const char *target,
3117                               const char *logmsg)
3118{
3119        struct files_ref_store *refs =
3120                files_downcast(ref_store, 0, "create_symref");
3121        struct strbuf err = STRBUF_INIT;
3122        struct ref_lock *lock;
3123        int ret;
3124
3125        lock = lock_ref_sha1_basic(refs, refname, NULL,
3126                                   NULL, NULL, REF_NODEREF, NULL,
3127                                   &err);
3128        if (!lock) {
3129                error("%s", err.buf);
3130                strbuf_release(&err);
3131                return -1;
3132        }
3133
3134        ret = create_symref_locked(refs, lock, refname, target, logmsg);
3135        unlock_ref(lock);
3136        return ret;
3137}
3138
3139int set_worktree_head_symref(const char *gitdir, const char *target, const char *logmsg)
3140{
3141        /*
3142         * FIXME: this obviously will not work well for future refs
3143         * backends. This function needs to die.
3144         */
3145        struct files_ref_store *refs =
3146                files_downcast(get_main_ref_store(), 0, "set_head_symref");
3147
3148        static struct lock_file head_lock;
3149        struct ref_lock *lock;
3150        struct strbuf head_path = STRBUF_INIT;
3151        const char *head_rel;
3152        int ret;
3153
3154        strbuf_addf(&head_path, "%s/HEAD", absolute_path(gitdir));
3155        if (hold_lock_file_for_update(&head_lock, head_path.buf,
3156                                      LOCK_NO_DEREF) < 0) {
3157                struct strbuf err = STRBUF_INIT;
3158                unable_to_lock_message(head_path.buf, errno, &err);
3159                error("%s", err.buf);
3160                strbuf_release(&err);
3161                strbuf_release(&head_path);
3162                return -1;
3163        }
3164
3165        /* head_rel will be "HEAD" for the main tree, "worktrees/wt/HEAD" for
3166           linked trees */
3167        head_rel = remove_leading_path(head_path.buf,
3168                                       absolute_path(get_git_common_dir()));
3169        /* to make use of create_symref_locked(), initialize ref_lock */
3170        lock = xcalloc(1, sizeof(struct ref_lock));
3171        lock->lk = &head_lock;
3172        lock->ref_name = xstrdup(head_rel);
3173
3174        ret = create_symref_locked(refs, lock, head_rel, target, logmsg);
3175
3176        unlock_ref(lock); /* will free lock */
3177        strbuf_release(&head_path);
3178        return ret;
3179}
3180
3181static int files_reflog_exists(struct ref_store *ref_store,
3182                               const char *refname)
3183{
3184        struct files_ref_store *refs =
3185                files_downcast(ref_store, 0, "reflog_exists");
3186        struct strbuf sb = STRBUF_INIT;
3187        struct stat st;
3188        int ret;
3189
3190        files_reflog_path(refs, &sb, refname);
3191        ret = !lstat(sb.buf, &st) && S_ISREG(st.st_mode);
3192        strbuf_release(&sb);
3193        return ret;
3194}
3195
3196static int files_delete_reflog(struct ref_store *ref_store,
3197                               const char *refname)
3198{
3199        struct files_ref_store *refs =
3200                files_downcast(ref_store, 0, "delete_reflog");
3201        struct strbuf sb = STRBUF_INIT;
3202        int ret;
3203
3204        files_reflog_path(refs, &sb, refname);
3205        ret = remove_path(sb.buf);
3206        strbuf_release(&sb);
3207        return ret;
3208}
3209
3210static int show_one_reflog_ent(struct strbuf *sb, each_reflog_ent_fn fn, void *cb_data)
3211{
3212        struct object_id ooid, noid;
3213        char *email_end, *message;
3214        unsigned long timestamp;
3215        int tz;
3216        const char *p = sb->buf;
3217
3218        /* old SP new SP name <email> SP time TAB msg LF */
3219        if (!sb->len || sb->buf[sb->len - 1] != '\n' ||
3220            parse_oid_hex(p, &ooid, &p) || *p++ != ' ' ||
3221            parse_oid_hex(p, &noid, &p) || *p++ != ' ' ||
3222            !(email_end = strchr(p, '>')) ||
3223            email_end[1] != ' ' ||
3224            !(timestamp = strtoul(email_end + 2, &message, 10)) ||
3225            !message || message[0] != ' ' ||
3226            (message[1] != '+' && message[1] != '-') ||
3227            !isdigit(message[2]) || !isdigit(message[3]) ||
3228            !isdigit(message[4]) || !isdigit(message[5]))
3229                return 0; /* corrupt? */
3230        email_end[1] = '\0';
3231        tz = strtol(message + 1, NULL, 10);
3232        if (message[6] != '\t')
3233                message += 6;
3234        else
3235                message += 7;
3236        return fn(&ooid, &noid, p, timestamp, tz, message, cb_data);
3237}
3238
3239static char *find_beginning_of_line(char *bob, char *scan)
3240{
3241        while (bob < scan && *(--scan) != '\n')
3242                ; /* keep scanning backwards */
3243        /*
3244         * Return either beginning of the buffer, or LF at the end of
3245         * the previous line.
