1#ifndef REFS_REFS_INTERNAL_H 2#define REFS_REFS_INTERNAL_H 3 4/* 5 * Data structures and functions for the internal use of the refs 6 * module. Code outside of the refs module should use only the public 7 * functions defined in "refs.h", and should *not* include this file. 8 */ 9 10/* 11 * Flag passed to lock_ref_sha1_basic() telling it to tolerate broken 12 * refs (i.e., because the reference is about to be deleted anyway). 13 */ 14#define REF_DELETING 0x02 15 16/* 17 * Used as a flag in ref_update::flags when a loose ref is being 18 * pruned. This flag must only be used when REF_NODEREF is set. 19 */ 20#define REF_ISPRUNING 0x04 21 22/* 23 * Used as a flag in ref_update::flags when the reference should be 24 * updated to new_sha1. 25 */ 26#define REF_HAVE_NEW 0x08 27 28/* 29 * Used as a flag in ref_update::flags when old_sha1 should be 30 * checked. 31 */ 32#define REF_HAVE_OLD 0x10 33 34/* 35 * Used as a flag in ref_update::flags when the lockfile needs to be 36 * committed. 37 */ 38#define REF_NEEDS_COMMIT 0x20 39 40/* 41 * 0x40 is REF_FORCE_CREATE_REFLOG, so skip it if you're adding a 42 * value to ref_update::flags 43 */ 44 45/* 46 * Used as a flag in ref_update::flags when we want to log a ref 47 * update but not actually perform it. This is used when a symbolic 48 * ref update is split up. 49 */ 50#define REF_LOG_ONLY 0x80 51 52/* 53 * Internal flag, meaning that the containing ref_update was via an 54 * update to HEAD. 55 */ 56#define REF_UPDATE_VIA_HEAD 0x100 57 58/* 59 * Used as a flag in ref_update::flags when the loose reference has 60 * been deleted. 61 */ 62#define REF_DELETED_LOOSE 0x200 63 64/* 65 * Return true iff refname is minimally safe. "Safe" here means that 66 * deleting a loose reference by this name will not do any damage, for 67 * example by causing a file that is not a reference to be deleted. 68 * This function does not check that the reference name is legal; for 69 * that, use check_refname_format(). 70 * 71 * A refname that starts with "refs/" is considered safe iff it 72 * doesn't contain any "." or ".." components or consecutive '/' 73 * characters, end with '/', or (on Windows) contain any '\' 74 * characters. Names that do not start with "refs/" are considered 75 * safe iff they consist entirely of upper case characters and '_' 76 * (like "HEAD" and "MERGE_HEAD" but not "config" or "FOO/BAR"). 77 */ 78int refname_is_safe(const char *refname); 79 80enum peel_status { 81 /* object was peeled successfully: */ 82 PEEL_PEELED = 0, 83 84 /* 85 * object cannot be peeled because the named object (or an 86 * object referred to by a tag in the peel chain), does not 87 * exist. 88 */ 89 PEEL_INVALID = -1, 90 91 /* object cannot be peeled because it is not a tag: */ 92 PEEL_NON_TAG = -2, 93 94 /* ref_entry contains no peeled value because it is a symref: */ 95 PEEL_IS_SYMREF = -3, 96 97 /* 98 * ref_entry cannot be peeled because it is broken (i.e., the 99 * symbolic reference cannot even be resolved to an object 100 * name): 101 */ 102 PEEL_BROKEN = -4 103}; 104 105/* 106 * Peel the named object; i.e., if the object is a tag, resolve the 107 * tag recursively until a non-tag is found. If successful, store the 108 * result to sha1 and return PEEL_PEELED. If the object is not a tag 109 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively, 110 * and leave sha1 unchanged. 111 */ 112enum peel_status peel_object(const unsigned char *name, unsigned char *sha1); 113 114/* 115 * Copy the reflog message msg to buf, which has been allocated sufficiently 116 * large, while cleaning up the whitespaces. Especially, convert LF to space, 117 * because reflog file is one line per entry. 118 */ 119int copy_reflog_msg(char *buf, const char *msg); 120 121/** 122 * Information needed for a single ref update. Set new_sha1 to the new 123 * value or to null_sha1 to delete the ref. To check the old value 124 * while the ref is locked, set (flags & REF_HAVE_OLD) and set 125 * old_sha1 to the old value, or to null_sha1 to ensure the ref does 126 * not exist before update. 