1#ifndef REFS_REFS_INTERNAL_H 2#define REFS_REFS_INTERNAL_H 3 4/* 5 * Data structures and functions for the internal use of the refs 6 * module. Code outside of the refs module should use only the public 7 * functions defined in "refs.h", and should *not* include this file. 8 */ 9 10/* 11 * Flag passed to lock_ref_sha1_basic() telling it to tolerate broken 12 * refs (i.e., because the reference is about to be deleted anyway). 13 */ 14#define REF_DELETING 0x02 15 16/* 17 * Used as a flag in ref_update::flags when a loose ref is being 18 * pruned. This flag must only be used when REF_NODEREF is set. 19 */ 20#define REF_ISPRUNING 0x04 21 22/* 23 * Used as a flag in ref_update::flags when the reference should be 24 * updated to new_sha1. 25 */ 26#define REF_HAVE_NEW 0x08 27 28/* 29 * Used as a flag in ref_update::flags when old_sha1 should be 30 * checked. 31 */ 32#define REF_HAVE_OLD 0x10 33 34/* 35 * Used as a flag in ref_update::flags when the lockfile needs to be 36 * committed. 37 */ 38#define REF_NEEDS_COMMIT 0x20 39 40/* 41 * 0x40 is REF_FORCE_CREATE_REFLOG, so skip it if you're adding a 42 * value to ref_update::flags 43 */ 44 45/* 46 * Used as a flag in ref_update::flags when we want to log a ref 47 * update but not actually perform it. This is used when a symbolic 48 * ref update is split up. 49 */ 50#define REF_LOG_ONLY 0x80 51 52/* 53 * Internal flag, meaning that the containing ref_update was via an 54 * update to HEAD. 55 */ 56#define REF_UPDATE_VIA_HEAD 0x100 57 58/* 59 * Used as a flag in ref_update::flags when the loose reference has 60 * been deleted. 61 */ 62#define REF_DELETED_LOOSE 0x200 63 64/* 65 * Return true iff refname is minimally safe. "Safe" here means that 66 * deleting a loose reference by this name will not do any damage, for 67 * example by causing a file that is not a reference to be deleted. 68 * This function does not check that the reference name is legal; for 69 * that, use check_refname_format(). 70 * 71 * A refname that starts with "refs/" is considered safe iff it 72 * doesn't contain any "." or ".." components or consecutive '/' 73 * characters, end with '/', or (on Windows) contain any '\' 74 * characters. Names that do not start with "refs/" are considered 75 * safe iff they consist entirely of upper case characters and '_' 76 * (like "HEAD" and "MERGE_HEAD" but not "config" or "FOO/BAR"). 77 */ 78int refname_is_safe(const char *refname); 79 80enum peel_status { 81 /* object was peeled successfully: */ 82 PEEL_PEELED = 0, 83 84 /* 85 * object cannot be peeled because the named object (or an 86 * object referred to by a tag in the peel chain), does not 87 * exist. 88 */ 89 PEEL_INVALID = -1, 90 91 /* object cannot be peeled because it is not a tag: */ 92 PEEL_NON_TAG = -2, 93 94 /* ref_entry contains no peeled value because it is a symref: */ 95 PEEL_IS_SYMREF = -3, 96 97 /* 98 * ref_entry cannot be peeled because it is broken (i.e., the 99 * symbolic reference cannot even be resolved to an object 100 * name): 101 */ 102 PEEL_BROKEN = -4 103}; 104 105/* 106 * Peel the named object; i.e., if the object is a tag, resolve the 107 * tag recursively until a non-tag is found. If successful, store the 108 * result to sha1 and return PEEL_PEELED. If the object is not a tag 109 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively, 110 * and leave sha1 unchanged. 111 */ 112enum peel_status peel_object(const unsigned char *name, unsigned char *sha1); 113 114/* 115 * Copy the reflog message msg to buf, which has been allocated sufficiently 116 * large, while cleaning up the whitespaces. Especially, convert LF to space, 117 * because reflog file is one line per entry. 118 */ 119int copy_reflog_msg(char *buf, const char *msg); 120 121/** 122 * Information needed for a single ref update. Set new_sha1 to the new 123 * value or to null_sha1 to delete the ref. To check the old value 124 * while the ref is locked, set (flags & REF_HAVE_OLD) and set 125 * old_sha1 to the old value, or to null_sha1 to ensure the ref does 126 * not exist before update. 