3246         */
3247        return scan;
3248}
3249
3250static int files_for_each_reflog_ent_reverse(struct ref_store *ref_store,
3251                                             const char *refname,
3252                                             each_reflog_ent_fn fn,
3253                                             void *cb_data)
3254{
3255        struct files_ref_store *refs =
3256                files_downcast(ref_store, 0, "for_each_reflog_ent_reverse");
3257        struct strbuf sb = STRBUF_INIT;
3258        FILE *logfp;
3259        long pos;
3260        int ret = 0, at_tail = 1;
3261
3262        files_reflog_path(refs, &sb, refname);
3263        logfp = fopen(sb.buf, "r");
3264        strbuf_release(&sb);
3265        if (!logfp)
3266                return -1;
3267
3268        /* Jump to the end */
3269        if (fseek(logfp, 0, SEEK_END) < 0)
3270                return error("cannot seek back reflog for %s: %s",
3271                             refname, strerror(errno));
3272        pos = ftell(logfp);
3273        while (!ret && 0 < pos) {
3274                int cnt;
3275                size_t nread;
3276                char buf[BUFSIZ];
3277                char *endp, *scanp;
3278
3279                /* Fill next block from the end */
3280                cnt = (sizeof(buf) < pos) ? sizeof(buf) : pos;
3281                if (fseek(logfp, pos - cnt, SEEK_SET))
3282                        return error("cannot seek back reflog for %s: %s",
3283                                     refname, strerror(errno));
3284                nread = fread(buf, cnt, 1, logfp);
3285                if (nread != 1)
3286                        return error("cannot read %d bytes from reflog for %s: %s",
3287                                     cnt, refname, strerror(errno));
3288                pos -= cnt;
3289
3290                scanp = endp = buf + cnt;
3291                if (at_tail && scanp[-1] == '\n')
3292                        /* Looking at the final LF at the end of the file */
3293                        scanp--;
3294                at_tail = 0;
3295
3296                while (buf < scanp) {
3297                        /*
3298                         * terminating LF of the previous line, or the beginning
3299                         * of the buffer.
3300                         */
3301                        char *bp;
3302
3303                        bp = find_beginning_of_line(buf, scanp);
3304
3305                        if (*bp == '\n') {
3306                                /*
3307                                 * The newline is the end of the previous line,
3308                                 * so we know we have complete line starting
3309                                 * at (bp + 1). Prefix it onto any prior data
3310                                 * we collected for the line and process it.
3311                                 */
3312                                strbuf_splice(&sb, 0, 0, bp + 1, endp - (bp + 1));
3313                                scanp = bp;
3314                                endp = bp + 1;
3315                                ret = show_one_reflog_ent(&sb, fn, cb_data);
3316                                strbuf_reset(&sb);
3317                                if (ret)
3318                                        break;
3319                        } else if (!pos) {
3320                                /*
3321                                 * We are at the start of the buffer, and the
3322                                 * start of the file; there is no previous
3323                                 * line, and we have everything for this one.
3324                                 * Process it, and we can end the loop.
3325                                 */
3326                                strbuf_splice(&sb, 0, 0, buf, endp - buf);
3327                                ret = show_one_reflog_ent(&sb, fn, cb_data);
3328                                strbuf_reset(&sb);
3329                                break;
3330                        }
3331
3332                        if (bp == buf) {
3333                                /*
3334                                 * We are at the start of the buffer, and there
3335                                 * is more file to read backwards. Which means
3336                                 * we are in the middle of a line. Note that we
3337                                 * may get here even if *bp was a newline; that
3338                                 * just means we are at the exact end of the
3339                                 * previous line, rather than some spot in the
3340                                 * middle.
3341                                 *
3342                                 * Save away what we have to be combined with
3343                                 * the data from the next read.
3344                                 */
3345                                strbuf_splice(&sb, 0, 0, buf, endp - buf);
3346                                break;
3347                        }
3348                }
3349
3350        }
3351        if (!ret && sb.len)
3352                die("BUG: reverse reflog parser had leftover data");
3353
3354        fclose(logfp);
3355        strbuf_release(&sb);
3356        return ret;
3357}
3358
3359static int files_for_each_reflog_ent(struct ref_store *ref_store,
3360                                     const char *refname,
3361                                     each_reflog_ent_fn fn, void *cb_data)
3362{
3363        struct files_ref_store *refs =
3364                files_downcast(ref_store, 0, "for_each_reflog_ent");
3365        FILE *logfp;
3366        struct strbuf sb = STRBUF_INIT;
3367        int ret = 0;
3368
3369        files_reflog_path(refs, &sb, refname);
3370        logfp = fopen(sb.buf, "r");
3371        strbuf_release(&sb);
3372        if (!logfp)
3373                return -1;
3374
3375        while (!ret && !strbuf_getwholeline(&sb, logfp, '\n'))
3376                ret = show_one_reflog_ent(&sb, fn, cb_data);
3377        fclose(logfp);
3378        strbuf_release(&sb);
3379        return ret;
3380}
3381
3382struct files_reflog_iterator {
3383        struct ref_iterator base;
3384
3385        struct dir_iterator *dir_iterator;
3386        struct object_id oid;
3387};
3388
3389static int files_reflog_iterator_advance(struct ref_iterator *ref_iterator)
3390{
3391        struct files_reflog_iterator *iter =
3392                (struct files_reflog_iterator *)ref_iterator;
3393        struct dir_iterator *diter = iter->dir_iterator;
3394        int ok;
3395
3396        while ((ok = dir_iterator_advance(diter)) == ITER_OK) {
3397                int flags;
3398
3399                if (!S_ISREG(diter->st.st_mode))
3400                        continue;
3401                if (diter->basename[0] == '.')