127 */ 128struct ref_update { 129 130 /* 131 * If (flags & REF_HAVE_NEW), set the reference to this value: 132 */ 133 struct object_id new_oid; 134 135 /* 136 * If (flags & REF_HAVE_OLD), check that the reference 137 * previously had this value: 138 */ 139 struct object_id old_oid; 140 141 /* 142 * One or more of REF_HAVE_NEW, REF_HAVE_OLD, REF_NODEREF, 143 * REF_DELETING, REF_ISPRUNING, REF_LOG_ONLY, 144 * REF_UPDATE_VIA_HEAD, REF_NEEDS_COMMIT, and 145 * REF_DELETED_LOOSE: 146 */ 147 unsigned int flags; 148 149 void *backend_data; 150 unsigned int type; 151 char *msg; 152 153 /* 154 * If this ref_update was split off of a symref update via 155 * split_symref_update(), then this member points at that 156 * update. This is used for two purposes: 157 * 1. When reporting errors, we report the refname under which 158 * the update was originally requested. 159 * 2. When we read the old value of this reference, we 160 * propagate it back to its parent update for recording in 161 * the latter's reflog. 162 */ 163 struct ref_update *parent_update; 164 165 const char refname[FLEX_ARRAY]; 166}; 167 168int refs_read_raw_ref(struct ref_store *ref_store, 169 const char *refname, unsigned char *sha1, 170 struct strbuf *referent, unsigned int *type); 171 172/* 173 * Add a ref_update with the specified properties to transaction, and 174 * return a pointer to the new object. This function does not verify 175 * that refname is well-formed. new_sha1 and old_sha1 are only 176 * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits, 177 * respectively, are set in flags. 178 */ 179struct ref_update *ref_transaction_add_update( 180 struct ref_transaction *transaction, 181 const char *refname, unsigned int flags, 182 const unsigned char *new_sha1, 183 const unsigned char *old_sha1, 184 const char *msg); 185 186/* 187 * Transaction states. 188 * 189 * OPEN: The transaction is initialized and new updates can still be 190 * added to it. An OPEN transaction can be prepared, 191 * committed, freed, or aborted (freeing and aborting an open 192 * transaction are equivalent). 193 * 194 * PREPARED: ref_transaction_prepare(), which locks all of the 195 * references involved in the update and checks that the 196 * update has no errors, has been called successfully for the 197 * transaction. A PREPARED transaction can be committed or 198 * aborted. 199 * 200 * CLOSED: The transaction is no longer active. A transaction becomes 201 * CLOSED if there is a failure while building the transaction 202 * or if a transaction is committed or aborted. A CLOSED 203 * transaction can only be freed. 204 */ 205enum ref_transaction_state { 206 REF_TRANSACTION_OPEN = 0, 207 REF_TRANSACTION_PREPARED = 1, 208 REF_TRANSACTION_CLOSED = 2 209}; 210 211/* 212 * Data structure for holding a reference transaction, which can 213 * consist of checks and updates to multiple references, carried out 214 * as atomically as possible. This structure is opaque to callers. 215 */ 216struct ref_transaction { 217 struct ref_store *ref_store; 218 struct ref_update **updates; 219 size_t alloc; 220 size_t nr; 221 enum ref_transaction_state state; 222}; 223 224/* 225 * Check for entries in extras that are within the specified 226 * directory, where dirname is a reference directory name including 227 * the trailing slash (e.g., "refs/heads/foo/"). Ignore any 228 * conflicting references that are found in skip. If there is a 229 * conflicting reference, return its name. 230 * 231 * extras and skip must be sorted lists of reference names. Either one 232 * can be NULL, signifying the empty list. 233 */ 234const char *find_descendant_ref(const char *dirname, 235 const struct string_list *extras, 236 const struct string_list *skip); 237 238/* 239 * Check whether an attempt to rename old_refname to new_refname would 240 * cause a D/F conflict with any existing reference (other than 241 * possibly old_refname). If there would be a conflict, emit an error 242 * message and return false; otherwise, return true. 243 * 244 * Note that this function is not safe against all races with other 245 * processes (though rename_ref() catches some races that might get by 246 * this check). 