741e52d143f8656782c67644ad224a17145f12ff
   1#include "../cache.h"
   2#include "../refs.h"
   3#include "refs-internal.h"
   4#include "../iterator.h"
   5#include "../dir-iterator.h"
   6#include "../lockfile.h"
   7#include "../object.h"
   8#include "../dir.h"
   9
  10struct ref_lock {
  11        char *ref_name;
  12        struct lock_file *lk;
  13        struct object_id old_oid;
  14};
  15
  16struct ref_entry;
  17
  18/*
  19 * Information used (along with the information in ref_entry) to
  20 * describe a single cached reference.  This data structure only
  21 * occurs embedded in a union in struct ref_entry, and only when
  22 * (ref_entry->flag & REF_DIR) is zero.
  23 */
  24struct ref_value {
  25        /*
  26         * The name of the object to which this reference resolves
  27         * (which may be a tag object).  If REF_ISBROKEN, this is
  28         * null.  If REF_ISSYMREF, then this is the name of the object
  29         * referred to by the last reference in the symlink chain.
  30         */
  31        struct object_id oid;
  32
  33        /*
  34         * If REF_KNOWS_PEELED, then this field holds the peeled value
  35         * of this reference, or null if the reference is known not to
  36         * be peelable.  See the documentation for peel_ref() for an
  37         * exact definition of "peelable".
  38         */
  39        struct object_id peeled;
  40};
  41
  42struct files_ref_store;
  43
  44/*
  45 * Information used (along with the information in ref_entry) to
  46 * describe a level in the hierarchy of references.  This data
  47 * structure only occurs embedded in a union in struct ref_entry, and
  48 * only when (ref_entry.flag & REF_DIR) is set.  In that case,
  49 * (ref_entry.flag & REF_INCOMPLETE) determines whether the references
  50 * in the directory have already been read:
  51 *
  52 *     (ref_entry.flag & REF_INCOMPLETE) unset -- a directory of loose
  53 *         or packed references, already read.
  54 *
  55 *     (ref_entry.flag & REF_INCOMPLETE) set -- a directory of loose
  56 *         references that hasn't been read yet (nor has any of its
  57 *         subdirectories).
  58 *
  59 * Entries within a directory are stored within a growable array of
  60 * pointers to ref_entries (entries, nr, alloc).  Entries 0 <= i <
  61 * sorted are sorted by their component name in strcmp() order and the
  62 * remaining entries are unsorted.
  63 *
  64 * Loose references are read lazily, one directory at a time.  When a
  65 * directory of loose references is read, then all of the references
  66 * in that directory are stored, and REF_INCOMPLETE stubs are created
  67 * for any subdirectories, but the subdirectories themselves are not
  68 * read.  The reading is triggered by get_ref_dir().
  69 */
  70struct ref_dir {
  71        int nr, alloc;
  72
  73        /*
  74         * Entries with index 0 <= i < sorted are sorted by name.  New
  75         * entries are appended to the list unsorted, and are sorted
  76         * only when required; thus we avoid the need to sort the list
  77         * after the addition of every reference.
  78         */
  79        int sorted;
  80
  81        /* A pointer to the files_ref_store that contains this ref_dir. */
  82        struct files_ref_store *ref_store;
  83
  84        struct ref_entry **entries;
  85};
  86
  87/*
  88 * Bit values for ref_entry::flag.  REF_ISSYMREF=0x01,
  89 * REF_ISPACKED=0x02, REF_ISBROKEN=0x04 and REF_BAD_NAME=0x08 are
  90 * public values; see refs.h.
  91 */
  92
  93/*
  94 * The field ref_entry->u.value.peeled of this value entry contains
  95 * the correct peeled value for the reference, which might be
  96 * null_sha1 if the reference is not a tag or if it is broken.
  97 */
  98#define REF_KNOWS_PEELED 0x10
  99
 100/* ref_entry represents a directory of references */
 101#define REF_DIR 0x20
 102
 103/*
 104 * Entry has not yet been read from disk (used only for REF_DIR
 105 * entries representing loose references)
 106 */
 107#define REF_INCOMPLETE 0x40
 108
 109/*
 110 * A ref_entry represents either a reference or a "subdirectory" of
 111 * references.
 112 *
 113 * Each directory in the reference namespace is represented by a
 114 * ref_entry with (flags & REF_DIR) set and containing a subdir member
 115 * that holds the entries in that directory that have been read so
 116 * far.  If (flags & REF_INCOMPLETE) is set, then the directory and
 117 * its subdirectories haven't been read yet.  REF_INCOMPLETE is only
 118 * used for loose reference directories.
 119 *
 120 * References are represented by a ref_entry with (flags & REF_DIR)
 121 * unset and a value member that describes the reference's value.  The
 122 * flag member is at the ref_entry level, but it is also needed to
 123 * interpret the contents of the value field (in other words, a
 124 * ref_value object is not very much use without the enclosing
 125 * ref_entry).
 126 *
 127 * Reference names cannot end with slash and directories' names are
 128 * always stored with a trailing slash (except for the top-level
 129 * directory, which is always denoted by "").  This has two nice
 130 * consequences: (1) when the entries in each subdir are sorted
 131 * lexicographically by name (as they usually are), the references in
 132 * a whole tree can be generated in lexicographic order by traversing
 133 * the tree in left-to-right, depth-first order; (2) the names of
 134 * references and subdirectories cannot conflict, and therefore the
 135 * presence of an empty subdirectory does not block the creation of a
 136 * similarly-named reference.  (The fact that reference names with the
 137 * same leading components can conflict *with each other* is a
 138 * separate issue that is regulated by verify_refname_available().)
 139 *
 140 * Please note that the name field contains the fully-qualified
 141 * reference (or subdirectory) name.  Space could be saved by only
 142 * storing the relative names.  But that would require the full names
 143 * to be generated on the fly when iterating in do_for_each_ref(), and
 144 * would break callback functions, who have always been able to assume
 145 * that the name strings that they are passed will not be freed during
 146 * the iteration.
 147 */
 148struct ref_entry {
 149        unsigned char flag; /* ISSYMREF? ISPACKED? */
 150        union {
 151                struct ref_value value; /* if not (flags&REF_DIR) */
 152                struct ref_dir subdir; /* if (flags&REF_DIR) */
 153        } u;
 154        /*
 155         * The full name of the reference (e.g., "refs/heads/master")
 156         * or the full name of the directory with a trailing slash
 157         * (e.g., "refs/heads/"):
 158         */
 159        char name[FLEX_ARRAY];
 160};
 161
 162static void read_loose_refs(const char *dirname, struct ref_dir *dir);
 163static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len);
 164static struct ref_entry *create_dir_entry(struct files_ref_store *ref_store,
 165                                          const char *dirname, size_t len,
 166                                          int incomplete);
 167static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry);
 168static int files_log_ref_write(struct files_ref_store *refs,
 169                               const char *refname, const unsigned char *old_sha1,
 170                               const unsigned char *new_sha1, const char *msg,
 171                               int flags, struct strbuf *err);
 172
 173static struct ref_dir *get_ref_dir(struct ref_entry *entry)
 174{
 175        struct ref_dir *dir;
 176        assert(entry->flag & REF_DIR);
 177        dir = &entry->u.subdir;
 178        if (entry->flag & REF_INCOMPLETE) {
 179                read_loose_refs(entry->name, dir);
 180
 181                /*
 182                 * Manually add refs/bisect, which, being
 183                 * per-worktree, might not appear in the directory
 184                 * listing for refs/ in the main repo.
 185                 */
 186                if (!strcmp(entry->name, "refs/")) {
 187                        int pos = search_ref_dir(dir, "refs/bisect/", 12);
 188                        if (pos < 0) {
 189                                struct ref_entry *child_entry;
 190                                child_entry = create_dir_entry(dir->ref_store,
 191                                                               "refs/bisect/",
 192                                                               12, 1);
 193                                add_entry_to_dir(dir, child_entry);
 194                                read_loose_refs("refs/bisect",
 195                                                &child_entry->u.subdir);
 196                        }
 197                }
 198                entry->flag &= ~REF_INCOMPLETE;
 199        }
 200        return dir;
 201}
 202
 203static struct ref_entry *create_ref_entry(const char *refname,
 204                                          const unsigned char *sha1, int flag,
 205                                          int check_name)
 206{
 207        struct ref_entry *ref;
 208
 209        if (check_name &&
 210            check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
 211                die("Reference has invalid format: '%s'", refname);
 212        FLEX_ALLOC_STR(ref, name, refname);
 213        hashcpy(ref->u.value.oid.hash, sha1);
 214        oidclr(&ref->u.value.peeled);
 215        ref->flag = flag;
 216        return ref;
 217}
 218
 219static void clear_ref_dir(struct ref_dir *dir);
 220
 221static void free_ref_entry(struct ref_entry *entry)
 222{
 223        if (entry->flag & REF_DIR) {
 224                /*
 225                 * Do not use get_ref_dir() here, as that might
 226                 * trigger the reading of loose refs.
 227                 */
 228                clear_ref_dir(&entry->u.subdir);
 229        }
 230        free(entry);
 231}
 232
 233/*
 234 * Add a ref_entry to the end of dir (unsorted).  Entry is always
 235 * stored directly in dir; no recursion into subdirectories is
 236 * done.
 237 */
 238static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
 239{
 240        ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
 241        dir->entries[dir->nr++] = entry;
 242        /* optimize for the case that entries are added in order */
 243        if (dir->nr == 1 ||
 244            (dir->nr == dir->sorted + 1 &&
 245             strcmp(dir->entries[dir->nr - 2]->name,
 246                    dir->entries[dir->nr - 1]->name) < 0))
 247                dir->sorted = dir->nr;
 248}
 249
 250/*
 251 * Clear and free all entries in dir, recursively.
 252 */
 253static void clear_ref_dir(struct ref_dir *dir)
 254{
 255        int i;
 256        for (i = 0; i < dir->nr; i++)
 257                free_ref_entry(dir->entries[i]);
 258        free(dir->entries);
 259        dir->sorted = dir->nr = dir->alloc = 0;
 260        dir->entries = NULL;
 261}
 262
 263/*
 264 * Create a struct ref_entry object for the specified dirname.
 265 * dirname is the name of the directory with a trailing slash (e.g.,
 266 * "refs/heads/") or "" for the top-level directory.
 267 */
 268static struct ref_entry *create_dir_entry(struct files_ref_store *ref_store,
 269                                          const char *dirname, size_t len,
 270                                          int incomplete)
 271{
 272        struct ref_entry *direntry;
 273        FLEX_ALLOC_MEM(direntry, name, dirname, len);
 274        direntry->u.subdir.ref_store = ref_store;
 275        direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
 276        return direntry;
 277}
 278
 279static int ref_entry_cmp(const void *a, const void *b)
 280{
 281        struct ref_entry *one = *(struct ref_entry **)a;
 282        struct ref_entry *two = *(struct ref_entry **)b;
 283        return strcmp(one->name, two->name);
 284}
 285
 286static void sort_ref_dir(struct ref_dir *dir);
 287
 288struct string_slice {
 289        size_t len;
 290        const char *str;
 291};
 292
 293static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
 294{
 295        const struct string_slice *key = key_;
 296        const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
 297        int cmp = strncmp(key->str, ent->name, key->len);
 298        if (cmp)
 299                return cmp;
 300        return '\0' - (unsigned char)ent->name[key->len];
 301}
 302
 303/*
 304 * Return the index of the entry with the given refname from the
 305 * ref_dir (non-recursively), sorting dir if necessary.  Return -1 if
 306 * no such entry is found.  dir must already be complete.
 307 */
 308static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
 309{
 310        struct ref_entry **r;
 311        struct string_slice key;
 312
 313        if (refname == NULL || !dir->nr)
 314                return -1;
 315
 316        sort_ref_dir(dir);
 317        key.len = len;
 318        key.str = refname;
 319        r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
 320                    ref_entry_cmp_sslice);
 321
 322        if (r == NULL)
 323                return -1;
 324
 325        return r - dir->entries;
 326}
 327
 328/*
 329 * Search for a directory entry directly within dir (without
 330 * recursing).  Sort dir if necessary.  subdirname must be a directory
 331 * name (i.e., end in '/').  If mkdir is set, then create the
 332 * directory if it is missing; otherwise, return NULL if the desired
 333 * directory cannot be found.  dir must already be complete.
 334 */
 335static struct ref_dir *search_for_subdir(struct ref_dir *dir,
 336                                         const char *subdirname, size_t len,
 337                                         int mkdir)
 338{
 339        int entry_index = search_ref_dir(dir, subdirname, len);
 340        struct ref_entry *entry;
 341        if (entry_index == -1) {
 342                if (!mkdir)
 343                        return NULL;
 344                /*
 345                 * Since dir is complete, the absence of a subdir
 346                 * means that the subdir really doesn't exist;
 347                 * therefore, create an empty record for it but mark
 348                 * the record complete.
 349                 */
 350                entry = create_dir_entry(dir->ref_store, subdirname, len, 0);
 351                add_entry_to_dir(dir, entry);
 352        } else {
 353                entry = dir->entries[entry_index];
 354        }
 355        return get_ref_dir(entry);
 356}
 357
 358/*
 359 * If refname is a reference name, find the ref_dir within the dir
 360 * tree that should hold refname.  If refname is a directory name
 361 * (i.e., ends in '/'), then return that ref_dir itself.  dir must
 362 * represent the top-level directory and must already be complete.
 363 * Sort ref_dirs and recurse into subdirectories as necessary.  If
 364 * mkdir is set, then create any missing directories; otherwise,
 365 * return NULL if the desired directory cannot be found.