3402                        continue;
3403                if (ends_with(diter->basename, ".lock"))
3404                        continue;
3405
3406                if (read_ref_full(diter->relative_path, 0,
3407                                  iter->oid.hash, &flags)) {
3408                        error("bad ref for %s", diter->path.buf);
3409                        continue;
3410                }
3411
3412                iter->base.refname = diter->relative_path;
3413                iter->base.oid = &iter->oid;
3414                iter->base.flags = flags;
3415                return ITER_OK;
3416        }
3417
3418        iter->dir_iterator = NULL;
3419        if (ref_iterator_abort(ref_iterator) == ITER_ERROR)
3420                ok = ITER_ERROR;
3421        return ok;
3422}
3423
3424static int files_reflog_iterator_peel(struct ref_iterator *ref_iterator,
3425                                   struct object_id *peeled)
3426{
3427        die("BUG: ref_iterator_peel() called for reflog_iterator");
3428}
3429
3430static int files_reflog_iterator_abort(struct ref_iterator *ref_iterator)
3431{
3432        struct files_reflog_iterator *iter =
3433                (struct files_reflog_iterator *)ref_iterator;
3434        int ok = ITER_DONE;
3435
3436        if (iter->dir_iterator)
3437                ok = dir_iterator_abort(iter->dir_iterator);
3438
3439        base_ref_iterator_free(ref_iterator);
3440        return ok;
3441}
3442
3443static struct ref_iterator_vtable files_reflog_iterator_vtable = {
3444        files_reflog_iterator_advance,
3445        files_reflog_iterator_peel,
3446        files_reflog_iterator_abort
3447};
3448
3449static struct ref_iterator *files_reflog_iterator_begin(struct ref_store *ref_store)
3450{
3451        struct files_ref_store *refs =
3452                files_downcast(ref_store, 0, "reflog_iterator_begin");
3453        struct files_reflog_iterator *iter = xcalloc(1, sizeof(*iter));
3454        struct ref_iterator *ref_iterator = &iter->base;
3455        struct strbuf sb = STRBUF_INIT;
3456
3457        base_ref_iterator_init(ref_iterator, &files_reflog_iterator_vtable);
3458        files_reflog_path(refs, &sb, NULL);
3459        iter->dir_iterator = dir_iterator_begin(sb.buf);
3460        strbuf_release(&sb);
3461        return ref_iterator;
3462}
3463
3464static int ref_update_reject_duplicates(struct string_list *refnames,
3465                                        struct strbuf *err)
3466{
3467        int i, n = refnames->nr;
3468
3469        assert(err);
3470
3471        for (i = 1; i < n; i++)
3472                if (!strcmp(refnames->items[i - 1].string, refnames->items[i].string)) {
3473                        strbuf_addf(err,
3474                                    "multiple updates for ref '%s' not allowed.",
3475                                    refnames->items[i].string);
3476                        return 1;
3477                }
3478        return 0;
3479}
3480
3481/*
3482 * If update is a direct update of head_ref (the reference pointed to
3483 * by HEAD), then add an extra REF_LOG_ONLY update for HEAD.
3484 */
3485static int split_head_update(struct ref_update *update,
3486                             struct ref_transaction *transaction,
3487                             const char *head_ref,
3488                             struct string_list *affected_refnames,
3489                             struct strbuf *err)
3490{
3491        struct string_list_item *item;
3492        struct ref_update *new_update;
3493
3494        if ((update->flags & REF_LOG_ONLY) ||
3495            (update->flags & REF_ISPRUNING) ||
3496            (update->flags & REF_UPDATE_VIA_HEAD))
3497                return 0;
3498
3499        if (strcmp(update->refname, head_ref))
3500                return 0;
3501
3502        /*
3503         * First make sure that HEAD is not already in the
3504         * transaction. This insertion is O(N) in the transaction
3505         * size, but it happens at most once per transaction.
3506         */
3507        item = string_list_insert(affected_refnames, "HEAD");
3508        if (item->util) {
3509                /* An entry already existed */
3510                strbuf_addf(err,
3511                            "multiple updates for 'HEAD' (including one "
3512                            "via its referent '%s') are not allowed",
3513                            update->refname);
3514                return TRANSACTION_NAME_CONFLICT;
3515        }
3516
3517        new_update = ref_transaction_add_update(
3518                        transaction, "HEAD",
3519                        update->flags | REF_LOG_ONLY | REF_NODEREF,
3520                        update->new_sha1, update->old_sha1,
3521                        update->msg);
3522
3523        item->util = new_update;
3524
3525        return 0;
3526}
3527
3528/*
3529 * update is for a symref that points at referent and doesn't have
3530 * REF_NODEREF set. Split it into two updates:
3531 * - The original update, but with REF_LOG_ONLY and REF_NODEREF set
3532 * - A new, separate update for the referent reference
3533 * Note that the new update will itself be subject to splitting when
3534 * the iteration gets to it.
3535 */
3536static int split_symref_update(struct files_ref_store *refs,
3537                               struct ref_update *update,
3538                               const char *referent,
3539                               struct ref_transaction *transaction,
3540                               struct string_list *affected_refnames,
3541                               struct strbuf *err)
3542{
3543        struct string_list_item *item;
3544        struct ref_update *new_update;
3545        unsigned int new_flags;
3546
3547        /*
3548         * First make sure that referent is not already in the
3549         * transaction. This insertion is O(N) in the transaction
3550         * size, but it happens at most once per symref in a
3551         * transaction.