247 */ 248int refs_rename_ref_available(struct ref_store *refs, 249 const char *old_refname, 250 const char *new_refname); 251 252/* We allow "recursive" symbolic refs. Only within reason, though */ 253#define SYMREF_MAXDEPTH 5 254 255/* Include broken references in a do_for_each_ref*() iteration: */ 256#define DO_FOR_EACH_INCLUDE_BROKEN 0x01 257 258/* 259 * Reference iterators 260 * 261 * A reference iterator encapsulates the state of an in-progress 262 * iteration over references. Create an instance of `struct 263 * ref_iterator` via one of the functions in this module. 264 * 265 * A freshly-created ref_iterator doesn't yet point at a reference. To 266 * advance the iterator, call ref_iterator_advance(). If successful, 267 * this sets the iterator's refname, oid, and flags fields to describe 268 * the next reference and returns ITER_OK. The data pointed at by 269 * refname and oid belong to the iterator; if you want to retain them 270 * after calling ref_iterator_advance() again or calling 271 * ref_iterator_abort(), you must make a copy. When the iteration has 272 * been exhausted, ref_iterator_advance() releases any resources 273 * assocated with the iteration, frees the ref_iterator object, and 274 * returns ITER_DONE. If you want to abort the iteration early, call 275 * ref_iterator_abort(), which also frees the ref_iterator object and 276 * any associated resources. If there was an internal error advancing 277 * to the next entry, ref_iterator_advance() aborts the iteration, 278 * frees the ref_iterator, and returns ITER_ERROR. 279 * 280 * The reference currently being looked at can be peeled by calling 281 * ref_iterator_peel(). This function is often faster than peel_ref(), 282 * so it should be preferred when iterating over references. 283 * 284 * Putting it all together, a typical iteration looks like this: 285 * 286 * int ok; 287 * struct ref_iterator *iter = ...; 288 * 289 * while ((ok = ref_iterator_advance(iter)) == ITER_OK) { 290 * if (want_to_stop_iteration()) { 291 * ok = ref_iterator_abort(iter); 292 * break; 293 * } 294 * 295 * // Access information about the current reference: 296 * if (!(iter->flags & REF_ISSYMREF)) 297 * printf("%s is %s\n", iter->refname, oid_to_hex(&iter->oid)); 298 * 299 * // If you need to peel the reference: 300 * ref_iterator_peel(iter, &oid); 301 * } 302 * 303 * if (ok != ITER_DONE) 304 * handle_error(); 305 */ 306struct ref_iterator { 307 struct ref_iterator_vtable *vtable; 308 const char *refname; 309 const struct object_id *oid; 310 unsigned int flags; 311}; 312 313/* 314 * Advance the iterator to the first or next item and return ITER_OK. 315 * If the iteration is exhausted, free the resources associated with 316 * the ref_iterator and return ITER_DONE. On errors, free the iterator 317 * resources and return ITER_ERROR. It is a bug to use ref_iterator or 318 * call this function again after it has returned ITER_DONE or 319 * ITER_ERROR. 320 */ 321int ref_iterator_advance(struct ref_iterator *ref_iterator); 322 323/* 324 * If possible, peel the reference currently being viewed by the 325 * iterator. Return 0 on success. 326 */ 327int ref_iterator_peel(struct ref_iterator *ref_iterator, 328 struct object_id *peeled); 329 330/* 331 * End the iteration before it has been exhausted, freeing the 332 * reference iterator and any associated resources and returning 333 * ITER_DONE. If the abort itself failed, return ITER_ERROR. 334 */ 335int ref_iterator_abort(struct ref_iterator *ref_iterator); 336 337/* 338 * An iterator over nothing (its first ref_iterator_advance() call 339 * returns ITER_DONE). 340 */ 341struct ref_iterator *empty_ref_iterator_begin(void); 342 343/* 344 * Return true iff ref_iterator is an empty_ref_iterator. 345 */ 346int is_empty_ref_iterator(struct ref_iterator *ref_iterator); 347 348/* 349 * Return an iterator that goes over each reference in `refs` for 350 * which the refname begins with prefix. If trim is non-zero, then 351 * trim that many characters off the beginning of each refname. flags 352 * can be DO_FOR_EACH_INCLUDE_BROKEN to include broken references in 353 * the iteration. 