 366 */
 367static struct ref_dir *find_containing_dir(struct ref_dir *dir,
 368                                           const char *refname, int mkdir)
 369{
 370        const char *slash;
 371        for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
 372                size_t dirnamelen = slash - refname + 1;
 373                struct ref_dir *subdir;
 374                subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
 375                if (!subdir) {
 376                        dir = NULL;
 377                        break;
 378                }
 379                dir = subdir;
 380        }
 381
 382        return dir;
 383}
 384
 385/*
 386 * Find the value entry with the given name in dir, sorting ref_dirs
 387 * and recursing into subdirectories as necessary.  If the name is not
 388 * found or it corresponds to a directory entry, return NULL.
 389 */
 390static struct ref_entry *find_ref(struct ref_dir *dir, const char *refname)
 391{
 392        int entry_index;
 393        struct ref_entry *entry;
 394        dir = find_containing_dir(dir, refname, 0);
 395        if (!dir)
 396                return NULL;
 397        entry_index = search_ref_dir(dir, refname, strlen(refname));
 398        if (entry_index == -1)
 399                return NULL;
 400        entry = dir->entries[entry_index];
 401        return (entry->flag & REF_DIR) ? NULL : entry;
 402}
 403
 404/*
 405 * Remove the entry with the given name from dir, recursing into
 406 * subdirectories as necessary.  If refname is the name of a directory
 407 * (i.e., ends with '/'), then remove the directory and its contents.
 408 * If the removal was successful, return the number of entries
 409 * remaining in the directory entry that contained the deleted entry.
 410 * If the name was not found, return -1.  Please note that this
 411 * function only deletes the entry from the cache; it does not delete
 412 * it from the filesystem or ensure that other cache entries (which
 413 * might be symbolic references to the removed entry) are updated.
 414 * Nor does it remove any containing dir entries that might be made
 415 * empty by the removal.  dir must represent the top-level directory
 416 * and must already be complete.
 417 */
 418static int remove_entry(struct ref_dir *dir, const char *refname)
 419{
 420        int refname_len = strlen(refname);
 421        int entry_index;
 422        struct ref_entry *entry;
 423        int is_dir = refname[refname_len - 1] == '/';
 424        if (is_dir) {
 425                /*
 426                 * refname represents a reference directory.  Remove
 427                 * the trailing slash; otherwise we will get the
 428                 * directory *representing* refname rather than the
 429                 * one *containing* it.
 430                 */
 431                char *dirname = xmemdupz(refname, refname_len - 1);
 432                dir = find_containing_dir(dir, dirname, 0);
 433                free(dirname);
 434        } else {
 435                dir = find_containing_dir(dir, refname, 0);
 436        }
 437        if (!dir)
 438                return -1;
 439        entry_index = search_ref_dir(dir, refname, refname_len);
 440        if (entry_index == -1)
 441                return -1;
 442        entry = dir->entries[entry_index];
 443
 444        memmove(&dir->entries[entry_index],
 445                &dir->entries[entry_index + 1],
 446                (dir->nr - entry_index - 1) * sizeof(*dir->entries)
 447                );
 448        dir->nr--;
 449        if (dir->sorted > entry_index)
 450                dir->sorted--;
 451        free_ref_entry(entry);
 452        return dir->nr;
 453}
 454
 455/*
 456 * Add a ref_entry to the ref_dir (unsorted), recursing into
 457 * subdirectories as necessary.  dir must represent the top-level
 458 * directory.  Return 0 on success.
 459 */
 460static int add_ref(struct ref_dir *dir, struct ref_entry *ref)
 461{
 462        dir = find_containing_dir(dir, ref->name, 1);
 463        if (!dir)
 464                return -1;
 465        add_entry_to_dir(dir, ref);
 466        return 0;
 467}
 468
 469/*
 470 * Emit a warning and return true iff ref1 and ref2 have the same name
 471 * and the same sha1.  Die if they have the same name but different
 472 * sha1s.
 473 */
 474static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
 475{
 476        if (strcmp(ref1->name, ref2->name))
 477                return 0;
 478
 479        /* Duplicate name; make sure that they don't conflict: */
 480
 481        if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
 482                /* This is impossible by construction */
 483                die("Reference directory conflict: %s", ref1->name);
 484
 485        if (oidcmp(&ref1->u.value.oid, &ref2->u.value.oid))
 486                die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
 487
 488        warning("Duplicated ref: %s", ref1->name);
 489        return 1;
 490}
 491
 492/*
 493 * Sort the entries in dir non-recursively (if they are not already
 494 * sorted) and remove any duplicate entries.
 495 */
 496static void sort_ref_dir(struct ref_dir *dir)
 497{
 498        int i, j;
 499        struct ref_entry *last = NULL;
 500
 501        /*
 502         * This check also prevents passing a zero-length array to qsort(),
 503         * which is a problem on some platforms.
 504         */
 505        if (dir->sorted == dir->nr)
 506                return;
 507
 508        QSORT(dir->entries, dir->nr, ref_entry_cmp);
 509
 510        /* Remove any duplicates: */
 511        for (i = 0, j = 0; j < dir->nr; j++) {
 512                struct ref_entry *entry = dir->entries[j];
 513                if (last && is_dup_ref(last, entry))
 514                        free_ref_entry(entry);
 515                else
 516                        last = dir->entries[i++] = entry;
 517        }
 518        dir->sorted = dir->nr = i;
 519}
 520
 521/*
 522 * Return true if refname, which has the specified oid and flags, can
 523 * be resolved to an object in the database. If the referred-to object
 524 * does not exist, emit a warning and return false.
 525 */
 526static int ref_resolves_to_object(const char *refname,
 527                                  const struct object_id *oid,
 528                                  unsigned int flags)
 529{
 530        if (flags & REF_ISBROKEN)
 531                return 0;
 532        if (!has_sha1_file(oid->hash)) {
 533                error("%s does not point to a valid object!", refname);
 534                return 0;
 535        }
 536        return 1;
 537}
 538
 539/*
 540 * Return true if the reference described by entry can be resolved to
 541 * an object in the database; otherwise, emit a warning and return
 542 * false.
 543 */
 544static int entry_resolves_to_object(struct ref_entry *entry)
 545{
 546        return ref_resolves_to_object(entry->name,
 547                                      &entry->u.value.oid, entry->flag);
 548}
 549
 550typedef int each_ref_entry_fn(struct ref_entry *entry, void *cb_data);
 551
 552/*
 553 * Call fn for each reference in dir that has index in the range
 554 * offset <= index < dir->nr.  Recurse into subdirectories that are in
 555 * that index range, sorting them before iterating.  This function
 556 * does not sort dir itself; it should be sorted beforehand.  fn is
 557 * called for all references, including broken ones.
 558 */
 559static int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
 560                                    each_ref_entry_fn fn, void *cb_data)
 561{
 562        int i;
 563        assert(dir->sorted == dir->nr);
 564        for (i = offset; i < dir->nr; i++) {
 565                struct ref_entry *entry = dir->entries[i];
 566                int retval;
 567                if (entry->flag & REF_DIR) {
 568                        struct ref_dir *subdir = get_ref_dir(entry);
 569                        sort_ref_dir(subdir);
 570                        retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
 571                } else {
 572                        retval = fn(entry, cb_data);
 573                }
 574                if (retval)
 575                        return retval;
 576        }
 577        return 0;
 578}
 579
 580/*
 581 * Load all of the refs from the dir into our in-memory cache. The hard work
 582 * of loading loose refs is done by get_ref_dir(), so we just need to recurse
 583 * through all of the sub-directories. We do not even need to care about
 584 * sorting, as traversal order does not matter to us.
 585 */
 586static void prime_ref_dir(struct ref_dir *dir)
 587{
 588        int i;
 589        for (i = 0; i < dir->nr; i++) {
 590                struct ref_entry *entry = dir->entries[i];
 591                if (entry->flag & REF_DIR)
 592                        prime_ref_dir(get_ref_dir(entry));
 593        }
 594}
 595
 596/*
 597 * A level in the reference hierarchy that is currently being iterated
 598 * through.
 599 */
 600struct cache_ref_iterator_level {
 601        /*
 602         * The ref_dir being iterated over at this level. The ref_dir
 603         * is sorted before being stored here.
 604         */
 605        struct ref_dir *dir;
 606
 607        /*
 608         * The index of the current entry within dir (which might
 609         * itself be a directory). If index == -1, then the iteration
 610         * hasn't yet begun. If index == dir->nr, then the iteration
 611         * through this level is over.
 612         */
 613        int index;
 614};
 615
 616/*
 617 * Represent an iteration through a ref_dir in the memory cache. The
 618 * iteration recurses through subdirectories.
 619 */
 620struct cache_ref_iterator {
 621        struct ref_iterator base;
 622
 623        /*
 624         * The number of levels currently on the stack. This is always
 625         * at least 1, because when it becomes zero the iteration is
 626         * ended and this struct is freed.
 627         */
 628        size_t levels_nr;
 629
 630        /* The number of levels that have been allocated on the stack */
 631        size_t levels_alloc;
 632
 633        /*
 634         * A stack of levels. levels[0] is the uppermost level that is
 635         * being iterated over in this iteration. (This is not
 636         * necessary the top level in the references hierarchy. If we
 637         * are iterating through a subtree, then levels[0] will hold
 638         * the ref_dir for that subtree, and subsequent levels will go
 639         * on from there.)
 640         */
 641        struct cache_ref_iterator_level *levels;
 642};
 643
 644static int cache_ref_iterator_advance(struct ref_iterator *ref_iterator)
 645{
 646        struct cache_ref_iterator *iter =
 647                (struct cache_ref_iterator *)ref_iterator;
 648
 649        while (1) {
 650                struct cache_ref_iterator_level *level =
 651                        &iter->levels[iter->levels_nr - 1];
 652                struct ref_dir *dir = level->dir;
 653                struct ref_entry *entry;
 654
 655                if (level->index == -1)
 656                        sort_ref_dir(dir);
 657
 658                if (++level->index == level->dir->nr) {
 659                        /* This level is exhausted; pop up a level */
 660                        if (--iter->levels_nr == 0)
 661                                return ref_iterator_abort(ref_iterator);
 662
 663                        continue;
 664                }
 665
 666                entry = dir->entries[level->index];
 667
 668                if (entry->flag & REF_DIR) {
 669                        /* push down a level */
 670                        ALLOC_GROW(iter->levels, iter->levels_nr + 1,
 671                                   iter->levels_alloc);
 672
 673                        level = &iter->levels[iter->levels_nr++];
 674                        level->dir = get_ref_dir(entry);
 675                        level->index = -1;
 676                } else {
 677                        iter->base.refname = entry->name;
 678                        iter->base.oid = &entry->u.value.oid;
 679                        iter->base.flags = entry->flag;
 680                        return ITER_OK;
 681                }
 682        }
 683}
 684
 685static enum peel_status peel_entry(struct ref_entry *entry, int repeel);
 686
 687static int cache_ref_iterator_peel(struct ref_iterator *ref_iterator,
 688                                   struct object_id *peeled)
 689{
 690        struct cache_ref_iterator *iter =
 691                (struct cache_ref_iterator *)ref_iterator;
 692        struct cache_ref_iterator_level *level;
 693        struct ref_entry *entry;
 694
 695        level = &iter->levels[iter->levels_nr - 1];
 696
 697        if (level->index == -1)
 698                die("BUG: peel called before advance for cache iterator");
 699
 700        entry = level->dir->entries[level->index];
 701
 702        if (peel_entry(entry, 0))
 703                return -1;
 704        oidcpy(peeled, &entry->u.value.peeled);
 705        return 0;
 706}
 707
 708static int cache_ref_iterator_abort(struct ref_iterator *ref_iterator)
 709{
 710        struct cache_ref_iterator *iter =
 711                (struct cache_ref_iterator *)ref_iterator;
 712
 713        free(iter->levels);
 714        base_ref_iterator_free(ref_iterator);
 715        return ITER_DONE;
 716}
 717
 718static struct ref_iterator_vtable cache_ref_iterator_vtable = {
 719        cache_ref_iterator_advance,
 720        cache_ref_iterator_peel,
 721        cache_ref_iterator_abort
 722};
 723
 724static struct ref_iterator *cache_ref_iterator_begin(struct ref_dir *dir)
 725{
 726        struct cache_ref_iterator *iter;
 727        struct ref_iterator *ref_iterator;
 728        struct cache_ref_iterator_level *level;
 729
 730        iter = xcalloc(1, sizeof(*iter));
 731        ref_iterator = &iter->base;
 732        base_ref_iterator_init(ref_iterator, &cache_ref_iterator_vtable);
 733        ALLOC_GROW(iter->levels, 10, iter->levels_alloc);
 734
 735        iter->levels_nr = 1;
 736        level = &iter->levels[0];
 737        level->index = -1;
 738        level->dir = dir;
 739
 740        return ref_iterator;
 741}
 742
 743struct nonmatching_ref_data {
 744        const struct string_list *skip;
 745        const char *conflicting_refname;
 746};
 747
 748static int nonmatching_ref_fn(struct ref_entry *entry, void *vdata)
 749{
 750        struct nonmatching_ref_data *data = vdata;
 751
 752        if (data->skip && string_list_has_string(data->skip, entry->name))
 753                return 0;
 754
 755        data->conflicting_refname = entry->name;
 756        return 1;
 757}
 758
 759/*
 760 * Return 0 if a reference named refname could be created without
 761 * conflicting with the name of an existing reference in dir.
 762 * See verify_refname_available for more information.
 763 */
 764static int verify_refname_available_dir(const char *refname,
 765                                        const struct string_list *extras,
 766                                        const struct string_list *skip,
 767                                        struct ref_dir *dir,
 768                                        struct strbuf *err)
 769{
 770        const char *slash;
 771        const char *extra_refname;
 772        int pos;
 773        struct strbuf dirname = STRBUF_INIT;
 774        int ret = -1;
 775
 776        /*
 777         * For the sake of comments in this function, suppose that
 778         * refname is "refs/foo/bar".