3552         */
3553        item = string_list_insert(affected_refnames, referent);
3554        if (item->util) {
3555                /* An entry already existed */
3556                strbuf_addf(err,
3557                            "multiple updates for '%s' (including one "
3558                            "via symref '%s') are not allowed",
3559                            referent, update->refname);
3560                return TRANSACTION_NAME_CONFLICT;
3561        }
3562
3563        new_flags = update->flags;
3564        if (!strcmp(update->refname, "HEAD")) {
3565                /*
3566                 * Record that the new update came via HEAD, so that
3567                 * when we process it, split_head_update() doesn't try
3568                 * to add another reflog update for HEAD. Note that
3569                 * this bit will be propagated if the new_update
3570                 * itself needs to be split.
3571                 */
3572                new_flags |= REF_UPDATE_VIA_HEAD;
3573        }
3574
3575        new_update = ref_transaction_add_update(
3576                        transaction, referent, new_flags,
3577                        update->new_sha1, update->old_sha1,
3578                        update->msg);
3579
3580        new_update->parent_update = update;
3581
3582        /*
3583         * Change the symbolic ref update to log only. Also, it
3584         * doesn't need to check its old SHA-1 value, as that will be
3585         * done when new_update is processed.
3586         */
3587        update->flags |= REF_LOG_ONLY | REF_NODEREF;
3588        update->flags &= ~REF_HAVE_OLD;
3589
3590        item->util = new_update;
3591
3592        return 0;
3593}
3594
3595/*
3596 * Return the refname under which update was originally requested.
3597 */
3598static const char *original_update_refname(struct ref_update *update)
3599{
3600        while (update->parent_update)
3601                update = update->parent_update;
3602
3603        return update->refname;
3604}
3605
3606/*
3607 * Check whether the REF_HAVE_OLD and old_oid values stored in update
3608 * are consistent with oid, which is the reference's current value. If
3609 * everything is OK, return 0; otherwise, write an error message to
3610 * err and return -1.
3611 */
3612static int check_old_oid(struct ref_update *update, struct object_id *oid,
3613                         struct strbuf *err)
3614{
3615        if (!(update->flags & REF_HAVE_OLD) ||
3616                   !hashcmp(oid->hash, update->old_sha1))
3617                return 0;
3618
3619        if (is_null_sha1(update->old_sha1))
3620                strbuf_addf(err, "cannot lock ref '%s': "
3621                            "reference already exists",
3622                            original_update_refname(update));
3623        else if (is_null_oid(oid))
3624                strbuf_addf(err, "cannot lock ref '%s': "
3625                            "reference is missing but expected %s",
3626                            original_update_refname(update),
3627                            sha1_to_hex(update->old_sha1));
3628        else
3629                strbuf_addf(err, "cannot lock ref '%s': "
3630                            "is at %s but expected %s",
3631                            original_update_refname(update),
3632                            oid_to_hex(oid),
3633                            sha1_to_hex(update->old_sha1));
3634
3635        return -1;
3636}
3637
3638/*
3639 * Prepare for carrying out update:
3640 * - Lock the reference referred to by update.
3641 * - Read the reference under lock.
3642 * - Check that its old SHA-1 value (if specified) is correct, and in
3643 *   any case record it in update->lock->old_oid for later use when
3644 *   writing the reflog.
3645 * - If it is a symref update without REF_NODEREF, split it up into a
3646 *   REF_LOG_ONLY update of the symref and add a separate update for
3647 *   the referent to transaction.
3648 * - If it is an update of head_ref, add a corresponding REF_LOG_ONLY
3649 *   update of HEAD.
3650 */
3651static int lock_ref_for_update(struct files_ref_store *refs,
3652                               struct ref_update *update,
3653                               struct ref_transaction *transaction,
3654                               const char *head_ref,
3655                               struct string_list *affected_refnames,
3656                               struct strbuf *err)
3657{
3658        struct strbuf referent = STRBUF_INIT;
3659        int mustexist = (update->flags & REF_HAVE_OLD) &&
3660                !is_null_sha1(update->old_sha1);
3661        int ret;
3662        struct ref_lock *lock;
3663
3664        files_assert_main_repository(refs, "lock_ref_for_update");
3665
3666        if ((update->flags & REF_HAVE_NEW) && is_null_sha1(update->new_sha1))
3667                update->flags |= REF_DELETING;
3668
3669        if (head_ref) {
3670                ret = split_head_update(update, transaction, head_ref,
3671                                        affected_refnames, err);
3672                if (ret)
3673                        return ret;
3674        }
3675
3676        ret = lock_raw_ref(refs, update->refname, mustexist,
3677                           affected_refnames, NULL,
3678                           &lock, &referent,
3679                           &update->type, err);
3680        if (ret) {
3681                char *reason;
3682
3683                reason = strbuf_detach(err, NULL);
3684                strbuf_addf(err, "cannot lock ref '%s': %s",
3685                            original_update_refname(update), reason);
3686                free(reason);
3687                return ret;
3688        }
3689
3690        update->backend_data = lock;
3691
3692        if (update->type & REF_ISSYMREF) {
3693                if (update->flags & REF_NODEREF) {
3694                        /*
3695                         * We won't be reading the referent as part of
3696                         * the transaction, so we have to read it here
3697                         * to record and possibly check old_sha1:
3698                         */
3699                        if (read_ref_full(referent.buf, 0,
3700                                          lock->old_oid.hash, NULL)) {
3701                                if (update->flags & REF_HAVE_OLD) {
3702                                        strbuf_addf(err, "cannot lock ref '%s': "
3703                                                    "error reading reference",
3704                                                    original_update_refname(update));
3705                                        return -1;
3706                                }
3707                        } else if (check_old_oid(update, &lock->old_oid, err)) {
3708                                return TRANSACTION_GENERIC_ERROR;
3709                        }
3710                } else {
3711                        /*
3712                         * Create a new update for the reference this
3713                         * symref is pointing at. Also, we will record
3714                         * and verify old_sha1 for this update as part
3715                         * of processing the split-off update, so we
3716                         * don't have to do it here.