127 */ 128struct ref_update { 129 130 /* 131 * If (flags & REF_HAVE_NEW), set the reference to this value: 132 */ 133 unsigned char new_sha1[20]; 134 135 /* 136 * If (flags & REF_HAVE_OLD), check that the reference 137 * previously had this value: 138 */ 139 unsigned char old_sha1[20]; 140 141 /* 142 * One or more of REF_HAVE_NEW, REF_HAVE_OLD, REF_NODEREF, 143 * REF_DELETING, REF_ISPRUNING, REF_LOG_ONLY, 144 * REF_UPDATE_VIA_HEAD, REF_NEEDS_COMMIT, and 145 * REF_DELETED_LOOSE: 146 */ 147 unsigned int flags; 148 149 void *backend_data; 150 unsigned int type; 151 char *msg; 152 153 /* 154 * If this ref_update was split off of a symref update via 155 * split_symref_update(), then this member points at that 156 * update. This is used for two purposes: 157 * 1. When reporting errors, we report the refname under which 158 * the update was originally requested. 159 * 2. When we read the old value of this reference, we 160 * propagate it back to its parent update for recording in 161 * the latter's reflog. 162 */ 163 struct ref_update *parent_update; 164 165 const char refname[FLEX_ARRAY]; 166}; 167 168int refs_read_raw_ref(struct ref_store *ref_store, 169 const char *refname, unsigned char *sha1, 170 struct strbuf *referent, unsigned int *type); 171 172/* 173 * Add a ref_update with the specified properties to transaction, and 174 * return a pointer to the new object. This function does not verify 175 * that refname is well-formed. new_sha1 and old_sha1 are only 176 * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits, 177 * respectively, are set in flags. 178 */ 179struct ref_update *ref_transaction_add_update( 180 struct ref_transaction *transaction, 181 const char *refname, unsigned int flags, 182 const unsigned char *new_sha1, 183 const unsigned char *old_sha1, 184 const char *msg); 185 186/* 187 * Transaction states. 188 * OPEN: The transaction is in a valid state and can accept new updates. 189 * An OPEN transaction can be committed. 190 * CLOSED: A closed transaction is no longer active and no other operations 191 * than free can be used on it in this state. 192 * A transaction can either become closed by successfully committing 193 * an active transaction or if there is a failure while building 194 * the transaction thus rendering it failed/inactive. 195 */ 196enum ref_transaction_state { 197 REF_TRANSACTION_OPEN = 0, 198 REF_TRANSACTION_CLOSED = 1 199}; 200 201/* 202 * Data structure for holding a reference transaction, which can 203 * consist of checks and updates to multiple references, carried out 204 * as atomically as possible. This structure is opaque to callers. 205 */ 206struct ref_transaction { 207 struct ref_store *ref_store; 208 struct ref_update **updates; 209 size_t alloc; 210 size_t nr; 211 enum ref_transaction_state state; 212}; 213 214/* 215 * Check for entries in extras that are within the specified 216 * directory, where dirname is a reference directory name including 217 * the trailing slash (e.g., "refs/heads/foo/"). Ignore any 218 * conflicting references that are found in skip. If there is a 219 * conflicting reference, return its name. 220 * 221 * extras and skip must be sorted lists of reference names. Either one 222 * can be NULL, signifying the empty list. 223 */ 224const char *find_descendant_ref(const char *dirname, 225 const struct string_list *extras, 226 const struct string_list *skip); 227 228/* 229 * Check whether an attempt to rename old_refname to new_refname would 230 * cause a D/F conflict with any existing reference (other than 231 * possibly old_refname). If there would be a conflict, emit an error 232 * message and return false; otherwise, return true. 233 * 234 * Note that this function is not safe against all races with other 235 * processes (though rename_ref() catches some races that might get by 236 * this check). 