 779         */
 780
 781        assert(err);
 782
 783        strbuf_grow(&dirname, strlen(refname) + 1);
 784        for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
 785                /* Expand dirname to the new prefix, not including the trailing slash: */
 786                strbuf_add(&dirname, refname + dirname.len, slash - refname - dirname.len);
 787
 788                /*
 789                 * We are still at a leading dir of the refname (e.g.,
 790                 * "refs/foo"; if there is a reference with that name,
 791                 * it is a conflict, *unless* it is in skip.
 792                 */
 793                if (dir) {
 794                        pos = search_ref_dir(dir, dirname.buf, dirname.len);
 795                        if (pos >= 0 &&
 796                            (!skip || !string_list_has_string(skip, dirname.buf))) {
 797                                /*
 798                                 * We found a reference whose name is
 799                                 * a proper prefix of refname; e.g.,
 800                                 * "refs/foo", and is not in skip.
 801                                 */
 802                                strbuf_addf(err, "'%s' exists; cannot create '%s'",
 803                                            dirname.buf, refname);
 804                                goto cleanup;
 805                        }
 806                }
 807
 808                if (extras && string_list_has_string(extras, dirname.buf) &&
 809                    (!skip || !string_list_has_string(skip, dirname.buf))) {
 810                        strbuf_addf(err, "cannot process '%s' and '%s' at the same time",
 811                                    refname, dirname.buf);
 812                        goto cleanup;
 813                }
 814
 815                /*
 816                 * Otherwise, we can try to continue our search with
 817                 * the next component. So try to look up the
 818                 * directory, e.g., "refs/foo/". If we come up empty,
 819                 * we know there is nothing under this whole prefix,
 820                 * but even in that case we still have to continue the
 821                 * search for conflicts with extras.
 822                 */
 823                strbuf_addch(&dirname, '/');
 824                if (dir) {
 825                        pos = search_ref_dir(dir, dirname.buf, dirname.len);
 826                        if (pos < 0) {
 827                                /*
 828                                 * There was no directory "refs/foo/",
 829                                 * so there is nothing under this
 830                                 * whole prefix. So there is no need
 831                                 * to continue looking for conflicting
 832                                 * references. But we need to continue
 833                                 * looking for conflicting extras.
 834                                 */
 835                                dir = NULL;
 836                        } else {
 837                                dir = get_ref_dir(dir->entries[pos]);
 838                        }
 839                }
 840        }
 841
 842        /*
 843         * We are at the leaf of our refname (e.g., "refs/foo/bar").
 844         * There is no point in searching for a reference with that
 845         * name, because a refname isn't considered to conflict with
 846         * itself. But we still need to check for references whose
 847         * names are in the "refs/foo/bar/" namespace, because they
 848         * *do* conflict.
 849         */
 850        strbuf_addstr(&dirname, refname + dirname.len);
 851        strbuf_addch(&dirname, '/');
 852
 853        if (dir) {
 854                pos = search_ref_dir(dir, dirname.buf, dirname.len);
 855
 856                if (pos >= 0) {
 857                        /*
 858                         * We found a directory named "$refname/"
 859                         * (e.g., "refs/foo/bar/"). It is a problem
 860                         * iff it contains any ref that is not in
 861                         * "skip".
 862                         */
 863                        struct nonmatching_ref_data data;
 864
 865                        data.skip = skip;
 866                        data.conflicting_refname = NULL;
 867                        dir = get_ref_dir(dir->entries[pos]);
 868                        sort_ref_dir(dir);
 869                        if (do_for_each_entry_in_dir(dir, 0, nonmatching_ref_fn, &data)) {
 870                                strbuf_addf(err, "'%s' exists; cannot create '%s'",
 871                                            data.conflicting_refname, refname);
 872                                goto cleanup;
 873                        }
 874                }
 875        }
 876
 877        extra_refname = find_descendant_ref(dirname.buf, extras, skip);
 878        if (extra_refname)
 879                strbuf_addf(err, "cannot process '%s' and '%s' at the same time",
 880                            refname, extra_refname);
 881        else
 882                ret = 0;
 883
 884cleanup:
 885        strbuf_release(&dirname);
 886        return ret;
 887}
 888
 889struct packed_ref_cache {
 890        struct ref_entry *root;
 891
 892        /*
 893         * Count of references to the data structure in this instance,
 894         * including the pointer from files_ref_store::packed if any.
 895         * The data will not be freed as long as the reference count
 896         * is nonzero.
 897         */
 898        unsigned int referrers;
 899
 900        /*
 901         * Iff the packed-refs file associated with this instance is
 902         * currently locked for writing, this points at the associated
 903         * lock (which is owned by somebody else).  The referrer count
 904         * is also incremented when the file is locked and decremented
 905         * when it is unlocked.
 906         */
 907        struct lock_file *lock;
 908
 909        /* The metadata from when this packed-refs cache was read */
 910        struct stat_validity validity;
 911};
 912
 913/*
 914 * Future: need to be in "struct repository"
 915 * when doing a full libification.
 916 */
 917struct files_ref_store {
 918        struct ref_store base;
 919
 920        /*
 921         * The name of the submodule represented by this object, or
 922         * NULL if it represents the main repository's reference
 923         * store:
 924         */
 925        const char *submodule;
 926
 927        char *packed_refs_path;
 928
 929        struct ref_entry *loose;
 930        struct packed_ref_cache *packed;
 931};
 932
 933/* Lock used for the main packed-refs file: */
 934static struct lock_file packlock;
 935
 936/*
 937 * Increment the reference count of *packed_refs.
 938 */
 939static void acquire_packed_ref_cache(struct packed_ref_cache *packed_refs)
 940{
 941        packed_refs->referrers++;
 942}
 943
 944/*
 945 * Decrease the reference count of *packed_refs.  If it goes to zero,
 946 * free *packed_refs and return true; otherwise return false.
 947 */
 948static int release_packed_ref_cache(struct packed_ref_cache *packed_refs)
 949{
 950        if (!--packed_refs->referrers) {
 951                free_ref_entry(packed_refs->root);
 952                stat_validity_clear(&packed_refs->validity);
 953                free(packed_refs);
 954                return 1;
 955        } else {
 956                return 0;
 957        }
 958}
 959
 960static void clear_packed_ref_cache(struct files_ref_store *refs)
 961{
 962        if (refs->packed) {
 963                struct packed_ref_cache *packed_refs = refs->packed;
 964
 965                if (packed_refs->lock)
 966                        die("internal error: packed-ref cache cleared while locked");
 967                refs->packed = NULL;
 968                release_packed_ref_cache(packed_refs);
 969        }
 970}
 971
 972static void clear_loose_ref_cache(struct files_ref_store *refs)
 973{
 974        if (refs->loose) {
 975                free_ref_entry(refs->loose);
 976                refs->loose = NULL;
 977        }
 978}
 979
 980/*
 981 * Create a new submodule ref cache and add it to the internal
 982 * set of caches.
 983 */
 984static struct ref_store *files_ref_store_create(const char *submodule)
 985{
 986        struct files_ref_store *refs = xcalloc(1, sizeof(*refs));
 987        struct ref_store *ref_store = (struct ref_store *)refs;
 988
 989        base_ref_store_init(ref_store, &refs_be_files);
 990
 991        if (submodule) {
 992                refs->submodule = xstrdup(submodule);
 993                refs->packed_refs_path = git_pathdup_submodule(
 994                        refs->submodule, "packed-refs");
 995                return ref_store;
 996        }
 997
 998        refs->packed_refs_path = git_pathdup("packed-refs");
 999
1000        return ref_store;
1001}
1002
1003/*
1004 * Die if refs is for a submodule (i.e., not for the main repository).
1005 * caller is used in any necessary error messages.
1006 */
1007static void files_assert_main_repository(struct files_ref_store *refs,
1008                                         const char *caller)
1009{
1010        if (refs->submodule)
1011                die("BUG: %s called for a submodule", caller);
1012}
1013
1014/*
1015 * Downcast ref_store to files_ref_store. Die if ref_store is not a
1016 * files_ref_store. If submodule_allowed is not true, then also die if
1017 * files_ref_store is for a submodule (i.e., not for the main
1018 * repository). caller is used in any necessary error messages.
1019 */
1020static struct files_ref_store *files_downcast(
1021                struct ref_store *ref_store, int submodule_allowed,
1022                const char *caller)
1023{
1024        struct files_ref_store *refs;
1025
1026        if (ref_store->be != &refs_be_files)
1027                die("BUG: ref_store is type \"%s\" not \"files\" in %s",
1028                    ref_store->be->name, caller);
1029
1030        refs = (struct files_ref_store *)ref_store;
1031
1032        if (!submodule_allowed)
1033                files_assert_main_repository(refs, caller);
1034
1035        return refs;
1036}
1037
1038/* The length of a peeled reference line in packed-refs, including EOL: */
1039#define PEELED_LINE_LENGTH 42
1040
1041/*
1042 * The packed-refs header line that we write out.  Perhaps other
1043 * traits will be added later.  The trailing space is required.
1044 */
1045static const char PACKED_REFS_HEADER[] =
1046        "# pack-refs with: peeled fully-peeled \n";
1047
1048/*
1049 * Parse one line from a packed-refs file.  Write the SHA1 to sha1.
1050 * Return a pointer to the refname within the line (null-terminated),
1051 * or NULL if there was a problem.
1052 */
1053static const char *parse_ref_line(struct strbuf *line, unsigned char *sha1)
1054{
1055        const char *ref;
1056
1057        /*
1058         * 42: the answer to everything.
1059         *
1060         * In this case, it happens to be the answer to
1061         *  40 (length of sha1 hex representation)
1062         *  +1 (space in between hex and name)
1063         *  +1 (newline at the end of the line)
1064         */
1065        if (line->len <= 42)
1066                return NULL;
1067
1068        if (get_sha1_hex(line->buf, sha1) < 0)
1069                return NULL;
1070        if (!isspace(line->buf[40]))
1071                return NULL;
1072
1073        ref = line->buf + 41;
1074        if (isspace(*ref))
1075                return NULL;
1076
1077        if (line->buf[line->len - 1] != '\n')
1078                return NULL;
1079        line->buf[--line->len] = 0;
1080
1081        return ref;
1082}
1083
1084/*
1085 * Read f, which is a packed-refs file, into dir.
1086 *
1087 * A comment line of the form "# pack-refs with: " may contain zero or
1088 * more traits. We interpret the traits as follows:
1089 *
1090 *   No traits:
1091 *
1092 *      Probably no references are peeled. But if the file contains a
1093 *      peeled value for a reference, we will use it.
1094 *
1095 *   peeled:
1096 *
1097 *      References under "refs/tags/", if they *can* be peeled, *are*
1098 *      peeled in this file. References outside of "refs/tags/" are
1099 *      probably not peeled even if they could have been, but if we find
1100 *      a peeled value for such a reference we will use it.
1101 *
1102 *   fully-peeled:
1103 *
1104 *      All references in the file that can be peeled are peeled.
1105 *      Inversely (and this is more important), any references in the
1106 *      file for which no peeled value is recorded is not peelable. This
1107 *      trait should typically be written alongside "peeled" for
1108 *      compatibility with older clients, but we do not require it
1109 *      (i.e., "peeled" is a no-op if "fully-peeled" is set).
1110 */
1111static void read_packed_refs(FILE *f, struct ref_dir *dir)
1112{
1113        struct ref_entry *last = NULL;
1114        struct strbuf line = STRBUF_INIT;
1115        enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled = PEELED_NONE;
1116
1117        while (strbuf_getwholeline(&line, f, '\n') != EOF) {
1118                unsigned char sha1[20];
1119                const char *refname;
1120                const char *traits;
1121
1122                if (skip_prefix(line.buf, "# pack-refs with:", &traits)) {
1123                        if (strstr(traits, " fully-peeled "))
1124                                peeled = PEELED_FULLY;
1125                        else if (strstr(traits, " peeled "))
1126                                peeled = PEELED_TAGS;
1127                        /* perhaps other traits later as well */
1128                        continue;
1129                }
1130
1131                refname = parse_ref_line(&line, sha1);
1132                if (refname) {
1133                        int flag = REF_ISPACKED;
1134
1135                        if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
1136                                if (!refname_is_safe(refname))
1137                                        die("packed refname is dangerous: %s", refname);
1138                                hashclr(sha1);
1139                                flag |= REF_BAD_NAME | REF_ISBROKEN;
1140                        }
1141                        last = create_ref_entry(refname, sha1, flag, 0);
1142                        if (peeled == PEELED_FULLY ||
1143                            (peeled == PEELED_TAGS && starts_with(refname, "refs/tags/")))
1144                                last->flag |= REF_KNOWS_PEELED;
1145                        add_ref(dir, last);
1146                        continue;
1147                }
1148                if (last &&
1149                    line.buf[0] == '^' &&
1150                    line.len == PEELED_LINE_LENGTH &&
1151                    line.buf[PEELED_LINE_LENGTH - 1] == '\n' &&
1152                    !get_sha1_hex(line.buf + 1, sha1)) {
1153                        hashcpy(last->u.value.peeled.hash, sha1);
1154                        /*
1155                         * Regardless of what the file header said,
1156                         * we definitely know the value of *this*
1157                         * reference:
1158                         */
1159                        last->flag |= REF_KNOWS_PEELED;
1160                }
1161        }
1162
1163        strbuf_release(&line);
1164}
1165
1166static const char *files_packed_refs_path(struct files_ref_store *refs)
1167{
1168        return refs->packed_refs_path;
1169}
1170
1171static void files_reflog_path(struct files_ref_store *refs,
1172                              struct strbuf *sb,
1173                              const char *refname)
1174{
1175        if (!refname) {
1176                strbuf_git_path(sb, "logs");
1177                return;
1178        }
1179
1180        strbuf_git_path(sb, "logs/%s", refname);
1181}
1182
1183static void files_ref_path(struct files_ref_store *refs,
1184                           struct strbuf *sb,
1185                           const char *refname)
1186{
1187        if (refs->submodule) {
1188                strbuf_git_path_submodule(sb, refs->submodule, "%s", refname);
1189                return;
1190        }
1191
1192        strbuf_git_path(sb, "%s", refname);
1193}
1194
1195/*
1196 * Get the packed_ref_cache for the specified files_ref_store,
1197 * creating it if necessary.