3717                         */
3718                        ret = split_symref_update(refs, update,
3719                                                  referent.buf, transaction,
3720                                                  affected_refnames, err);
3721                        if (ret)
3722                                return ret;
3723                }
3724        } else {
3725                struct ref_update *parent_update;
3726
3727                if (check_old_oid(update, &lock->old_oid, err))
3728                        return TRANSACTION_GENERIC_ERROR;
3729
3730                /*
3731                 * If this update is happening indirectly because of a
3732                 * symref update, record the old SHA-1 in the parent
3733                 * update:
3734                 */
3735                for (parent_update = update->parent_update;
3736                     parent_update;
3737                     parent_update = parent_update->parent_update) {
3738                        struct ref_lock *parent_lock = parent_update->backend_data;
3739                        oidcpy(&parent_lock->old_oid, &lock->old_oid);
3740                }
3741        }
3742
3743        if ((update->flags & REF_HAVE_NEW) &&
3744            !(update->flags & REF_DELETING) &&
3745            !(update->flags & REF_LOG_ONLY)) {
3746                if (!(update->type & REF_ISSYMREF) &&
3747                    !hashcmp(lock->old_oid.hash, update->new_sha1)) {
3748                        /*
3749                         * The reference already has the desired
3750                         * value, so we don't need to write it.
3751                         */
3752                } else if (write_ref_to_lockfile(lock, update->new_sha1,
3753                                                 err)) {
3754                        char *write_err = strbuf_detach(err, NULL);
3755
3756                        /*
3757                         * The lock was freed upon failure of
3758                         * write_ref_to_lockfile():
3759                         */
3760                        update->backend_data = NULL;
3761                        strbuf_addf(err,
3762                                    "cannot update ref '%s': %s",
3763                                    update->refname, write_err);
3764                        free(write_err);
3765                        return TRANSACTION_GENERIC_ERROR;
3766                } else {
3767                        update->flags |= REF_NEEDS_COMMIT;
3768                }
3769        }
3770        if (!(update->flags & REF_NEEDS_COMMIT)) {
3771                /*
3772                 * We didn't call write_ref_to_lockfile(), so
3773                 * the lockfile is still open. Close it to
3774                 * free up the file descriptor:
3775                 */
3776                if (close_ref(lock)) {
3777                        strbuf_addf(err, "couldn't close '%s.lock'",
3778                                    update->refname);
3779                        return TRANSACTION_GENERIC_ERROR;
3780                }
3781        }
3782        return 0;
3783}
3784
3785static int files_transaction_commit(struct ref_store *ref_store,
3786                                    struct ref_transaction *transaction,
3787                                    struct strbuf *err)
3788{
3789        struct files_ref_store *refs =
3790                files_downcast(ref_store, 0, "ref_transaction_commit");
3791        int ret = 0, i;
3792        struct string_list refs_to_delete = STRING_LIST_INIT_NODUP;
3793        struct string_list_item *ref_to_delete;
3794        struct string_list affected_refnames = STRING_LIST_INIT_NODUP;
3795        char *head_ref = NULL;
3796        int head_type;
3797        struct object_id head_oid;
3798        struct strbuf sb = STRBUF_INIT;
3799
3800        assert(err);
3801
3802        if (transaction->state != REF_TRANSACTION_OPEN)
3803                die("BUG: commit called for transaction that is not open");
3804
3805        if (!transaction->nr) {
3806                transaction->state = REF_TRANSACTION_CLOSED;
3807                return 0;
3808        }
3809
3810        /*
3811         * Fail if a refname appears more than once in the
3812         * transaction. (If we end up splitting up any updates using
3813         * split_symref_update() or split_head_update(), those
3814         * functions will check that the new updates don't have the
3815         * same refname as any existing ones.)
3816         */
3817        for (i = 0; i < transaction->nr; i++) {
3818                struct ref_update *update = transaction->updates[i];
3819                struct string_list_item *item =
3820                        string_list_append(&affected_refnames, update->refname);
3821
3822                /*
3823                 * We store a pointer to update in item->util, but at
3824                 * the moment we never use the value of this field
3825                 * except to check whether it is non-NULL.
3826                 */
3827                item->util = update;
3828        }
3829        string_list_sort(&affected_refnames);
3830        if (ref_update_reject_duplicates(&affected_refnames, err)) {
3831                ret = TRANSACTION_GENERIC_ERROR;
3832                goto cleanup;
3833        }
3834
3835        /*
3836         * Special hack: If a branch is updated directly and HEAD
3837         * points to it (may happen on the remote side of a push
3838         * for example) then logically the HEAD reflog should be
3839         * updated too.
3840         *
3841         * A generic solution would require reverse symref lookups,
3842         * but finding all symrefs pointing to a given branch would be
3843         * rather costly for this rare event (the direct update of a
3844         * branch) to be worth it. So let's cheat and check with HEAD
3845         * only, which should cover 99% of all usage scenarios (even
3846         * 100% of the default ones).