237 */ 238int refs_rename_ref_available(struct ref_store *refs, 239 const char *old_refname, 240 const char *new_refname); 241 242/* We allow "recursive" symbolic refs. Only within reason, though */ 243#define SYMREF_MAXDEPTH 5 244 245/* Include broken references in a do_for_each_ref*() iteration: */ 246#define DO_FOR_EACH_INCLUDE_BROKEN 0x01 247 248/* 249 * Reference iterators 250 * 251 * A reference iterator encapsulates the state of an in-progress 252 * iteration over references. Create an instance of `struct 253 * ref_iterator` via one of the functions in this module. 254 * 255 * A freshly-created ref_iterator doesn't yet point at a reference. To 256 * advance the iterator, call ref_iterator_advance(). If successful, 257 * this sets the iterator's refname, oid, and flags fields to describe 258 * the next reference and returns ITER_OK. The data pointed at by 259 * refname and oid belong to the iterator; if you want to retain them 260 * after calling ref_iterator_advance() again or calling 261 * ref_iterator_abort(), you must make a copy. When the iteration has 262 * been exhausted, ref_iterator_advance() releases any resources 263 * assocated with the iteration, frees the ref_iterator object, and 264 * returns ITER_DONE. If you want to abort the iteration early, call 265 * ref_iterator_abort(), which also frees the ref_iterator object and 266 * any associated resources. If there was an internal error advancing 267 * to the next entry, ref_iterator_advance() aborts the iteration, 268 * frees the ref_iterator, and returns ITER_ERROR. 269 * 270 * The reference currently being looked at can be peeled by calling 271 * ref_iterator_peel(). This function is often faster than peel_ref(), 272 * so it should be preferred when iterating over references. 273 * 274 * Putting it all together, a typical iteration looks like this: 275 * 276 * int ok; 277 * struct ref_iterator *iter = ...; 278 * 279 * while ((ok = ref_iterator_advance(iter)) == ITER_OK) { 280 * if (want_to_stop_iteration()) { 281 * ok = ref_iterator_abort(iter); 282 * break; 283 * } 284 * 285 * // Access information about the current reference: 286 * if (!(iter->flags & REF_ISSYMREF)) 287 * printf("%s is %s\n", iter->refname, oid_to_hex(&iter->oid)); 288 * 289 * // If you need to peel the reference: 290 * ref_iterator_peel(iter, &oid); 291 * } 292 * 293 * if (ok != ITER_DONE) 294 * handle_error(); 295 */ 296struct ref_iterator { 297 struct ref_iterator_vtable *vtable; 298 const char *refname; 299 const struct object_id *oid; 300 unsigned int flags; 301}; 302 303/* 304 * Advance the iterator to the first or next item and return ITER_OK. 305 * If the iteration is exhausted, free the resources associated with 306 * the ref_iterator and return ITER_DONE. On errors, free the iterator 307 * resources and return ITER_ERROR. It is a bug to use ref_iterator or 308 * call this function again after it has returned ITER_DONE or 309 * ITER_ERROR. 310 */ 311int ref_iterator_advance(struct ref_iterator *ref_iterator); 312 313/* 314 * If possible, peel the reference currently being viewed by the 315 * iterator. Return 0 on success. 316 */ 317int ref_iterator_peel(struct ref_iterator *ref_iterator, 318 struct object_id *peeled); 319 320/* 321 * End the iteration before it has been exhausted, freeing the 322 * reference iterator and any associated resources and returning 323 * ITER_DONE. If the abort itself failed, return ITER_ERROR. 324 */ 325int ref_iterator_abort(struct ref_iterator *ref_iterator); 326 327/* 328 * An iterator over nothing (its first ref_iterator_advance() call 329 * returns ITER_DONE). 330 */ 331struct ref_iterator *empty_ref_iterator_begin(void); 332 333/* 334 * Return true iff ref_iterator is an empty_ref_iterator. 335 */ 336int is_empty_ref_iterator(struct ref_iterator *ref_iterator); 337 338/* 339 * A callback function used to instruct merge_ref_iterator how to 340 * interleave the entries from iter0 and iter1. The function should 341 * return one of the constants defined in enum iterator_selection. It 342 * must not advance either of the iterators itself. 