1198 */
1199static struct packed_ref_cache *get_packed_ref_cache(struct files_ref_store *refs)
1200{
1201        const char *packed_refs_file = files_packed_refs_path(refs);
1202
1203        if (refs->packed &&
1204            !stat_validity_check(&refs->packed->validity, packed_refs_file))
1205                clear_packed_ref_cache(refs);
1206
1207        if (!refs->packed) {
1208                FILE *f;
1209
1210                refs->packed = xcalloc(1, sizeof(*refs->packed));
1211                acquire_packed_ref_cache(refs->packed);
1212                refs->packed->root = create_dir_entry(refs, "", 0, 0);
1213                f = fopen(packed_refs_file, "r");
1214                if (f) {
1215                        stat_validity_update(&refs->packed->validity, fileno(f));
1216                        read_packed_refs(f, get_ref_dir(refs->packed->root));
1217                        fclose(f);
1218                }
1219        }
1220        return refs->packed;
1221}
1222
1223static struct ref_dir *get_packed_ref_dir(struct packed_ref_cache *packed_ref_cache)
1224{
1225        return get_ref_dir(packed_ref_cache->root);
1226}
1227
1228static struct ref_dir *get_packed_refs(struct files_ref_store *refs)
1229{
1230        return get_packed_ref_dir(get_packed_ref_cache(refs));
1231}
1232
1233/*
1234 * Add a reference to the in-memory packed reference cache.  This may
1235 * only be called while the packed-refs file is locked (see
1236 * lock_packed_refs()).  To actually write the packed-refs file, call
1237 * commit_packed_refs().
1238 */
1239static void add_packed_ref(struct files_ref_store *refs,
1240                           const char *refname, const unsigned char *sha1)
1241{
1242        struct packed_ref_cache *packed_ref_cache = get_packed_ref_cache(refs);
1243
1244        if (!packed_ref_cache->lock)
1245                die("internal error: packed refs not locked");
1246        add_ref(get_packed_ref_dir(packed_ref_cache),
1247                create_ref_entry(refname, sha1, REF_ISPACKED, 1));
1248}
1249
1250/*
1251 * Read the loose references from the namespace dirname into dir
1252 * (without recursing).  dirname must end with '/'.  dir must be the
1253 * directory entry corresponding to dirname.
1254 */
1255static void read_loose_refs(const char *dirname, struct ref_dir *dir)
1256{
1257        struct files_ref_store *refs = dir->ref_store;
1258        DIR *d;
1259        struct dirent *de;
1260        int dirnamelen = strlen(dirname);
1261        struct strbuf refname;
1262        struct strbuf path = STRBUF_INIT;
1263        size_t path_baselen;
1264
1265        files_ref_path(refs, &path, dirname);
1266        path_baselen = path.len;
1267
1268        d = opendir(path.buf);
1269        if (!d) {
1270                strbuf_release(&path);
1271                return;
1272        }
1273
1274        strbuf_init(&refname, dirnamelen + 257);
1275        strbuf_add(&refname, dirname, dirnamelen);
1276
1277        while ((de = readdir(d)) != NULL) {
1278                unsigned char sha1[20];
1279                struct stat st;
1280                int flag;
1281
1282                if (de->d_name[0] == '.')
1283                        continue;
1284                if (ends_with(de->d_name, ".lock"))
1285                        continue;
1286                strbuf_addstr(&refname, de->d_name);
1287                strbuf_addstr(&path, de->d_name);
1288                if (stat(path.buf, &st) < 0) {
1289                        ; /* silently ignore */
1290                } else if (S_ISDIR(st.st_mode)) {
1291                        strbuf_addch(&refname, '/');
1292                        add_entry_to_dir(dir,
1293                                         create_dir_entry(refs, refname.buf,
1294                                                          refname.len, 1));
1295                } else {
1296                        if (!resolve_ref_recursively(&refs->base,
1297                                                     refname.buf,
1298                                                     RESOLVE_REF_READING,
1299                                                     sha1, &flag)) {
1300                                hashclr(sha1);
1301                                flag |= REF_ISBROKEN;
1302                        } else if (is_null_sha1(sha1)) {
1303                                /*
1304                                 * It is so astronomically unlikely
1305                                 * that NULL_SHA1 is the SHA-1 of an
1306                                 * actual object that we consider its
1307                                 * appearance in a loose reference
1308                                 * file to be repo corruption
1309                                 * (probably due to a software bug).
1310                                 */
1311                                flag |= REF_ISBROKEN;
1312                        }
1313
1314                        if (check_refname_format(refname.buf,
1315                                                 REFNAME_ALLOW_ONELEVEL)) {
1316                                if (!refname_is_safe(refname.buf))
1317                                        die("loose refname is dangerous: %s", refname.buf);
1318                                hashclr(sha1);
1319                                flag |= REF_BAD_NAME | REF_ISBROKEN;
1320                        }
1321                        add_entry_to_dir(dir,
1322                                         create_ref_entry(refname.buf, sha1, flag, 0));
1323                }
1324                strbuf_setlen(&refname, dirnamelen);
1325                strbuf_setlen(&path, path_baselen);
1326        }
1327        strbuf_release(&refname);
1328        strbuf_release(&path);
1329        closedir(d);
1330}
1331
1332static struct ref_dir *get_loose_refs(struct files_ref_store *refs)
1333{
1334        if (!refs->loose) {
1335                /*
1336                 * Mark the top-level directory complete because we
1337                 * are about to read the only subdirectory that can
1338                 * hold references:
1339                 */
1340                refs->loose = create_dir_entry(refs, "", 0, 0);
1341                /*
1342                 * Create an incomplete entry for "refs/":
1343                 */
1344                add_entry_to_dir(get_ref_dir(refs->loose),
1345                                 create_dir_entry(refs, "refs/", 5, 1));
1346        }
1347        return get_ref_dir(refs->loose);
1348}
1349
1350/*
1351 * Return the ref_entry for the given refname from the packed
1352 * references.  If it does not exist, return NULL.
1353 */
1354static struct ref_entry *get_packed_ref(struct files_ref_store *refs,
1355                                        const char *refname)
1356{
1357        return find_ref(get_packed_refs(refs), refname);
1358}
1359
1360/*
1361 * A loose ref file doesn't exist; check for a packed ref.
1362 */
1363static int resolve_packed_ref(struct files_ref_store *refs,
1364                              const char *refname,
1365                              unsigned char *sha1, unsigned int *flags)
1366{
1367        struct ref_entry *entry;
1368
1369        /*
1370         * The loose reference file does not exist; check for a packed
1371         * reference.
1372         */
1373        entry = get_packed_ref(refs, refname);
1374        if (entry) {
1375                hashcpy(sha1, entry->u.value.oid.hash);
1376                *flags |= REF_ISPACKED;
1377                return 0;
1378        }
1379        /* refname is not a packed reference. */
1380        return -1;
1381}
1382
1383static int files_read_raw_ref(struct ref_store *ref_store,
1384                              const char *refname, unsigned char *sha1,
1385                              struct strbuf *referent, unsigned int *type)
1386{
1387        struct files_ref_store *refs =
1388                files_downcast(ref_store, 1, "read_raw_ref");
1389        struct strbuf sb_contents = STRBUF_INIT;
1390        struct strbuf sb_path = STRBUF_INIT;
1391        const char *path;
1392        const char *buf;
1393        struct stat st;
1394        int fd;
1395        int ret = -1;
1396        int save_errno;
1397        int remaining_retries = 3;
1398
1399        *type = 0;
1400        strbuf_reset(&sb_path);
1401
1402        files_ref_path(refs, &sb_path, refname);
1403
1404        path = sb_path.buf;
1405
1406stat_ref:
1407        /*
1408         * We might have to loop back here to avoid a race
1409         * condition: first we lstat() the file, then we try
1410         * to read it as a link or as a file.  But if somebody
1411         * changes the type of the file (file <-> directory
1412         * <-> symlink) between the lstat() and reading, then
1413         * we don't want to report that as an error but rather
1414         * try again starting with the lstat().
1415         *
1416         * We'll keep a count of the retries, though, just to avoid
1417         * any confusing situation sending us into an infinite loop.
1418         */
1419
1420        if (remaining_retries-- <= 0)
1421                goto out;
1422
1423        if (lstat(path, &st) < 0) {
1424                if (errno != ENOENT)
1425                        goto out;
1426                if (resolve_packed_ref(refs, refname, sha1, type)) {
1427                        errno = ENOENT;
1428                        goto out;
1429                }
1430                ret = 0;
1431                goto out;
1432        }
1433
1434        /* Follow "normalized" - ie "refs/.." symlinks by hand */
1435        if (S_ISLNK(st.st_mode)) {
1436                strbuf_reset(&sb_contents);
1437                if (strbuf_readlink(&sb_contents, path, 0) < 0) {
1438                        if (errno == ENOENT || errno == EINVAL)
1439                                /* inconsistent with lstat; retry */
1440                                goto stat_ref;
1441                        else
1442                                goto out;
1443                }
1444                if (starts_with(sb_contents.buf, "refs/") &&
1445                    !check_refname_format(sb_contents.buf, 0)) {
1446                        strbuf_swap(&sb_contents, referent);
1447                        *type |= REF_ISSYMREF;
1448                        ret = 0;
1449                        goto out;
1450                }
1451                /*
1452                 * It doesn't look like a refname; fall through to just
1453                 * treating it like a non-symlink, and reading whatever it
1454                 * points to.
1455                 */
1456        }
1457
1458        /* Is it a directory? */
1459        if (S_ISDIR(st.st_mode)) {
1460                /*
1461                 * Even though there is a directory where the loose
1462                 * ref is supposed to be, there could still be a
1463                 * packed ref:
1464                 */
1465                if (resolve_packed_ref(refs, refname, sha1, type)) {
1466                        errno = EISDIR;
1467                        goto out;
1468                }
1469                ret = 0;
1470                goto out;
1471        }
1472
1473        /*
1474         * Anything else, just open it and try to use it as
1475         * a ref
1476         */
1477        fd = open(path, O_RDONLY);
1478        if (fd < 0) {
1479                if (errno == ENOENT && !S_ISLNK(st.st_mode))
1480                        /* inconsistent with lstat; retry */
1481                        goto stat_ref;
1482                else
1483                        goto out;
1484        }
1485        strbuf_reset(&sb_contents);
1486        if (strbuf_read(&sb_contents, fd, 256) < 0) {
1487                int save_errno = errno;
1488                close(fd);
1489                errno = save_errno;
1490                goto out;
1491        }
1492        close(fd);
1493        strbuf_rtrim(&sb_contents);
1494        buf = sb_contents.buf;
1495        if (starts_with(buf, "ref:")) {
1496                buf += 4;
1497                while (isspace(*buf))
1498                        buf++;
1499
1500                strbuf_reset(referent);
1501                strbuf_addstr(referent, buf);
1502                *type |= REF_ISSYMREF;
1503                ret = 0;
1504                goto out;
1505        }
1506
1507        /*
1508         * Please note that FETCH_HEAD has additional
1509         * data after the sha.
1510         */
1511        if (get_sha1_hex(buf, sha1) ||
1512            (buf[40] != '\0' && !isspace(buf[40]))) {
1513                *type |= REF_ISBROKEN;
1514                errno = EINVAL;
1515                goto out;
1516        }
1517
1518        ret = 0;
1519
1520out:
1521        save_errno = errno;
1522        strbuf_release(&sb_path);
1523        strbuf_release(&sb_contents);
1524        errno = save_errno;
1525        return ret;
1526}
1527
1528static void unlock_ref(struct ref_lock *lock)
1529{
1530        /* Do not free lock->lk -- atexit() still looks at them */
1531        if (lock->lk)
1532                rollback_lock_file(lock->lk);
1533        free(lock->ref_name);
1534        free(lock);
1535}
1536
1537/*
1538 * Lock refname, without following symrefs, and set *lock_p to point
1539 * at a newly-allocated lock object. Fill in lock->old_oid, referent,
1540 * and type similarly to read_raw_ref().
1541 *
1542 * The caller must verify that refname is a "safe" reference name (in
1543 * the sense of refname_is_safe()) before calling this function.
1544 *
1545 * If the reference doesn't already exist, verify that refname doesn't
1546 * have a D/F conflict with any existing references. extras and skip
1547 * are passed to verify_refname_available_dir() for this check.
1548 *
1549 * If mustexist is not set and the reference is not found or is
1550 * broken, lock the reference anyway but clear sha1.
1551 *
1552 * Return 0 on success. On failure, write an error message to err and
1553 * return TRANSACTION_NAME_CONFLICT or TRANSACTION_GENERIC_ERROR.
1554 *
1555 * Implementation note: This function is basically
1556 *
1557 *     lock reference
1558 *     read_raw_ref()
1559 *
1560 * but it includes a lot more code to
1561 * - Deal with possible races with other processes
1562 * - Avoid calling verify_refname_available_dir() when it can be
1563 *   avoided, namely if we were successfully able to read the ref
1564 * - Generate informative error messages in the case of failure
1565 */
1566static int lock_raw_ref(struct files_ref_store *refs,
1567                        const char *refname, int mustexist,
1568                        const struct string_list *extras,
1569                        const struct string_list *skip,
1570                        struct ref_lock **lock_p,
1571                        struct strbuf *referent,
1572                        unsigned int *type,
1573                        struct strbuf *err)
1574{
1575        struct ref_lock *lock;
1576        struct strbuf ref_file = STRBUF_INIT;
1577        int attempts_remaining = 3;
1578        int ret = TRANSACTION_GENERIC_ERROR;
1579
1580        assert(err);
1581        files_assert_main_repository(refs, "lock_raw_ref");
1582
1583        *type = 0;
1584
1585        /* First lock the file so it can't change out from under us. */
1586
1587        *lock_p = lock = xcalloc(1, sizeof(*lock));
1588
1589        lock->ref_name = xstrdup(refname);
1590        files_ref_path(refs, &ref_file, refname);
1591
1592retry:
1593        switch (safe_create_leading_directories(ref_file.buf)) {
1594        case SCLD_OK:
1595                break; /* success */
1596        case SCLD_EXISTS:
1597                /*
1598                 * Suppose refname is "refs/foo/bar". We just failed
1599                 * to create the containing directory, "refs/foo",
1600                 * because there was a non-directory in the way. This
1601                 * indicates a D/F conflict, probably because of
1602                 * another reference such as "refs/foo". There is no
1603                 * reason to expect this error to be transitory.