3847         *
3848         * So if HEAD is a symbolic reference, then record the name of
3849         * the reference that it points to. If we see an update of
3850         * head_ref within the transaction, then split_head_update()
3851         * arranges for the reflog of HEAD to be updated, too.
3852         */
3853        head_ref = resolve_refdup("HEAD", RESOLVE_REF_NO_RECURSE,
3854                                  head_oid.hash, &head_type);
3855
3856        if (head_ref && !(head_type & REF_ISSYMREF)) {
3857                free(head_ref);
3858                head_ref = NULL;
3859        }
3860
3861        /*
3862         * Acquire all locks, verify old values if provided, check
3863         * that new values are valid, and write new values to the
3864         * lockfiles, ready to be activated. Only keep one lockfile
3865         * open at a time to avoid running out of file descriptors.
3866         */
3867        for (i = 0; i < transaction->nr; i++) {
3868                struct ref_update *update = transaction->updates[i];
3869
3870                ret = lock_ref_for_update(refs, update, transaction,
3871                                          head_ref, &affected_refnames, err);
3872                if (ret)
3873                        goto cleanup;
3874        }
3875
3876        /* Perform updates first so live commits remain referenced */
3877        for (i = 0; i < transaction->nr; i++) {
3878                struct ref_update *update = transaction->updates[i];
3879                struct ref_lock *lock = update->backend_data;
3880
3881                if (update->flags & REF_NEEDS_COMMIT ||
3882                    update->flags & REF_LOG_ONLY) {
3883                        if (files_log_ref_write(refs,
3884                                                lock->ref_name,
3885                                                lock->old_oid.hash,
3886                                                update->new_sha1,
3887                                                update->msg, update->flags,
3888                                                err)) {
3889                                char *old_msg = strbuf_detach(err, NULL);
3890
3891                                strbuf_addf(err, "cannot update the ref '%s': %s",
3892                                            lock->ref_name, old_msg);
3893                                free(old_msg);
3894                                unlock_ref(lock);
3895                                update->backend_data = NULL;
3896                                ret = TRANSACTION_GENERIC_ERROR;
3897                                goto cleanup;
3898                        }
3899                }
3900                if (update->flags & REF_NEEDS_COMMIT) {
3901                        clear_loose_ref_cache(refs);
3902                        if (commit_ref(lock)) {
3903                                strbuf_addf(err, "couldn't set '%s'", lock->ref_name);
3904                                unlock_ref(lock);
3905                                update->backend_data = NULL;
3906                                ret = TRANSACTION_GENERIC_ERROR;
3907                                goto cleanup;
3908                        }
3909                }
3910        }
3911        /* Perform deletes now that updates are safely completed */
3912        for (i = 0; i < transaction->nr; i++) {
3913                struct ref_update *update = transaction->updates[i];
3914                struct ref_lock *lock = update->backend_data;
3915
3916                if (update->flags & REF_DELETING &&
3917                    !(update->flags & REF_LOG_ONLY)) {
3918                        if (!(update->type & REF_ISPACKED) ||
3919                            update->type & REF_ISSYMREF) {
3920                                /* It is a loose reference. */
3921                                strbuf_reset(&sb);
3922                                files_ref_path(refs, &sb, lock->ref_name);
3923                                if (unlink_or_msg(sb.buf, err)) {
3924                                        ret = TRANSACTION_GENERIC_ERROR;
3925                                        goto cleanup;
3926                                }
3927                                update->flags |= REF_DELETED_LOOSE;
3928                        }
3929
3930                        if (!(update->flags & REF_ISPRUNING))
3931                                string_list_append(&refs_to_delete,
3932                                                   lock->ref_name);
3933                }
3934        }
3935
3936        if (repack_without_refs(refs, &refs_to_delete, err)) {
3937                ret = TRANSACTION_GENERIC_ERROR;
3938                goto cleanup;
3939        }
3940
3941        /* Delete the reflogs of any references that were deleted: */
3942        for_each_string_list_item(ref_to_delete, &refs_to_delete) {
3943                strbuf_reset(&sb);
3944                files_reflog_path(refs, &sb, ref_to_delete->string);
3945                if (!unlink_or_warn(sb.buf))
3946                        try_remove_empty_parents(refs, ref_to_delete->string,
3947                                                 REMOVE_EMPTY_PARENTS_REFLOG);
3948        }
3949
3950        clear_loose_ref_cache(refs);
3951
3952cleanup:
3953        strbuf_release(&sb);
3954        transaction->state = REF_TRANSACTION_CLOSED;
3955
3956        for (i = 0; i < transaction->nr; i++) {
3957                struct ref_update *update = transaction->updates[i];
3958                struct ref_lock *lock = update->backend_data;
3959
3960                if (lock)
3961                        unlock_ref(lock);
3962
3963                if (update->flags & REF_DELETED_LOOSE) {
3964                        /*
3965                         * The loose reference was deleted. Delete any
3966                         * empty parent directories. (Note that this
3967                         * can only work because we have already
3968                         * removed the lockfile.)