343 * 344 * The function must be prepared to handle the case that iter0 and/or 345 * iter1 is NULL, which indicates that the corresponding sub-iterator 346 * has been exhausted. Its return value must be consistent with the 347 * current states of the iterators; e.g., it must not return 348 * ITER_SKIP_1 if iter1 has already been exhausted. 349 */ 350typedef enum iterator_selection ref_iterator_select_fn( 351 struct ref_iterator *iter0, struct ref_iterator *iter1, 352 void *cb_data); 353 354/* 355 * Iterate over the entries from iter0 and iter1, with the values 356 * interleaved as directed by the select function. The iterator takes 357 * ownership of iter0 and iter1 and frees them when the iteration is 358 * over. 359 */ 360struct ref_iterator *merge_ref_iterator_begin( 361 struct ref_iterator *iter0, struct ref_iterator *iter1, 362 ref_iterator_select_fn *select, void *cb_data); 363 364/* 365 * An iterator consisting of the union of the entries from front and 366 * back. If there are entries common to the two sub-iterators, use the 367 * one from front. Each iterator must iterate over its entries in 368 * strcmp() order by refname for this to work. 369 * 370 * The new iterator takes ownership of its arguments and frees them 371 * when the iteration is over. As a convenience to callers, if front 372 * or back is an empty_ref_iterator, then abort that one immediately 373 * and return the other iterator directly, without wrapping it. 374 */ 375struct ref_iterator *overlay_ref_iterator_begin( 376 struct ref_iterator *front, struct ref_iterator *back); 377 378/* 379 * Wrap iter0, only letting through the references whose names start 380 * with prefix. If trim is set, set iter->refname to the name of the 381 * reference with that many characters trimmed off the front; 382 * otherwise set it to the full refname. The new iterator takes over 383 * ownership of iter0 and frees it when iteration is over. It makes 384 * its own copy of prefix. 385 * 386 * As an convenience to callers, if prefix is the empty string and 387 * trim is zero, this function returns iter0 directly, without 388 * wrapping it. 389 */ 390struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0, 391 const char *prefix, 392 int trim); 393 394/* Internal implementation of reference iteration: */ 395 396/* 397 * Base class constructor for ref_iterators. Initialize the 398 * ref_iterator part of iter, setting its vtable pointer as specified. 399 * This is meant to be called only by the initializers of derived 400 * classes. 401 */ 402void base_ref_iterator_init(struct ref_iterator *iter, 403 struct ref_iterator_vtable *vtable); 404 405/* 406 * Base class destructor for ref_iterators. Destroy the ref_iterator 407 * part of iter and shallow-free the object. This is meant to be 408 * called only by the destructors of derived classes. 409 */ 410void base_ref_iterator_free(struct ref_iterator *iter); 411 412/* Virtual function declarations for ref_iterators: */ 413 414typedef int ref_iterator_advance_fn(struct ref_iterator *ref_iterator); 415 416typedef int ref_iterator_peel_fn(struct ref_iterator *ref_iterator, 417 struct object_id *peeled); 418 419/* 420 * Implementations of this function should free any resources specific 421 * to the derived class, then call base_ref_iterator_free() to clean 422 * up and free the ref_iterator object. 423 */ 424typedef int ref_iterator_abort_fn(struct ref_iterator *ref_iterator); 425 426struct ref_iterator_vtable { 427 ref_iterator_advance_fn *advance; 428 ref_iterator_peel_fn *peel; 429 ref_iterator_abort_fn *abort; 430}; 431 432/* 433 * current_ref_iter is a performance hack: when iterating over 434 * references using the for_each_ref*() functions, current_ref_iter is 435 * set to the reference iterator before calling the callback function. 