1604                 */
1605                if (verify_refname_available(refname, extras, skip, err)) {
1606                        if (mustexist) {
1607                                /*
1608                                 * To the user the relevant error is
1609                                 * that the "mustexist" reference is
1610                                 * missing:
1611                                 */
1612                                strbuf_reset(err);
1613                                strbuf_addf(err, "unable to resolve reference '%s'",
1614                                            refname);
1615                        } else {
1616                                /*
1617                                 * The error message set by
1618                                 * verify_refname_available_dir() is OK.
1619                                 */
1620                                ret = TRANSACTION_NAME_CONFLICT;
1621                        }
1622                } else {
1623                        /*
1624                         * The file that is in the way isn't a loose
1625                         * reference. Report it as a low-level
1626                         * failure.
1627                         */
1628                        strbuf_addf(err, "unable to create lock file %s.lock; "
1629                                    "non-directory in the way",
1630                                    ref_file.buf);
1631                }
1632                goto error_return;
1633        case SCLD_VANISHED:
1634                /* Maybe another process was tidying up. Try again. */
1635                if (--attempts_remaining > 0)
1636                        goto retry;
1637                /* fall through */
1638        default:
1639                strbuf_addf(err, "unable to create directory for %s",
1640                            ref_file.buf);
1641                goto error_return;
1642        }
1643
1644        if (!lock->lk)
1645                lock->lk = xcalloc(1, sizeof(struct lock_file));
1646
1647        if (hold_lock_file_for_update(lock->lk, ref_file.buf, LOCK_NO_DEREF) < 0) {
1648                if (errno == ENOENT && --attempts_remaining > 0) {
1649                        /*
1650                         * Maybe somebody just deleted one of the
1651                         * directories leading to ref_file.  Try
1652                         * again:
1653                         */
1654                        goto retry;
1655                } else {
1656                        unable_to_lock_message(ref_file.buf, errno, err);
1657                        goto error_return;
1658                }
1659        }
1660
1661        /*
1662         * Now we hold the lock and can read the reference without
1663         * fear that its value will change.
1664         */
1665
1666        if (files_read_raw_ref(&refs->base, refname,
1667                               lock->old_oid.hash, referent, type)) {
1668                if (errno == ENOENT) {
1669                        if (mustexist) {
1670                                /* Garden variety missing reference. */
1671                                strbuf_addf(err, "unable to resolve reference '%s'",
1672                                            refname);
1673                                goto error_return;
1674                        } else {
1675                                /*
1676                                 * Reference is missing, but that's OK. We
1677                                 * know that there is not a conflict with
1678                                 * another loose reference because
1679                                 * (supposing that we are trying to lock
1680                                 * reference "refs/foo/bar"):
1681                                 *
1682                                 * - We were successfully able to create
1683                                 *   the lockfile refs/foo/bar.lock, so we
1684                                 *   know there cannot be a loose reference
1685                                 *   named "refs/foo".
1686                                 *
1687                                 * - We got ENOENT and not EISDIR, so we
1688                                 *   know that there cannot be a loose
1689                                 *   reference named "refs/foo/bar/baz".
1690                                 */
1691                        }
1692                } else if (errno == EISDIR) {
1693                        /*
1694                         * There is a directory in the way. It might have
1695                         * contained references that have been deleted. If
1696                         * we don't require that the reference already
1697                         * exists, try to remove the directory so that it
1698                         * doesn't cause trouble when we want to rename the
1699                         * lockfile into place later.
1700                         */
1701                        if (mustexist) {
1702                                /* Garden variety missing reference. */
1703                                strbuf_addf(err, "unable to resolve reference '%s'",
1704                                            refname);
1705                                goto error_return;
1706                        } else if (remove_dir_recursively(&ref_file,
1707                                                          REMOVE_DIR_EMPTY_ONLY)) {
1708                                if (verify_refname_available_dir(
1709                                                    refname, extras, skip,
1710                                                    get_loose_refs(refs),
1711                                                    err)) {
1712                                        /*
1713                                         * The error message set by
1714                                         * verify_refname_available() is OK.
1715                                         */
1716                                        ret = TRANSACTION_NAME_CONFLICT;
1717                                        goto error_return;
1718                                } else {
1719                                        /*
1720                                         * We can't delete the directory,
1721                                         * but we also don't know of any
1722                                         * references that it should
1723                                         * contain.
1724                                         */
1725                                        strbuf_addf(err, "there is a non-empty directory '%s' "
1726                                                    "blocking reference '%s'",
1727                                                    ref_file.buf, refname);
1728                                        goto error_return;
1729                                }
1730                        }
1731                } else if (errno == EINVAL && (*type & REF_ISBROKEN)) {
1732                        strbuf_addf(err, "unable to resolve reference '%s': "
1733                                    "reference broken", refname);
1734                        goto error_return;
1735                } else {
1736                        strbuf_addf(err, "unable to resolve reference '%s': %s",
1737                                    refname, strerror(errno));
1738                        goto error_return;
1739                }
1740
1741                /*
1742                 * If the ref did not exist and we are creating it,
1743                 * make sure there is no existing packed ref whose
1744                 * name begins with our refname, nor a packed ref
1745                 * whose name is a proper prefix of our refname.
1746                 */
1747                if (verify_refname_available_dir(
1748                                    refname, extras, skip,
1749                                    get_packed_refs(refs),
1750                                    err)) {
1751                        goto error_return;
1752                }
1753        }
1754
1755        ret = 0;
1756        goto out;
1757
1758error_return:
1759        unlock_ref(lock);
1760        *lock_p = NULL;
1761
1762out:
1763        strbuf_release(&ref_file);
1764        return ret;
1765}
1766
1767/*
1768 * Peel the entry (if possible) and return its new peel_status.  If
1769 * repeel is true, re-peel the entry even if there is an old peeled
1770 * value that is already stored in it.
1771 *
1772 * It is OK to call this function with a packed reference entry that
1773 * might be stale and might even refer to an object that has since
1774 * been garbage-collected.  In such a case, if the entry has
1775 * REF_KNOWS_PEELED then leave the status unchanged and return
1776 * PEEL_PEELED or PEEL_NON_TAG; otherwise, return PEEL_INVALID.
1777 */
1778static enum peel_status peel_entry(struct ref_entry *entry, int repeel)
1779{
1780        enum peel_status status;
1781
1782        if (entry->flag & REF_KNOWS_PEELED) {
1783                if (repeel) {
1784                        entry->flag &= ~REF_KNOWS_PEELED;
1785                        oidclr(&entry->u.value.peeled);
1786                } else {
1787                        return is_null_oid(&entry->u.value.peeled) ?
1788                                PEEL_NON_TAG : PEEL_PEELED;
1789                }
1790        }
1791        if (entry->flag & REF_ISBROKEN)
1792                return PEEL_BROKEN;
1793        if (entry->flag & REF_ISSYMREF)
1794                return PEEL_IS_SYMREF;
1795
1796        status = peel_object(entry->u.value.oid.hash, entry->u.value.peeled.hash);
1797        if (status == PEEL_PEELED || status == PEEL_NON_TAG)
1798                entry->flag |= REF_KNOWS_PEELED;
1799        return status;
1800}
1801
1802static int files_peel_ref(struct ref_store *ref_store,
1803                          const char *refname, unsigned char *sha1)
1804{
1805        struct files_ref_store *refs = files_downcast(ref_store, 0, "peel_ref");
1806        int flag;
1807        unsigned char base[20];
1808
1809        if (current_ref_iter && current_ref_iter->refname == refname) {
1810                struct object_id peeled;
1811
1812                if (ref_iterator_peel(current_ref_iter, &peeled))
1813                        return -1;
1814                hashcpy(sha1, peeled.hash);
1815                return 0;
1816        }
1817
1818        if (read_ref_full(refname, RESOLVE_REF_READING, base, &flag))
1819                return -1;
1820
1821        /*
1822         * If the reference is packed, read its ref_entry from the
1823         * cache in the hope that we already know its peeled value.
1824         * We only try this optimization on packed references because
1825         * (a) forcing the filling of the loose reference cache could
1826         * be expensive and (b) loose references anyway usually do not
1827         * have REF_KNOWS_PEELED.
1828         */
1829        if (flag & REF_ISPACKED) {
1830                struct ref_entry *r = get_packed_ref(refs, refname);
1831                if (r) {
1832                        if (peel_entry(r, 0))
1833                                return -1;
1834                        hashcpy(sha1, r->u.value.peeled.hash);
1835                        return 0;
1836                }
1837        }
1838
1839        return peel_object(base, sha1);
1840}
1841
1842struct files_ref_iterator {
1843        struct ref_iterator base;
1844
1845        struct packed_ref_cache *packed_ref_cache;
1846        struct ref_iterator *iter0;
1847        unsigned int flags;
1848};
1849
1850static int files_ref_iterator_advance(struct ref_iterator *ref_iterator)
1851{
1852        struct files_ref_iterator *iter =
1853                (struct files_ref_iterator *)ref_iterator;
1854        int ok;
1855
1856        while ((ok = ref_iterator_advance(iter->iter0)) == ITER_OK) {
1857                if (iter->flags & DO_FOR_EACH_PER_WORKTREE_ONLY &&
1858                    ref_type(iter->iter0->refname) != REF_TYPE_PER_WORKTREE)
1859                        continue;
1860
1861                if (!(iter->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
1862                    !ref_resolves_to_object(iter->iter0->refname,
1863                                            iter->iter0->oid,
1864                                            iter->iter0->flags))
1865                        continue;
1866
1867                iter->base.refname = iter->iter0->refname;
1868                iter->base.oid = iter->iter0->oid;
1869                iter->base.flags = iter->iter0->flags;
1870                return ITER_OK;
1871        }
1872
1873        iter->iter0 = NULL;
1874        if (ref_iterator_abort(ref_iterator) != ITER_DONE)
1875                ok = ITER_ERROR;
1876
1877        return ok;
1878}
1879
1880static int files_ref_iterator_peel(struct ref_iterator *ref_iterator,
1881                                   struct object_id *peeled)
1882{
1883        struct files_ref_iterator *iter =
1884                (struct files_ref_iterator *)ref_iterator;
1885
1886        return ref_iterator_peel(iter->iter0, peeled);
1887}
1888
1889static int files_ref_iterator_abort(struct ref_iterator *ref_iterator)
1890{
1891        struct files_ref_iterator *iter =
1892                (struct files_ref_iterator *)ref_iterator;
1893        int ok = ITER_DONE;
1894
1895        if (iter->iter0)
1896                ok = ref_iterator_abort(iter->iter0);
1897
1898        release_packed_ref_cache(iter->packed_ref_cache);
1899        base_ref_iterator_free(ref_iterator);
1900        return ok;
1901}
1902
1903static struct ref_iterator_vtable files_ref_iterator_vtable = {
1904        files_ref_iterator_advance,
1905        files_ref_iterator_peel,
1906        files_ref_iterator_abort
1907};
1908
1909static struct ref_iterator *files_ref_iterator_begin(
1910                struct ref_store *ref_store,
1911                const char *prefix, unsigned int flags)
1912{
1913        struct files_ref_store *refs =
1914                files_downcast(ref_store, 1, "ref_iterator_begin");
1915        struct ref_dir *loose_dir, *packed_dir;
1916        struct ref_iterator *loose_iter, *packed_iter;
1917        struct files_ref_iterator *iter;
1918        struct ref_iterator *ref_iterator;
1919
1920        if (ref_paranoia < 0)
1921                ref_paranoia = git_env_bool("GIT_REF_PARANOIA", 0);
1922        if (ref_paranoia)
1923                flags |= DO_FOR_EACH_INCLUDE_BROKEN;
1924
1925        iter = xcalloc(1, sizeof(*iter));
1926        ref_iterator = &iter->base;
1927        base_ref_iterator_init(ref_iterator, &files_ref_iterator_vtable);
1928
1929        /*
1930         * We must make sure that all loose refs are read before
1931         * accessing the packed-refs file; this avoids a race
1932         * condition if loose refs are migrated to the packed-refs
1933         * file by a simultaneous process, but our in-memory view is
1934         * from before the migration. We ensure this as follows:
1935         * First, we call prime_ref_dir(), which pre-reads the loose
1936         * references for the subtree into the cache. (If they've
1937         * already been read, that's OK; we only need to guarantee
1938         * that they're read before the packed refs, not *how much*
1939         * before.) After that, we call get_packed_ref_cache(), which
1940         * internally checks whether the packed-ref cache is up to
1941         * date with what is on disk, and re-reads it if not.