3969                         */
3970                        try_remove_empty_parents(refs, update->refname,
3971                                                 REMOVE_EMPTY_PARENTS_REF);
3972                }
3973        }
3974
3975        string_list_clear(&refs_to_delete, 0);
3976        free(head_ref);
3977        string_list_clear(&affected_refnames, 0);
3978
3979        return ret;
3980}
3981
3982static int ref_present(const char *refname,
3983                       const struct object_id *oid, int flags, void *cb_data)
3984{
3985        struct string_list *affected_refnames = cb_data;
3986
3987        return string_list_has_string(affected_refnames, refname);
3988}
3989
3990static int files_initial_transaction_commit(struct ref_store *ref_store,
3991                                            struct ref_transaction *transaction,
3992                                            struct strbuf *err)
3993{
3994        struct files_ref_store *refs =
3995                files_downcast(ref_store, 0, "initial_ref_transaction_commit");
3996        int ret = 0, i;
3997        struct string_list affected_refnames = STRING_LIST_INIT_NODUP;
3998
3999        assert(err);
4000
4001        if (transaction->state != REF_TRANSACTION_OPEN)
4002                die("BUG: commit called for transaction that is not open");
4003
4004        /* Fail if a refname appears more than once in the transaction: */
4005        for (i = 0; i < transaction->nr; i++)
4006                string_list_append(&affected_refnames,
4007                                   transaction->updates[i]->refname);
4008        string_list_sort(&affected_refnames);
4009        if (ref_update_reject_duplicates(&affected_refnames, err)) {
4010                ret = TRANSACTION_GENERIC_ERROR;
4011                goto cleanup;
4012        }
4013
4014        /*
4015         * It's really undefined to call this function in an active
4016         * repository or when there are existing references: we are
4017         * only locking and changing packed-refs, so (1) any
4018         * simultaneous processes might try to change a reference at
4019         * the same time we do, and (2) any existing loose versions of
4020         * the references that we are setting would have precedence
4021         * over our values. But some remote helpers create the remote
4022         * "HEAD" and "master" branches before calling this function,
4023         * so here we really only check that none of the references
4024         * that we are creating already exists.
4025         */
4026        if (for_each_rawref(ref_present, &affected_refnames))
4027                die("BUG: initial ref transaction called with existing refs");
4028
4029        for (i = 0; i < transaction->nr; i++) {
4030                struct ref_update *update = transaction->updates[i];
4031
4032                if ((update->flags & REF_HAVE_OLD) &&
4033                    !is_null_sha1(update->old_sha1))
4034                        die("BUG: initial ref transaction with old_sha1 set");
4035                if (verify_refname_available(update->refname,
4036                                             &affected_refnames, NULL,
4037                                             err)) {
4038                        ret = TRANSACTION_NAME_CONFLICT;
4039                        goto cleanup;
4040                }
4041        }
4042
4043        if (lock_packed_refs(refs, 0)) {
4044                strbuf_addf(err, "unable to lock packed-refs file: %s",
4045                            strerror(errno));
4046                ret = TRANSACTION_GENERIC_ERROR;
4047                goto cleanup;
4048        }
4049
4050        for (i = 0; i < transaction->nr; i++) {
4051                struct ref_update *update = transaction->updates[i];
4052
4053                if ((update->flags & REF_HAVE_NEW) &&
4054                    !is_null_sha1(update->new_sha1))
4055                        add_packed_ref(refs, update->refname, update->new_sha1);
4056        }
4057
4058        if (commit_packed_refs(refs)) {
4059                strbuf_addf(err, "unable to commit packed-refs file: %s",
4060                            strerror(errno));
4061                ret = TRANSACTION_GENERIC_ERROR;
4062                goto cleanup;
4063        }
4064
4065cleanup:
4066        transaction->state = REF_TRANSACTION_CLOSED;
4067        string_list_clear(&affected_refnames, 0);
4068        return ret;
4069}
4070
4071struct expire_reflog_cb {
4072        unsigned int flags;
4073        reflog_expiry_should_prune_fn *should_prune_fn;
4074        void *policy_cb;
4075        FILE *newlog;
4076        struct object_id last_kept_oid;
4077};
4078
4079static int expire_reflog_ent(struct object_id *ooid, struct object_id *noid,
4080                             const char *email, unsigned long timestamp, int tz,
4081                             const char *message, void *cb_data)
4082{
4083        struct expire_reflog_cb *cb = cb_data;
4084        struct expire_reflog_policy_cb *policy_cb = cb->policy_cb;
4085
4086        if (cb->flags & EXPIRE_REFLOGS_REWRITE)
4087                ooid = &cb->last_kept_oid;
4088
4089        if ((*cb->should_prune_fn)(ooid->hash, noid->hash, email, timestamp, tz,
4090                                   message, policy_cb)) {
4091                if (!cb->newlog)
4092                        printf("would prune %s", message);
4093                else if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4094                        printf("prune %s", message);
4095        } else {
4096                if (cb->newlog) {
4097                        fprintf(cb->newlog, "%s %s %s %lu %+05d\t%s",
4098                                oid_to_hex(ooid), oid_to_hex(noid),
4099                                email, timestamp, tz, message);
4100                        oidcpy(&cb->last_kept_oid, noid);
4101                }
4102                if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4103                        printf("keep %s", message);
4104        }
4105        return 0;
4106}
4107
4108static int files_reflog_expire(struct ref_store *ref_store,
4109                               const char *refname, const unsigned char *sha1,
4110                               unsigned int flags,
4111                               reflog_expiry_prepare_fn prepare_fn,
4112                               reflog_expiry_should_prune_fn should_prune_fn,
4113                               reflog_expiry_cleanup_fn cleanup_fn,
4114                               void *policy_cb_data)
4115{
4116        struct files_ref_store *refs =
4117                files_downcast(ref_store, 0, "reflog_expire");
4118        static struct lock_file reflog_lock;
4119        struct expire_reflog_cb cb;
4120        struct ref_lock *lock;
4121        struct strbuf log_file_sb = STRBUF_INIT;
4122        char *log_file;
4123        int status = 0;
4124        int type;
4125        struct strbuf err = STRBUF_INIT;
4126
4127        memset(&cb, 0, sizeof(cb));
4128        cb.flags = flags;
4129        cb.policy_cb = policy_cb_data;
4130        cb.should_prune_fn = should_prune_fn;
4131
4132        /*
4133         * The reflog file is locked by holding the lock on the
4134         * reference itself, plus we might need to update the
4135         * reference if --updateref was specified:
4136         */
4137        lock = lock_ref_sha1_basic(refs, refname, sha1,
4138                                   NULL, NULL, REF_NODEREF,
4139                                   &type, &err);
4140        if (!lock) {
4141                error("cannot lock ref '%s': %s", refname, err.buf);
4142                strbuf_release(&err);
4143                return -1;
4144        }
4145        if (!reflog_exists(refname)) {
4146                unlock_ref(lock);
4147                return 0;
4148        }
4149
4150        files_reflog_path(refs, &log_file_sb, refname);
4151        log_file = strbuf_detach(&log_file_sb, NULL);
4152        if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4153                /*
4154                 * Even though holding $GIT_DIR/logs/$reflog.lock has
4155                 * no locking implications, we use the lock_file
4156                 * machinery here anyway because it does a lot of the
4157                 * work we need, including cleaning up if the program
4158                 * exits unexpectedly.