354 */ 355struct ref_iterator *refs_ref_iterator_begin( 356 struct ref_store *refs, 357 const char *prefix, int trim, int flags); 358 359/* 360 * A callback function used to instruct merge_ref_iterator how to 361 * interleave the entries from iter0 and iter1. The function should 362 * return one of the constants defined in enum iterator_selection. It 363 * must not advance either of the iterators itself. 364 * 365 * The function must be prepared to handle the case that iter0 and/or 366 * iter1 is NULL, which indicates that the corresponding sub-iterator 367 * has been exhausted. Its return value must be consistent with the 368 * current states of the iterators; e.g., it must not return 369 * ITER_SKIP_1 if iter1 has already been exhausted. 370 */ 371typedef enum iterator_selection ref_iterator_select_fn( 372 struct ref_iterator *iter0, struct ref_iterator *iter1, 373 void *cb_data); 374 375/* 376 * Iterate over the entries from iter0 and iter1, with the values 377 * interleaved as directed by the select function. The iterator takes 378 * ownership of iter0 and iter1 and frees them when the iteration is 379 * over. 380 */ 381struct ref_iterator *merge_ref_iterator_begin( 382 struct ref_iterator *iter0, struct ref_iterator *iter1, 383 ref_iterator_select_fn *select, void *cb_data); 384 385/* 386 * An iterator consisting of the union of the entries from front and 387 * back. If there are entries common to the two sub-iterators, use the 388 * one from front. Each iterator must iterate over its entries in 389 * strcmp() order by refname for this to work. 390 * 391 * The new iterator takes ownership of its arguments and frees them 392 * when the iteration is over. As a convenience to callers, if front 393 * or back is an empty_ref_iterator, then abort that one immediately 394 * and return the other iterator directly, without wrapping it. 395 */ 396struct ref_iterator *overlay_ref_iterator_begin( 397 struct ref_iterator *front, struct ref_iterator *back); 398 399/* 400 * Wrap iter0, only letting through the references whose names start 401 * with prefix. If trim is set, set iter->refname to the name of the 402 * reference with that many characters trimmed off the front; 403 * otherwise set it to the full refname. The new iterator takes over 404 * ownership of iter0 and frees it when iteration is over. It makes 405 * its own copy of prefix. 406 * 407 * As an convenience to callers, if prefix is the empty string and 408 * trim is zero, this function returns iter0 directly, without 409 * wrapping it. 410 */ 411struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0, 412 const char *prefix, 413 int trim); 414 415/* Internal implementation of reference iteration: */ 416 417/* 418 * Base class constructor for ref_iterators. Initialize the 419 * ref_iterator part of iter, setting its vtable pointer as specified. 420 * This is meant to be called only by the initializers of derived 421 * classes. 422 */ 423void base_ref_iterator_init(struct ref_iterator *iter, 424 struct ref_iterator_vtable *vtable); 425 426/* 427 * Base class destructor for ref_iterators. Destroy the ref_iterator 428 * part of iter and shallow-free the object. This is meant to be 429 * called only by the destructors of derived classes. 430 */ 431void base_ref_iterator_free(struct ref_iterator *iter); 432 433/* Virtual function declarations for ref_iterators: */ 434 435typedef int ref_iterator_advance_fn(struct ref_iterator *ref_iterator); 436 437typedef int ref_iterator_peel_fn(struct ref_iterator *ref_iterator, 438 struct object_id *peeled); 439 440/* 441 * Implementations of this function should free any resources specific 442 * to the derived class, then call base_ref_iterator_free() to clean 443 * up and free the ref_iterator object. 444 */ 445typedef int ref_iterator_abort_fn(struct ref_iterator *ref_iterator); 446 447struct ref_iterator_vtable { 448 ref_iterator_advance_fn *advance; 449 ref_iterator_peel_fn *peel; 450 ref_iterator_abort_fn *abort; 451}; 452 453/* 454 * current_ref_iter is a performance hack: when iterating over 455 * references using the for_each_ref*() functions, current_ref_iter is 456 * set to the reference iterator before calling the callback function. 