1942         */
1943
1944        loose_dir = get_loose_refs(refs);
1945
1946        if (prefix && *prefix)
1947                loose_dir = find_containing_dir(loose_dir, prefix, 0);
1948
1949        if (loose_dir) {
1950                prime_ref_dir(loose_dir);
1951                loose_iter = cache_ref_iterator_begin(loose_dir);
1952        } else {
1953                /* There's nothing to iterate over. */
1954                loose_iter = empty_ref_iterator_begin();
1955        }
1956
1957        iter->packed_ref_cache = get_packed_ref_cache(refs);
1958        acquire_packed_ref_cache(iter->packed_ref_cache);
1959        packed_dir = get_packed_ref_dir(iter->packed_ref_cache);
1960
1961        if (prefix && *prefix)
1962                packed_dir = find_containing_dir(packed_dir, prefix, 0);
1963
1964        if (packed_dir) {
1965                packed_iter = cache_ref_iterator_begin(packed_dir);
1966        } else {
1967                /* There's nothing to iterate over. */
1968                packed_iter = empty_ref_iterator_begin();
1969        }
1970
1971        iter->iter0 = overlay_ref_iterator_begin(loose_iter, packed_iter);
1972        iter->flags = flags;
1973
1974        return ref_iterator;
1975}
1976
1977/*
1978 * Verify that the reference locked by lock has the value old_sha1.
1979 * Fail if the reference doesn't exist and mustexist is set. Return 0
1980 * on success. On error, write an error message to err, set errno, and
1981 * return a negative value.
1982 */
1983static int verify_lock(struct ref_lock *lock,
1984                       const unsigned char *old_sha1, int mustexist,
1985                       struct strbuf *err)
1986{
1987        assert(err);
1988
1989        if (read_ref_full(lock->ref_name,
1990                          mustexist ? RESOLVE_REF_READING : 0,
1991                          lock->old_oid.hash, NULL)) {
1992                if (old_sha1) {
1993                        int save_errno = errno;
1994                        strbuf_addf(err, "can't verify ref '%s'", lock->ref_name);
1995                        errno = save_errno;
1996                        return -1;
1997                } else {
1998                        oidclr(&lock->old_oid);
1999                        return 0;
2000                }
2001        }
2002        if (old_sha1 && hashcmp(lock->old_oid.hash, old_sha1)) {
2003                strbuf_addf(err, "ref '%s' is at %s but expected %s",
2004                            lock->ref_name,
2005                            oid_to_hex(&lock->old_oid),
2006                            sha1_to_hex(old_sha1));
2007                errno = EBUSY;
2008                return -1;
2009        }
2010        return 0;
2011}
2012
2013static int remove_empty_directories(struct strbuf *path)
2014{
2015        /*
2016         * we want to create a file but there is a directory there;
2017         * if that is an empty directory (or a directory that contains
2018         * only empty directories), remove them.
2019         */
2020        return remove_dir_recursively(path, REMOVE_DIR_EMPTY_ONLY);
2021}
2022
2023static int create_reflock(const char *path, void *cb)
2024{
2025        struct lock_file *lk = cb;
2026
2027        return hold_lock_file_for_update(lk, path, LOCK_NO_DEREF) < 0 ? -1 : 0;
2028}
2029
2030/*
2031 * Locks a ref returning the lock on success and NULL on failure.
2032 * On failure errno is set to something meaningful.
2033 */
2034static struct ref_lock *lock_ref_sha1_basic(struct files_ref_store *refs,
2035                                            const char *refname,
2036                                            const unsigned char *old_sha1,
2037                                            const struct string_list *extras,
2038                                            const struct string_list *skip,
2039                                            unsigned int flags, int *type,
2040                                            struct strbuf *err)
2041{
2042        struct strbuf ref_file = STRBUF_INIT;
2043        struct ref_lock *lock;
2044        int last_errno = 0;
2045        int mustexist = (old_sha1 && !is_null_sha1(old_sha1));
2046        int resolve_flags = RESOLVE_REF_NO_RECURSE;
2047        int resolved;
2048
2049        files_assert_main_repository(refs, "lock_ref_sha1_basic");
2050        assert(err);
2051
2052        lock = xcalloc(1, sizeof(struct ref_lock));
2053
2054        if (mustexist)
2055                resolve_flags |= RESOLVE_REF_READING;
2056        if (flags & REF_DELETING)
2057                resolve_flags |= RESOLVE_REF_ALLOW_BAD_NAME;
2058
2059        files_ref_path(refs, &ref_file, refname);
2060        resolved = !!resolve_ref_unsafe(refname, resolve_flags,
2061                                        lock->old_oid.hash, type);
2062        if (!resolved && errno == EISDIR) {
2063                /*
2064                 * we are trying to lock foo but we used to
2065                 * have foo/bar which now does not exist;
2066                 * it is normal for the empty directory 'foo'
2067                 * to remain.
2068                 */
2069                if (remove_empty_directories(&ref_file)) {
2070                        last_errno = errno;
2071                        if (!verify_refname_available_dir(
2072                                            refname, extras, skip,
2073                                            get_loose_refs(refs), err))
2074                                strbuf_addf(err, "there are still refs under '%s'",
2075                                            refname);
2076                        goto error_return;
2077                }
2078                resolved = !!resolve_ref_unsafe(refname, resolve_flags,
2079                                                lock->old_oid.hash, type);
2080        }
2081        if (!resolved) {
2082                last_errno = errno;
2083                if (last_errno != ENOTDIR ||
2084                    !verify_refname_available_dir(
2085                                    refname, extras, skip,
2086                                    get_loose_refs(refs), err))
2087                        strbuf_addf(err, "unable to resolve reference '%s': %s",
2088                                    refname, strerror(last_errno));
2089
2090                goto error_return;
2091        }
2092
2093        /*
2094         * If the ref did not exist and we are creating it, make sure
2095         * there is no existing packed ref whose name begins with our
2096         * refname, nor a packed ref whose name is a proper prefix of
2097         * our refname.
2098         */
2099        if (is_null_oid(&lock->old_oid) &&
2100            verify_refname_available_dir(refname, extras, skip,
2101                                         get_packed_refs(refs),
2102                                         err)) {
2103                last_errno = ENOTDIR;
2104                goto error_return;
2105        }
2106
2107        lock->lk = xcalloc(1, sizeof(struct lock_file));
2108
2109        lock->ref_name = xstrdup(refname);
2110
2111        if (raceproof_create_file(ref_file.buf, create_reflock, lock->lk)) {
2112                last_errno = errno;
2113                unable_to_lock_message(ref_file.buf, errno, err);
2114                goto error_return;
2115        }
2116
2117        if (verify_lock(lock, old_sha1, mustexist, err)) {
2118                last_errno = errno;
2119                goto error_return;
2120        }
2121        goto out;
2122
2123 error_return:
2124        unlock_ref(lock);
2125        lock = NULL;
2126
2127 out:
2128        strbuf_release(&ref_file);
2129        errno = last_errno;
2130        return lock;
2131}
2132
2133/*
2134 * Write an entry to the packed-refs file for the specified refname.
2135 * If peeled is non-NULL, write it as the entry's peeled value.
2136 */
2137static void write_packed_entry(FILE *fh, char *refname, unsigned char *sha1,
2138                               unsigned char *peeled)
2139{
2140        fprintf_or_die(fh, "%s %s\n", sha1_to_hex(sha1), refname);
2141        if (peeled)
2142                fprintf_or_die(fh, "^%s\n", sha1_to_hex(peeled));
2143}
2144
2145/*
2146 * An each_ref_entry_fn that writes the entry to a packed-refs file.
2147 */
2148static int write_packed_entry_fn(struct ref_entry *entry, void *cb_data)
2149{
2150        enum peel_status peel_status = peel_entry(entry, 0);
2151
2152        if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2153                error("internal error: %s is not a valid packed reference!",
2154                      entry->name);
2155        write_packed_entry(cb_data, entry->name, entry->u.value.oid.hash,
2156                           peel_status == PEEL_PEELED ?
2157                           entry->u.value.peeled.hash : NULL);
2158        return 0;
2159}
2160
2161/*
2162 * Lock the packed-refs file for writing. Flags is passed to
2163 * hold_lock_file_for_update(). Return 0 on success. On errors, set
2164 * errno appropriately and return a nonzero value.
2165 */
2166static int lock_packed_refs(struct files_ref_store *refs, int flags)
2167{
2168        static int timeout_configured = 0;
2169        static int timeout_value = 1000;
2170        struct packed_ref_cache *packed_ref_cache;
2171
2172        files_assert_main_repository(refs, "lock_packed_refs");
2173
2174        if (!timeout_configured) {
2175                git_config_get_int("core.packedrefstimeout", &timeout_value);
2176                timeout_configured = 1;
2177        }
2178
2179        if (hold_lock_file_for_update_timeout(
2180                            &packlock, files_packed_refs_path(refs),
2181                            flags, timeout_value) < 0)
2182                return -1;
2183        /*
2184         * Get the current packed-refs while holding the lock.  If the
2185         * packed-refs file has been modified since we last read it,
2186         * this will automatically invalidate the cache and re-read
2187         * the packed-refs file.
2188         */
2189        packed_ref_cache = get_packed_ref_cache(refs);
2190        packed_ref_cache->lock = &packlock;
2191        /* Increment the reference count to prevent it from being freed: */
2192        acquire_packed_ref_cache(packed_ref_cache);
2193        return 0;
2194}
2195
2196/*
2197 * Write the current version of the packed refs cache from memory to
2198 * disk. The packed-refs file must already be locked for writing (see
2199 * lock_packed_refs()). Return zero on success. On errors, set errno
2200 * and return a nonzero value
2201 */
2202static int commit_packed_refs(struct files_ref_store *refs)
2203{
2204        struct packed_ref_cache *packed_ref_cache =
2205                get_packed_ref_cache(refs);
2206        int error = 0;
2207        int save_errno = 0;
2208        FILE *out;
2209
2210        files_assert_main_repository(refs, "commit_packed_refs");
2211
2212        if (!packed_ref_cache->lock)
2213                die("internal error: packed-refs not locked");
2214
2215        out = fdopen_lock_file(packed_ref_cache->lock, "w");
2216        if (!out)
2217                die_errno("unable to fdopen packed-refs descriptor");
2218
2219        fprintf_or_die(out, "%s", PACKED_REFS_HEADER);
2220        do_for_each_entry_in_dir(get_packed_ref_dir(packed_ref_cache),
2221                                 0, write_packed_entry_fn, out);
2222
2223        if (commit_lock_file(packed_ref_cache->lock)) {
2224                save_errno = errno;
2225                error = -1;
2226        }
2227        packed_ref_cache->lock = NULL;
2228        release_packed_ref_cache(packed_ref_cache);
2229        errno = save_errno;
2230        return error;
2231}
2232
2233/*
2234 * Rollback the lockfile for the packed-refs file, and discard the
2235 * in-memory packed reference cache.  (The packed-refs file will be
2236 * read anew if it is needed again after this function is called.)
2237 */
2238static void rollback_packed_refs(struct files_ref_store *refs)
2239{
2240        struct packed_ref_cache *packed_ref_cache =
2241                get_packed_ref_cache(refs);
2242
2243        files_assert_main_repository(refs, "rollback_packed_refs");
2244
2245        if (!packed_ref_cache->lock)
2246                die("internal error: packed-refs not locked");
2247        rollback_lock_file(packed_ref_cache->lock);
2248        packed_ref_cache->lock = NULL;
2249        release_packed_ref_cache(packed_ref_cache);
2250        clear_packed_ref_cache(refs);
2251}
2252
2253struct ref_to_prune {
2254        struct ref_to_prune *next;
2255        unsigned char sha1[20];
2256        char name[FLEX_ARRAY];
2257};
2258
2259struct pack_refs_cb_data {
2260        unsigned int flags;
2261        struct ref_dir *packed_refs;
2262        struct ref_to_prune *ref_to_prune;
2263};
2264
2265/*
2266 * An each_ref_entry_fn that is run over loose references only.  If
2267 * the loose reference can be packed, add an entry in the packed ref
2268 * cache.  If the reference should be pruned, also add it to
2269 * ref_to_prune in the pack_refs_cb_data.
2270 */
2271static int pack_if_possible_fn(struct ref_entry *entry, void *cb_data)
2272{
2273        struct pack_refs_cb_data *cb = cb_data;
2274        enum peel_status peel_status;
2275        struct ref_entry *packed_entry;
2276        int is_tag_ref = starts_with(entry->name, "refs/tags/");
2277
2278        /* Do not pack per-worktree refs: */
2279        if (ref_type(entry->name) != REF_TYPE_NORMAL)
2280                return 0;
2281
2282        /* ALWAYS pack tags */
2283        if (!(cb->flags & PACK_REFS_ALL) && !is_tag_ref)
2284                return 0;
2285
2286        /* Do not pack symbolic or broken refs: */
2287        if ((entry->flag & REF_ISSYMREF) || !entry_resolves_to_object(entry))
2288                return 0;
2289
2290        /* Add a packed ref cache entry equivalent to the loose entry. */
2291        peel_status = peel_entry(entry, 1);
2292        if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2293                die("internal error peeling reference %s (%s)",
2294                    entry->name, oid_to_hex(&entry->u.value.oid));
2295        packed_entry = find_ref(cb->packed_refs, entry->name);
2296        if (packed_entry) {
2297                /* Overwrite existing packed entry with info from loose entry */
2298                packed_entry->flag = REF_ISPACKED | REF_KNOWS_PEELED;
2299                oidcpy(&packed_entry->u.value.oid, &entry->u.value.oid);
2300        } else {
2301                packed_entry = create_ref_entry(entry->name, entry->u.value.oid.hash,
2302                                                REF_ISPACKED | REF_KNOWS_PEELED, 0);
2303                add_ref(cb->packed_refs, packed_entry);
2304        }
2305        oidcpy(&packed_entry->u.value.peeled, &entry->u.value.peeled);
2306
2307        /* Schedule the loose reference for pruning if requested. */
2308        if ((cb->flags & PACK_REFS_PRUNE)) {
2309                struct ref_to_prune *n;
2310                FLEX_ALLOC_STR(n, name, entry->name);
2311                hashcpy(n->sha1, entry->u.value.oid.hash);
2312                n->next = cb->ref_to_prune;
2313                cb->ref_to_prune = n;
2314        }
2315        return 0;
2316}
2317
2318enum {
2319        REMOVE_EMPTY_PARENTS_REF = 0x01,
2320        REMOVE_EMPTY_PARENTS_REFLOG = 0x02
2321};
2322
2323/*
2324 * Remove empty parent directories associated with the specified
2325 * reference and/or its reflog, but spare [logs/]refs/ and immediate
2326 * subdirs. flags is a combination of REMOVE_EMPTY_PARENTS_REF and/or
2327 * REMOVE_EMPTY_PARENTS_REFLOG.