4159                 */
4160                if (hold_lock_file_for_update(&reflog_lock, log_file, 0) < 0) {
4161                        struct strbuf err = STRBUF_INIT;
4162                        unable_to_lock_message(log_file, errno, &err);
4163                        error("%s", err.buf);
4164                        strbuf_release(&err);
4165                        goto failure;
4166                }
4167                cb.newlog = fdopen_lock_file(&reflog_lock, "w");
4168                if (!cb.newlog) {
4169                        error("cannot fdopen %s (%s)",
4170                              get_lock_file_path(&reflog_lock), strerror(errno));
4171                        goto failure;
4172                }
4173        }
4174
4175        (*prepare_fn)(refname, sha1, cb.policy_cb);
4176        for_each_reflog_ent(refname, expire_reflog_ent, &cb);
4177        (*cleanup_fn)(cb.policy_cb);
4178
4179        if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4180                /*
4181                 * It doesn't make sense to adjust a reference pointed
4182                 * to by a symbolic ref based on expiring entries in
4183                 * the symbolic reference's reflog. Nor can we update
4184                 * a reference if there are no remaining reflog
4185                 * entries.
4186                 */
4187                int update = (flags & EXPIRE_REFLOGS_UPDATE_REF) &&
4188                        !(type & REF_ISSYMREF) &&
4189                        !is_null_oid(&cb.last_kept_oid);
4190
4191                if (close_lock_file(&reflog_lock)) {
4192                        status |= error("couldn't write %s: %s", log_file,
4193                                        strerror(errno));
4194                } else if (update &&
4195                           (write_in_full(get_lock_file_fd(lock->lk),
4196                                oid_to_hex(&cb.last_kept_oid), GIT_SHA1_HEXSZ) != GIT_SHA1_HEXSZ ||
4197                            write_str_in_full(get_lock_file_fd(lock->lk), "\n") != 1 ||
4198                            close_ref(lock) < 0)) {
4199                        status |= error("couldn't write %s",
4200                                        get_lock_file_path(lock->lk));
4201                        rollback_lock_file(&reflog_lock);
4202                } else if (commit_lock_file(&reflog_lock)) {
4203                        status |= error("unable to write reflog '%s' (%s)",
4204                                        log_file, strerror(errno));
4205                } else if (update && commit_ref(lock)) {
4206                        status |= error("couldn't set %s", lock->ref_name);
4207                }
4208        }
4209        free(log_file);
4210        unlock_ref(lock);
4211        return status;
4212
4213 failure:
4214        rollback_lock_file(&reflog_lock);
4215        free(log_file);
4216        unlock_ref(lock);
4217        return -1;
4218}
4219
4220static int files_init_db(struct ref_store *ref_store, struct strbuf *err)
4221{
4222        struct files_ref_store *refs =
4223                files_downcast(ref_store, 0, "init_db");
4224        struct strbuf sb = STRBUF_INIT;
4225
4226        /*
4227         * Create .git/refs/{heads,tags}
4228         */
4229        files_ref_path(refs, &sb, "refs/heads");
4230        safe_create_dir(sb.buf, 1);
4231
4232        strbuf_reset(&sb);
4233        files_ref_path(refs, &sb, "refs/tags");
4234        safe_create_dir(sb.buf, 1);
4235
4236        strbuf_release(&sb);
4237        return 0;
4238}
4239
4240struct ref_storage_be refs_be_files = {
4241        NULL,
4242        "files",
4243        files_ref_store_create,
4244        files_init_db,
4245        files_transaction_commit,
4246        files_initial_transaction_commit,
4247
4248        files_pack_refs,
4249        files_peel_ref,
4250        files_create_symref,
4251        files_delete_refs,
4252        files_rename_ref,
4253
4254        files_ref_iterator_begin,
4255        files_read_raw_ref,
4256        files_verify_refname_available,
4257
4258        files_reflog_iterator_begin,
4259        files_for_each_reflog_ent,
4260        files_for_each_reflog_ent_reverse,
4261        files_reflog_exists,
4262        files_create_reflog,
4263        files_delete_reflog,
4264        files_reflog_expire
4265};