436 * If the callback function calls peel_ref(), then peel_ref() first 437 * checks whether the reference to be peeled is the one referred to by 438 * the iterator (it usually is) and if so, asks the iterator for the 439 * peeled version of the reference if it is available. This avoids a 440 * refname lookup in a common case. current_ref_iter is set to NULL 441 * when the iteration is over. 442 */ 443extern struct ref_iterator *current_ref_iter; 444 445/* 446 * The common backend for the for_each_*ref* functions. Call fn for 447 * each reference in iter. If the iterator itself ever returns 448 * ITER_ERROR, return -1. If fn ever returns a non-zero value, stop 449 * the iteration and return that value. Otherwise, return 0. In any 450 * case, free the iterator when done. This function is basically an 451 * adapter between the callback style of reference iteration and the 452 * iterator style. 453 */ 454int do_for_each_ref_iterator(struct ref_iterator *iter, 455 each_ref_fn fn, void *cb_data); 456 457/* 458 * Only include per-worktree refs in a do_for_each_ref*() iteration. 459 * Normally this will be used with a files ref_store, since that's 460 * where all reference backends will presumably store their 461 * per-worktree refs. 462 */ 463#define DO_FOR_EACH_PER_WORKTREE_ONLY 0x02 464 465struct ref_store; 466 467/* refs backends */ 468 469/* ref_store_init flags */ 470#define REF_STORE_READ (1 << 0) 471#define REF_STORE_WRITE (1 << 1) /* can perform update operations */ 472#define REF_STORE_ODB (1 << 2) /* has access to object database */ 473#define REF_STORE_MAIN (1 << 3) 474 475/* 476 * Initialize the ref_store for the specified gitdir. These functions 477 * should call base_ref_store_init() to initialize the shared part of 478 * the ref_store and to record the ref_store for later lookup. 479 */ 480typedef struct ref_store *ref_store_init_fn(const char *gitdir, 481 unsigned int flags); 482 483typedef int ref_init_db_fn(struct ref_store *refs, struct strbuf *err); 484 485typedef int ref_transaction_commit_fn(struct ref_store *refs, 486 struct ref_transaction *transaction, 487 struct strbuf *err); 488 489typedef int pack_refs_fn(struct ref_store *ref_store, unsigned int flags); 490typedef int peel_ref_fn(struct ref_store *ref_store, 491 const char *refname, unsigned char *sha1); 492typedef int create_symref_fn(struct ref_store *ref_store, 493 const char *ref_target, 494 const char *refs_heads_master, 495 const char *logmsg); 496typedef int delete_refs_fn(struct ref_store *ref_store, 497 struct string_list *refnames, unsigned int flags); 498typedef int rename_ref_fn(struct ref_store *ref_store, 499 const char *oldref, const char *newref, 500 const char *logmsg); 501 502/* 503 * Iterate over the references in the specified ref_store that are 504 * within find_containing_dir(prefix). If prefix is NULL or the empty 505 * string, iterate over all references in the submodule. 506 */ 507typedef struct ref_iterator *ref_iterator_begin_fn( 508 struct ref_store *ref_store, 509 const char *prefix, unsigned int flags); 510 511/* reflog functions */ 512 513/* 514 * Iterate over the references in the specified ref_store that have a 515 * reflog. The refs are iterated over in arbitrary order. 516 */ 517typedef struct ref_iterator *reflog_iterator_begin_fn( 518 struct ref_store *ref_store); 519 520typedef int for_each_reflog_ent_fn(struct ref_store *ref_store, 521 const char *refname, 522 each_reflog_ent_fn fn, 523 void *cb_data); 524typedef int for_each_reflog_ent_reverse_fn(struct ref_store *ref_store, 525 const char *refname, 526 each_reflog_ent_fn fn, 527 void *cb_data); 528typedef int reflog_exists_fn(struct ref_store *ref_store, const char *refname); 529typedef int create_reflog_fn(struct ref_store *ref_store, const char *refname, 530 int force_create, struct strbuf *err); 531typedef int delete_reflog_fn(struct ref_store *ref_store, const char *refname); 532typedef int reflog_expire_fn(struct ref_store *ref_store, 533 const char *refname, const unsigned char *sha1, 534 unsigned int flags, 535 reflog_expiry_prepare_fn prepare_fn, 536 reflog_expiry_should_prune_fn should_prune_fn, 537 reflog_expiry_cleanup_fn cleanup_fn, 538 void *policy_cb_data); 539 540/* 541 * Read a reference from the specified reference store, non-recursively. 