457 * If the callback function calls peel_ref(), then peel_ref() first 458 * checks whether the reference to be peeled is the one referred to by 459 * the iterator (it usually is) and if so, asks the iterator for the 460 * peeled version of the reference if it is available. This avoids a 461 * refname lookup in a common case. current_ref_iter is set to NULL 462 * when the iteration is over. 463 */ 464extern struct ref_iterator *current_ref_iter; 465 466/* 467 * The common backend for the for_each_*ref* functions. Call fn for 468 * each reference in iter. If the iterator itself ever returns 469 * ITER_ERROR, return -1. If fn ever returns a non-zero value, stop 470 * the iteration and return that value. Otherwise, return 0. In any 471 * case, free the iterator when done. This function is basically an 472 * adapter between the callback style of reference iteration and the 473 * iterator style. 474 */ 475int do_for_each_ref_iterator(struct ref_iterator *iter, 476 each_ref_fn fn, void *cb_data); 477 478/* 479 * Only include per-worktree refs in a do_for_each_ref*() iteration. 480 * Normally this will be used with a files ref_store, since that's 481 * where all reference backends will presumably store their 482 * per-worktree refs. 483 */ 484#define DO_FOR_EACH_PER_WORKTREE_ONLY 0x02 485 486struct ref_store; 487 488/* refs backends */ 489 490/* ref_store_init flags */ 491#define REF_STORE_READ (1 << 0) 492#define REF_STORE_WRITE (1 << 1) /* can perform update operations */ 493#define REF_STORE_ODB (1 << 2) /* has access to object database */ 494#define REF_STORE_MAIN (1 << 3) 495#define REF_STORE_ALL_CAPS (REF_STORE_READ | \ 496 REF_STORE_WRITE | \ 497 REF_STORE_ODB | \ 498 REF_STORE_MAIN) 499 500/* 501 * Initialize the ref_store for the specified gitdir. These functions 502 * should call base_ref_store_init() to initialize the shared part of 503 * the ref_store and to record the ref_store for later lookup. 504 */ 505typedef struct ref_store *ref_store_init_fn(const char *gitdir, 506 unsigned int flags); 507 508typedef int ref_init_db_fn(struct ref_store *refs, struct strbuf *err); 509 510typedef int ref_transaction_prepare_fn(struct ref_store *refs, 511 struct ref_transaction *transaction, 512 struct strbuf *err); 513 514typedef int ref_transaction_finish_fn(struct ref_store *refs, 515 struct ref_transaction *transaction, 516 struct strbuf *err); 517 518typedef int ref_transaction_abort_fn(struct ref_store *refs, 519 struct ref_transaction *transaction, 520 struct strbuf *err); 521 522typedef int ref_transaction_commit_fn(struct ref_store *refs, 523 struct ref_transaction *transaction, 524 struct strbuf *err); 525 526typedef int pack_refs_fn(struct ref_store *ref_store, unsigned int flags); 527typedef int peel_ref_fn(struct ref_store *ref_store, 528 const char *refname, unsigned char *sha1); 529typedef int create_symref_fn(struct ref_store *ref_store, 530 const char *ref_target, 531 const char *refs_heads_master, 532 const char *logmsg); 533typedef int delete_refs_fn(struct ref_store *ref_store, const char *msg, 534 struct string_list *refnames, unsigned int flags); 535typedef int rename_ref_fn(struct ref_store *ref_store, 536 const char *oldref, const char *newref, 537 const char *logmsg); 538 539/* 540 * Iterate over the references in `ref_store` whose names start with 541 * `prefix`. `prefix` is matched as a literal string, without regard 542 * for path separators. If prefix is NULL or the empty string, iterate 543 * over all references in `ref_store`. 544 */ 545typedef struct ref_iterator *ref_iterator_begin_fn( 546 struct ref_store *ref_store, 547 const char *prefix, unsigned int flags); 548 549/* reflog functions */ 550 551/* 552 * Iterate over the references in the specified ref_store that have a 553 * reflog. The refs are iterated over in arbitrary order. 