2328 */
2329static void try_remove_empty_parents(struct files_ref_store *refs,
2330                                     const char *refname,
2331                                     unsigned int flags)
2332{
2333        struct strbuf buf = STRBUF_INIT;
2334        struct strbuf sb = STRBUF_INIT;
2335        char *p, *q;
2336        int i;
2337
2338        strbuf_addstr(&buf, refname);
2339        p = buf.buf;
2340        for (i = 0; i < 2; i++) { /* refs/{heads,tags,...}/ */
2341                while (*p && *p != '/')
2342                        p++;
2343                /* tolerate duplicate slashes; see check_refname_format() */
2344                while (*p == '/')
2345                        p++;
2346        }
2347        q = buf.buf + buf.len;
2348        while (flags & (REMOVE_EMPTY_PARENTS_REF | REMOVE_EMPTY_PARENTS_REFLOG)) {
2349                while (q > p && *q != '/')
2350                        q--;
2351                while (q > p && *(q-1) == '/')
2352                        q--;
2353                if (q == p)
2354                        break;
2355                strbuf_setlen(&buf, q - buf.buf);
2356
2357                strbuf_reset(&sb);
2358                files_ref_path(refs, &sb, buf.buf);
2359                if ((flags & REMOVE_EMPTY_PARENTS_REF) && rmdir(sb.buf))
2360                        flags &= ~REMOVE_EMPTY_PARENTS_REF;
2361
2362                strbuf_reset(&sb);
2363                files_reflog_path(refs, &sb, buf.buf);
2364                if ((flags & REMOVE_EMPTY_PARENTS_REFLOG) && rmdir(sb.buf))
2365                        flags &= ~REMOVE_EMPTY_PARENTS_REFLOG;
2366        }
2367        strbuf_release(&buf);
2368        strbuf_release(&sb);
2369}
2370
2371/* make sure nobody touched the ref, and unlink */
2372static void prune_ref(struct ref_to_prune *r)
2373{
2374        struct ref_transaction *transaction;
2375        struct strbuf err = STRBUF_INIT;
2376
2377        if (check_refname_format(r->name, 0))
2378                return;
2379
2380        transaction = ref_transaction_begin(&err);
2381        if (!transaction ||
2382            ref_transaction_delete(transaction, r->name, r->sha1,
2383                                   REF_ISPRUNING | REF_NODEREF, NULL, &err) ||
2384            ref_transaction_commit(transaction, &err)) {
2385                ref_transaction_free(transaction);
2386                error("%s", err.buf);
2387                strbuf_release(&err);
2388                return;
2389        }
2390        ref_transaction_free(transaction);
2391        strbuf_release(&err);
2392}
2393
2394static void prune_refs(struct ref_to_prune *r)
2395{
2396        while (r) {
2397                prune_ref(r);
2398                r = r->next;
2399        }
2400}
2401
2402static int files_pack_refs(struct ref_store *ref_store, unsigned int flags)
2403{
2404        struct files_ref_store *refs =
2405                files_downcast(ref_store, 0, "pack_refs");
2406        struct pack_refs_cb_data cbdata;
2407
2408        memset(&cbdata, 0, sizeof(cbdata));
2409        cbdata.flags = flags;
2410
2411        lock_packed_refs(refs, LOCK_DIE_ON_ERROR);
2412        cbdata.packed_refs = get_packed_refs(refs);
2413
2414        do_for_each_entry_in_dir(get_loose_refs(refs), 0,
2415                                 pack_if_possible_fn, &cbdata);
2416
2417        if (commit_packed_refs(refs))
2418                die_errno("unable to overwrite old ref-pack file");
2419
2420        prune_refs(cbdata.ref_to_prune);
2421        return 0;
2422}
2423
2424/*
2425 * Rewrite the packed-refs file, omitting any refs listed in
2426 * 'refnames'. On error, leave packed-refs unchanged, write an error
2427 * message to 'err', and return a nonzero value.
2428 *
2429 * The refs in 'refnames' needn't be sorted. `err` must not be NULL.
2430 */
2431static int repack_without_refs(struct files_ref_store *refs,
2432                               struct string_list *refnames, struct strbuf *err)
2433{
2434        struct ref_dir *packed;
2435        struct string_list_item *refname;
2436        int ret, needs_repacking = 0, removed = 0;
2437
2438        files_assert_main_repository(refs, "repack_without_refs");
2439        assert(err);
2440
2441        /* Look for a packed ref */
2442        for_each_string_list_item(refname, refnames) {
2443                if (get_packed_ref(refs, refname->string)) {
2444                        needs_repacking = 1;
2445                        break;
2446                }
2447        }
2448
2449        /* Avoid locking if we have nothing to do */
2450        if (!needs_repacking)
2451                return 0; /* no refname exists in packed refs */
2452
2453        if (lock_packed_refs(refs, 0)) {
2454                unable_to_lock_message(files_packed_refs_path(refs), errno, err);
2455                return -1;
2456        }
2457        packed = get_packed_refs(refs);
2458
2459        /* Remove refnames from the cache */
2460        for_each_string_list_item(refname, refnames)
2461                if (remove_entry(packed, refname->string) != -1)
2462                        removed = 1;
2463        if (!removed) {
2464                /*
2465                 * All packed entries disappeared while we were
2466                 * acquiring the lock.
2467                 */
2468                rollback_packed_refs(refs);
2469                return 0;
2470        }
2471
2472        /* Write what remains */
2473        ret = commit_packed_refs(refs);
2474        if (ret)
2475                strbuf_addf(err, "unable to overwrite old ref-pack file: %s",
2476                            strerror(errno));
2477        return ret;
2478}
2479
2480static int files_delete_refs(struct ref_store *ref_store,
2481                             struct string_list *refnames, unsigned int flags)
2482{
2483        struct files_ref_store *refs =
2484                files_downcast(ref_store, 0, "delete_refs");
2485        struct strbuf err = STRBUF_INIT;
2486        int i, result = 0;
2487
2488        if (!refnames->nr)
2489                return 0;
2490
2491        result = repack_without_refs(refs, refnames, &err);
2492        if (result) {
2493                /*
2494                 * If we failed to rewrite the packed-refs file, then
2495                 * it is unsafe to try to remove loose refs, because
2496                 * doing so might expose an obsolete packed value for
2497                 * a reference that might even point at an object that
2498                 * has been garbage collected.
2499                 */
2500                if (refnames->nr == 1)
2501                        error(_("could not delete reference %s: %s"),
2502                              refnames->items[0].string, err.buf);
2503                else
2504                        error(_("could not delete references: %s"), err.buf);
2505
2506                goto out;
2507        }
2508
2509        for (i = 0; i < refnames->nr; i++) {
2510                const char *refname = refnames->items[i].string;
2511
2512                if (delete_ref(NULL, refname, NULL, flags))
2513                        result |= error(_("could not remove reference %s"), refname);
2514        }
2515
2516out:
2517        strbuf_release(&err);
2518        return result;
2519}
2520
2521/*
2522 * People using contrib's git-new-workdir have .git/logs/refs ->
2523 * /some/other/path/.git/logs/refs, and that may live on another device.
2524 *
2525 * IOW, to avoid cross device rename errors, the temporary renamed log must
2526 * live into logs/refs.
2527 */
2528#define TMP_RENAMED_LOG  "refs/.tmp-renamed-log"
2529
2530struct rename_cb {
2531        const char *tmp_renamed_log;
2532        int true_errno;
2533};
2534
2535static int rename_tmp_log_callback(const char *path, void *cb_data)
2536{
2537        struct rename_cb *cb = cb_data;
2538
2539        if (rename(cb->tmp_renamed_log, path)) {
2540                /*
2541                 * rename(a, b) when b is an existing directory ought
2542                 * to result in ISDIR, but Solaris 5.8 gives ENOTDIR.
2543                 * Sheesh. Record the true errno for error reporting,
2544                 * but report EISDIR to raceproof_create_file() so
2545                 * that it knows to retry.
2546                 */
2547                cb->true_errno = errno;
2548                if (errno == ENOTDIR)
2549                        errno = EISDIR;
2550                return -1;
2551        } else {
2552                return 0;
2553        }
2554}
2555
2556static int rename_tmp_log(struct files_ref_store *refs, const char *newrefname)
2557{
2558        struct strbuf path = STRBUF_INIT;
2559        struct strbuf tmp = STRBUF_INIT;
2560        struct rename_cb cb;
2561        int ret;
2562
2563        files_reflog_path(refs, &path, newrefname);
2564        files_reflog_path(refs, &tmp, TMP_RENAMED_LOG);
2565        cb.tmp_renamed_log = tmp.buf;
2566        ret = raceproof_create_file(path.buf, rename_tmp_log_callback, &cb);
2567        if (ret) {
2568                if (errno == EISDIR)
2569                        error("directory not empty: %s", path.buf);
2570                else
2571                        error("unable to move logfile %s to %s: %s",
2572                              tmp.buf, path.buf,
2573                              strerror(cb.true_errno));
2574        }
2575
2576        strbuf_release(&path);
2577        strbuf_release(&tmp);
2578        return ret;
2579}
2580
2581static int files_verify_refname_available(struct ref_store *ref_store,
2582                                          const char *newname,
2583                                          const struct string_list *extras,
2584                                          const struct string_list *skip,
2585                                          struct strbuf *err)
2586{
2587        struct files_ref_store *refs =
2588                files_downcast(ref_store, 1, "verify_refname_available");
2589        struct ref_dir *packed_refs = get_packed_refs(refs);
2590        struct ref_dir *loose_refs = get_loose_refs(refs);
2591
2592        if (verify_refname_available_dir(newname, extras, skip,
2593                                         packed_refs, err) ||
2594            verify_refname_available_dir(newname, extras, skip,
2595                                         loose_refs, err))
2596                return -1;
2597
2598        return 0;
2599}
2600
2601static int write_ref_to_lockfile(struct ref_lock *lock,
2602                                 const unsigned char *sha1, struct strbuf *err);
2603static int commit_ref_update(struct files_ref_store *refs,
2604                             struct ref_lock *lock,
2605                             const unsigned char *sha1, const char *logmsg,
2606                             struct strbuf *err);
2607
2608static int files_rename_ref(struct ref_store *ref_store,
2609                            const char *oldrefname, const char *newrefname,
2610                            const char *logmsg)
2611{
2612        struct files_ref_store *refs =
2613                files_downcast(ref_store, 0, "rename_ref");
2614        unsigned char sha1[20], orig_sha1[20];
2615        int flag = 0, logmoved = 0;
2616        struct ref_lock *lock;
2617        struct stat loginfo;
2618        struct strbuf sb_oldref = STRBUF_INIT;
2619        struct strbuf sb_newref = STRBUF_INIT;
2620        struct strbuf tmp_renamed_log = STRBUF_INIT;
2621        int log, ret;
2622        struct strbuf err = STRBUF_INIT;
2623
2624        files_reflog_path(refs, &sb_oldref, oldrefname);
2625        files_reflog_path(refs, &sb_newref, newrefname);
2626        files_reflog_path(refs, &tmp_renamed_log, TMP_RENAMED_LOG);
2627
2628        log = !lstat(sb_oldref.buf, &loginfo);
2629        if (log && S_ISLNK(loginfo.st_mode)) {
2630                ret = error("reflog for %s is a symlink", oldrefname);
2631                goto out;
2632        }
2633
2634        if (!resolve_ref_unsafe(oldrefname, RESOLVE_REF_READING | RESOLVE_REF_NO_RECURSE,
2635                                orig_sha1, &flag)) {
2636                ret = error("refname %s not found", oldrefname);
2637                goto out;
2638        }
2639
2640        if (flag & REF_ISSYMREF) {
2641                ret = error("refname %s is a symbolic ref, renaming it is not supported",
2642                            oldrefname);
2643                goto out;
2644        }
2645        if (!rename_ref_available(oldrefname, newrefname)) {
2646                ret = 1;
2647                goto out;
2648        }
2649
2650        if (log && rename(sb_oldref.buf, tmp_renamed_log.buf)) {
2651                ret = error("unable to move logfile logs/%s to logs/"TMP_RENAMED_LOG": %s",
2652                            oldrefname, strerror(errno));
2653                goto out;
2654        }
2655
2656        if (delete_ref(logmsg, oldrefname, orig_sha1, REF_NODEREF)) {
2657                error("unable to delete old %s", oldrefname);
2658                goto rollback;
2659        }
2660
2661        /*
2662         * Since we are doing a shallow lookup, sha1 is not the
2663         * correct value to pass to delete_ref as old_sha1. But that
2664         * doesn't matter, because an old_sha1 check wouldn't add to
2665         * the safety anyway; we want to delete the reference whatever
2666         * its current value.