542 * Set type to describe the reference, and: 543 * 544 * - If refname is the name of a normal reference, fill in sha1 545 * (leaving referent unchanged). 546 * 547 * - If refname is the name of a symbolic reference, write the full 548 * name of the reference to which it refers (e.g. 549 * "refs/heads/master") to referent and set the REF_ISSYMREF bit in 550 * type (leaving sha1 unchanged). The caller is responsible for 551 * validating that referent is a valid reference name. 552 * 553 * WARNING: refname might be used as part of a filename, so it is 554 * important from a security standpoint that it be safe in the sense 555 * of refname_is_safe(). Moreover, for symrefs this function sets 556 * referent to whatever the repository says, which might not be a 557 * properly-formatted or even safe reference name. NEITHER INPUT NOR 558 * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION. 559 * 560 * Return 0 on success. If the ref doesn't exist, set errno to ENOENT 561 * and return -1. If the ref exists but is neither a symbolic ref nor 562 * a sha1, it is broken; set REF_ISBROKEN in type, set errno to 563 * EINVAL, and return -1. If there is another error reading the ref, 564 * set errno appropriately and return -1. 565 * 566 * Backend-specific flags might be set in type as well, regardless of 567 * outcome. 568 * 569 * It is OK for refname to point into referent. If so: 570 * 571 * - if the function succeeds with REF_ISSYMREF, referent will be 572 * overwritten and the memory formerly pointed to by it might be 573 * changed or even freed. 574 * 575 * - in all other cases, referent will be untouched, and therefore 576 * refname will still be valid and unchanged. 577 */ 578typedef int read_raw_ref_fn(struct ref_store *ref_store, 579 const char *refname, unsigned char *sha1, 580 struct strbuf *referent, unsigned int *type); 581 582typedef int verify_refname_available_fn(struct ref_store *ref_store, 583 const char *newname, 584 const struct string_list *extras, 585 const struct string_list *skip, 586 struct strbuf *err); 587 588struct ref_storage_be { 589 struct ref_storage_be *next; 590 const char *name; 591 ref_store_init_fn *init; 592 ref_init_db_fn *init_db; 593 ref_transaction_commit_fn *transaction_commit; 594 ref_transaction_commit_fn *initial_transaction_commit; 595 596 pack_refs_fn *pack_refs; 597 peel_ref_fn *peel_ref; 598 create_symref_fn *create_symref; 599 delete_refs_fn *delete_refs; 600 rename_ref_fn *rename_ref; 601 602 ref_iterator_begin_fn *iterator_begin; 603 read_raw_ref_fn *read_raw_ref; 604 verify_refname_available_fn *verify_refname_available; 605 606 reflog_iterator_begin_fn *reflog_iterator_begin; 607 for_each_reflog_ent_fn *for_each_reflog_ent; 608 for_each_reflog_ent_reverse_fn *for_each_reflog_ent_reverse; 609 reflog_exists_fn *reflog_exists; 610 create_reflog_fn *create_reflog; 611 delete_reflog_fn *delete_reflog; 612 reflog_expire_fn *reflog_expire; 613}; 614 615extern struct ref_storage_be refs_be_files; 616 617/* 618 * A representation of the reference store for the main repository or 619 * a submodule. The ref_store instances for submodules are kept in a 620 * linked list. 621 */ 622struct ref_store { 623 /* The backend describing this ref_store's storage scheme: */ 624 const struct ref_storage_be *be; 625}; 626 627/* 628 * Fill in the generic part of refs and add it to our collection of 629 * reference stores. 630 */ 631void base_ref_store_init(struct ref_store *refs, 632 const struct ref_storage_be *be); 633 634#endif /* REFS_REFS_INTERNAL_H */