554 */ 555typedef struct ref_iterator *reflog_iterator_begin_fn( 556 struct ref_store *ref_store); 557 558typedef int for_each_reflog_ent_fn(struct ref_store *ref_store, 559 const char *refname, 560 each_reflog_ent_fn fn, 561 void *cb_data); 562typedef int for_each_reflog_ent_reverse_fn(struct ref_store *ref_store, 563 const char *refname, 564 each_reflog_ent_fn fn, 565 void *cb_data); 566typedef int reflog_exists_fn(struct ref_store *ref_store, const char *refname); 567typedef int create_reflog_fn(struct ref_store *ref_store, const char *refname, 568 int force_create, struct strbuf *err); 569typedef int delete_reflog_fn(struct ref_store *ref_store, const char *refname); 570typedef int reflog_expire_fn(struct ref_store *ref_store, 571 const char *refname, const unsigned char *sha1, 572 unsigned int flags, 573 reflog_expiry_prepare_fn prepare_fn, 574 reflog_expiry_should_prune_fn should_prune_fn, 575 reflog_expiry_cleanup_fn cleanup_fn, 576 void *policy_cb_data); 577 578/* 579 * Read a reference from the specified reference store, non-recursively. 580 * Set type to describe the reference, and: 581 * 582 * - If refname is the name of a normal reference, fill in sha1 583 * (leaving referent unchanged). 584 * 585 * - If refname is the name of a symbolic reference, write the full 586 * name of the reference to which it refers (e.g. 587 * "refs/heads/master") to referent and set the REF_ISSYMREF bit in 588 * type (leaving sha1 unchanged). The caller is responsible for 589 * validating that referent is a valid reference name. 590 * 591 * WARNING: refname might be used as part of a filename, so it is 592 * important from a security standpoint that it be safe in the sense 593 * of refname_is_safe(). Moreover, for symrefs this function sets 594 * referent to whatever the repository says, which might not be a 595 * properly-formatted or even safe reference name. NEITHER INPUT NOR 596 * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION. 597 * 598 * Return 0 on success. If the ref doesn't exist, set errno to ENOENT 599 * and return -1. If the ref exists but is neither a symbolic ref nor 600 * a sha1, it is broken; set REF_ISBROKEN in type, set errno to 601 * EINVAL, and return -1. If there is another error reading the ref, 602 * set errno appropriately and return -1. 603 * 604 * Backend-specific flags might be set in type as well, regardless of 605 * outcome. 606 * 607 * It is OK for refname to point into referent. If so: 608 * 609 * - if the function succeeds with REF_ISSYMREF, referent will be 610 * overwritten and the memory formerly pointed to by it might be 611 * changed or even freed. 612 * 613 * - in all other cases, referent will be untouched, and therefore 614 * refname will still be valid and unchanged. 615 */ 616typedef int read_raw_ref_fn(struct ref_store *ref_store, 617 const char *refname, unsigned char *sha1, 618 struct strbuf *referent, unsigned int *type); 619 620struct ref_storage_be { 621 struct ref_storage_be *next; 622 const char *name; 623 ref_store_init_fn *init; 624 ref_init_db_fn *init_db; 625 626 ref_transaction_prepare_fn *transaction_prepare; 627 ref_transaction_finish_fn *transaction_finish; 628 ref_transaction_abort_fn *transaction_abort; 629 ref_transaction_commit_fn *initial_transaction_commit; 630 631 pack_refs_fn *pack_refs; 632 peel_ref_fn *peel_ref; 633 create_symref_fn *create_symref; 634 delete_refs_fn *delete_refs; 635 rename_ref_fn *rename_ref; 636 637 ref_iterator_begin_fn *iterator_begin; 638 read_raw_ref_fn *read_raw_ref; 639 640 reflog_iterator_begin_fn *reflog_iterator_begin; 641 for_each_reflog_ent_fn *for_each_reflog_ent; 642 for_each_reflog_ent_reverse_fn *for_each_reflog_ent_reverse; 643 reflog_exists_fn *reflog_exists; 644 create_reflog_fn *create_reflog; 645 delete_reflog_fn *delete_reflog; 646 reflog_expire_fn *reflog_expire; 647}; 648 649extern struct ref_storage_be refs_be_files; 650 651/* 652 * A representation of the reference store for the main repository or 653 * a submodule. The ref_store instances for submodules are kept in a 654 * linked list. 655 */ 656struct ref_store { 657 /* The backend describing this ref_store's storage scheme: */ 658 const struct ref_storage_be *be; 659}; 660 661/* 662 * Fill in the generic part of refs and add it to our collection of 663 * reference stores. 664 */ 665void base_ref_store_init(struct ref_store *refs, 666 const struct ref_storage_be *be); 667 668#endif /* REFS_REFS_INTERNAL_H */