2667         */
2668        if (!read_ref_full(newrefname, RESOLVE_REF_READING | RESOLVE_REF_NO_RECURSE,
2669                           sha1, NULL) &&
2670            delete_ref(NULL, newrefname, NULL, REF_NODEREF)) {
2671                if (errno == EISDIR) {
2672                        struct strbuf path = STRBUF_INIT;
2673                        int result;
2674
2675                        files_ref_path(refs, &path, newrefname);
2676                        result = remove_empty_directories(&path);
2677                        strbuf_release(&path);
2678
2679                        if (result) {
2680                                error("Directory not empty: %s", newrefname);
2681                                goto rollback;
2682                        }
2683                } else {
2684                        error("unable to delete existing %s", newrefname);
2685                        goto rollback;
2686                }
2687        }
2688
2689        if (log && rename_tmp_log(refs, newrefname))
2690                goto rollback;
2691
2692        logmoved = log;
2693
2694        lock = lock_ref_sha1_basic(refs, newrefname, NULL, NULL, NULL,
2695                                   REF_NODEREF, NULL, &err);
2696        if (!lock) {
2697                error("unable to rename '%s' to '%s': %s", oldrefname, newrefname, err.buf);
2698                strbuf_release(&err);
2699                goto rollback;
2700        }
2701        hashcpy(lock->old_oid.hash, orig_sha1);
2702
2703        if (write_ref_to_lockfile(lock, orig_sha1, &err) ||
2704            commit_ref_update(refs, lock, orig_sha1, logmsg, &err)) {
2705                error("unable to write current sha1 into %s: %s", newrefname, err.buf);
2706                strbuf_release(&err);
2707                goto rollback;
2708        }
2709
2710        ret = 0;
2711        goto out;
2712
2713 rollback:
2714        lock = lock_ref_sha1_basic(refs, oldrefname, NULL, NULL, NULL,
2715                                   REF_NODEREF, NULL, &err);
2716        if (!lock) {
2717                error("unable to lock %s for rollback: %s", oldrefname, err.buf);
2718                strbuf_release(&err);
2719                goto rollbacklog;
2720        }
2721
2722        flag = log_all_ref_updates;
2723        log_all_ref_updates = LOG_REFS_NONE;
2724        if (write_ref_to_lockfile(lock, orig_sha1, &err) ||
2725            commit_ref_update(refs, lock, orig_sha1, NULL, &err)) {
2726                error("unable to write current sha1 into %s: %s", oldrefname, err.buf);
2727                strbuf_release(&err);
2728        }
2729        log_all_ref_updates = flag;
2730
2731 rollbacklog:
2732        if (logmoved && rename(sb_newref.buf, sb_oldref.buf))
2733                error("unable to restore logfile %s from %s: %s",
2734                        oldrefname, newrefname, strerror(errno));
2735        if (!logmoved && log &&
2736            rename(tmp_renamed_log.buf, sb_oldref.buf))
2737                error("unable to restore logfile %s from logs/"TMP_RENAMED_LOG": %s",
2738                        oldrefname, strerror(errno));
2739        ret = 1;
2740 out:
2741        strbuf_release(&sb_newref);
2742        strbuf_release(&sb_oldref);
2743        strbuf_release(&tmp_renamed_log);
2744
2745        return ret;
2746}
2747
2748static int close_ref(struct ref_lock *lock)
2749{
2750        if (close_lock_file(lock->lk))
2751                return -1;
2752        return 0;
2753}
2754
2755static int commit_ref(struct ref_lock *lock)
2756{
2757        char *path = get_locked_file_path(lock->lk);
2758        struct stat st;
2759
2760        if (!lstat(path, &st) && S_ISDIR(st.st_mode)) {
2761                /*
2762                 * There is a directory at the path we want to rename
2763                 * the lockfile to. Hopefully it is empty; try to
2764                 * delete it.
2765                 */
2766                size_t len = strlen(path);
2767                struct strbuf sb_path = STRBUF_INIT;
2768
2769                strbuf_attach(&sb_path, path, len, len);
2770
2771                /*
2772                 * If this fails, commit_lock_file() will also fail
2773                 * and will report the problem.
2774                 */
2775                remove_empty_directories(&sb_path);
2776                strbuf_release(&sb_path);
2777        } else {
2778                free(path);
2779        }
2780
2781        if (commit_lock_file(lock->lk))
2782                return -1;
2783        return 0;
2784}
2785
2786static int open_or_create_logfile(const char *path, void *cb)
2787{
2788        int *fd = cb;
2789
2790        *fd = open(path, O_APPEND | O_WRONLY | O_CREAT, 0666);
2791        return (*fd < 0) ? -1 : 0;
2792}
2793
2794/*
2795 * Create a reflog for a ref. If force_create = 0, only create the
2796 * reflog for certain refs (those for which should_autocreate_reflog
2797 * returns non-zero). Otherwise, create it regardless of the reference
2798 * name. If the logfile already existed or was created, return 0 and
2799 * set *logfd to the file descriptor opened for appending to the file.
2800 * If no logfile exists and we decided not to create one, return 0 and
2801 * set *logfd to -1. On failure, fill in *err, set *logfd to -1, and
2802 * return -1.
2803 */
2804static int log_ref_setup(struct files_ref_store *refs,
2805                         const char *refname, int force_create,
2806                         int *logfd, struct strbuf *err)
2807{
2808        struct strbuf logfile_sb = STRBUF_INIT;
2809        char *logfile;
2810
2811        files_reflog_path(refs, &logfile_sb, refname);
2812        logfile = strbuf_detach(&logfile_sb, NULL);
2813
2814        if (force_create || should_autocreate_reflog(refname)) {
2815                if (raceproof_create_file(logfile, open_or_create_logfile, logfd)) {
2816                        if (errno == ENOENT)
2817                                strbuf_addf(err, "unable to create directory for '%s': "
2818                                            "%s", logfile, strerror(errno));
2819                        else if (errno == EISDIR)
2820                                strbuf_addf(err, "there are still logs under '%s'",
2821                                            logfile);
2822                        else
2823                                strbuf_addf(err, "unable to append to '%s': %s",
2824                                            logfile, strerror(errno));
2825
2826                        goto error;
2827                }
2828        } else {
2829                *logfd = open(logfile, O_APPEND | O_WRONLY, 0666);
2830                if (*logfd < 0) {
2831                        if (errno == ENOENT || errno == EISDIR) {
2832                                /*
2833                                 * The logfile doesn't already exist,
2834                                 * but that is not an error; it only
2835                                 * means that we won't write log
2836                                 * entries to it.
2837                                 */
2838                                ;
2839                        } else {
2840                                strbuf_addf(err, "unable to append to '%s': %s",
2841                                            logfile, strerror(errno));
2842                                goto error;
2843                        }
2844                }
2845        }
2846
2847        if (*logfd >= 0)
2848                adjust_shared_perm(logfile);
2849
2850        free(logfile);
2851        return 0;
2852
2853error:
2854        free(logfile);
2855        return -1;
2856}
2857
2858static int files_create_reflog(struct ref_store *ref_store,
2859                               const char *refname, int force_create,
2860                               struct strbuf *err)
2861{
2862        struct files_ref_store *refs =
2863                files_downcast(ref_store, 0, "create_reflog");
2864        int fd;
2865
2866        if (log_ref_setup(refs, refname, force_create, &fd, err))
2867                return -1;
2868
2869        if (fd >= 0)
2870                close(fd);
2871
2872        return 0;
2873}
2874
2875static int log_ref_write_fd(int fd, const unsigned char *old_sha1,
2876                            const unsigned char *new_sha1,
2877                            const char *committer, const char *msg)
2878{
2879        int msglen, written;
2880        unsigned maxlen, len;
2881        char *logrec;
2882
2883        msglen = msg ? strlen(msg) : 0;
2884        maxlen = strlen(committer) + msglen + 100;
2885        logrec = xmalloc(maxlen);
2886        len = xsnprintf(logrec, maxlen, "%s %s %s\n",
2887                        sha1_to_hex(old_sha1),
2888                        sha1_to_hex(new_sha1),
2889                        committer);
2890        if (msglen)
2891                len += copy_reflog_msg(logrec + len - 1, msg) - 1;
2892
2893        written = len <= maxlen ? write_in_full(fd, logrec, len) : -1;
2894        free(logrec);
2895        if (written != len)
2896                return -1;
2897
2898        return 0;
2899}
2900
2901static int files_log_ref_write(struct files_ref_store *refs,
2902                               const char *refname, const unsigned char *old_sha1,
2903                               const unsigned char *new_sha1, const char *msg,
2904                               int flags, struct strbuf *err)
2905{
2906        int logfd, result;
2907
2908        if (log_all_ref_updates == LOG_REFS_UNSET)
2909                log_all_ref_updates = is_bare_repository() ? LOG_REFS_NONE : LOG_REFS_NORMAL;
2910
2911        result = log_ref_setup(refs, refname,
2912                               flags & REF_FORCE_CREATE_REFLOG,
2913                               &logfd, err);
2914
2915        if (result)
2916                return result;
2917
2918        if (logfd < 0)
2919                return 0;
2920        result = log_ref_write_fd(logfd, old_sha1, new_sha1,
2921                                  git_committer_info(0), msg);
2922        if (result) {
2923                struct strbuf sb = STRBUF_INIT;
2924                int save_errno = errno;
2925
2926                files_reflog_path(refs, &sb, refname);
2927                strbuf_addf(err, "unable to append to '%s': %s",
2928                            sb.buf, strerror(save_errno));
2929                strbuf_release(&sb);
2930                close(logfd);
2931                return -1;
2932        }
2933        if (close(logfd)) {
2934                struct strbuf sb = STRBUF_INIT;
2935                int save_errno = errno;
2936
2937                files_reflog_path(refs, &sb, refname);
2938                strbuf_addf(err, "unable to append to '%s': %s",
2939                            sb.buf, strerror(save_errno));
2940                strbuf_release(&sb);
2941                return -1;
2942        }
2943        return 0;
2944}
2945
2946/*
2947 * Write sha1 into the open lockfile, then close the lockfile. On
2948 * errors, rollback the lockfile, fill in *err and
2949 * return -1.
2950 */
2951static int write_ref_to_lockfile(struct ref_lock *lock,
2952                                 const unsigned char *sha1, struct strbuf *err)
2953{
2954        static char term = '\n';
2955        struct object *o;
2956        int fd;
2957
2958        o = parse_object(sha1);
2959        if (!o) {
2960                strbuf_addf(err,
2961                            "trying to write ref '%s' with nonexistent object %s",
2962                            lock->ref_name, sha1_to_hex(sha1));
2963                unlock_ref(lock);
2964                return -1;
2965        }
2966        if (o->type != OBJ_COMMIT && is_branch(lock->ref_name)) {
2967                strbuf_addf(err,
2968                            "trying to write non-commit object %s to branch '%s'",
2969                            sha1_to_hex(sha1), lock->ref_name);
2970                unlock_ref(lock);
2971                return -1;
2972        }
2973        fd = get_lock_file_fd(lock->lk);
2974        if (write_in_full(fd, sha1_to_hex(sha1), 40) != 40 ||
2975            write_in_full(fd, &term, 1) != 1 ||
2976            close_ref(lock) < 0) {
2977                strbuf_addf(err,
2978                            "couldn't write '%s'", get_lock_file_path(lock->lk));
2979                unlock_ref(lock);
2980                return -1;
2981        }
2982        return 0;
2983}
2984
2985/*
2986 * Commit a change to a loose reference that has already been written
2987 * to the loose reference lockfile. Also update the reflogs if
2988 * necessary, using the specified lockmsg (which can be NULL).
2989 */
2990static int commit_ref_update(struct files_ref_store *refs,
2991                             struct ref_lock *lock,
2992                             const unsigned char *sha1, const char *logmsg,
2993                             struct strbuf *err)
2994{
2995        files_assert_main_repository(refs, "commit_ref_update");
2996
2997        clear_loose_ref_cache(refs);
2998        if (files_log_ref_write(refs, lock->ref_name,
2999                                lock->old_oid.hash, sha1,
3000                                logmsg, 0, err)) {
3001                char *old_msg = strbuf_detach(err, NULL);
3002                strbuf_addf(err, "cannot update the ref '%s': %s",
3003                            lock->ref_name, old_msg);
3004                free(old_msg);
3005                unlock_ref(lock);
3006                return -1;
3007        }
3008
3009        if (strcmp(lock->ref_name, "HEAD") != 0) {
3010                /*
3011                 * Special hack: If a branch is updated directly and HEAD
3012                 * points to it (may happen on the remote side of a push
3013                 * for example) then logically the HEAD reflog should be
3014                 * updated too.
3015                 * A generic solution implies reverse symref information,
3016                 * but finding all symrefs pointing to the given branch
3017                 * would be rather costly for this rare event (the direct
3018                 * update of a branch) to be worth it.  So let's cheat and
3019                 * check with HEAD only which should cover 99% of all usage
3020                 * scenarios (even 100% of the default ones).
3021                 */
3022                unsigned char head_sha1[20];
3023                int head_flag;
3024                const char *head_ref;
3025
3026                head_ref = resolve_ref_unsafe("HEAD", RESOLVE_REF_READING,
3027                                              head_sha1, &head_flag);
3028                if (head_ref && (head_flag & REF_ISSYMREF) &&
3029                    !strcmp(head_ref, lock->ref_name)) {
3030                        struct strbuf log_err = STRBUF_INIT;
3031                        if (files_log_ref_write(refs, "HEAD",
3032                                                lock->old_oid.hash, sha1,
3033                                                logmsg, 0, &log_err)) {
3034                                error("%s", log_err.buf);
3035                                strbuf_release(&log_err);
3036                        }
3037                }
3038        }
3039
3040        if (commit_ref(lock)) {
3041                strbuf_addf(err, "couldn't set '%s'", lock->ref_name);
3042                unlock_ref(lock);
3043                return -1;
3044        }
3045
3046        unlock_ref(lock);
3047        return 0;
3048}
3049
3050static int create_ref_symlink(struct ref_lock *lock, const char *target)
3051{
3052        int ret = -1;
3053#ifndef NO_SYMLINK_HEAD
3054        char *ref_path = get_locked_file_path(lock->lk);
3055        unlink(ref_path);
3056        ret = symlink(target, ref_path);
3057        free(ref_path);
3058
3059        if (ret)
3060                fprintf(stderr, "no symlink - falling back to symbolic ref\n");
3061#endif
3062        return ret;
3063}
3064
3065static void update_symref_reflog(struct files_ref_store *refs,
3066                                 struct ref_lock *lock, const char *refname,
3067                                 const char *target, const char *logmsg)
3068{
3069        struct strbuf err = STRBUF_INIT;
3070        unsigned char new_sha1[20];
3071        if (logmsg && !read_ref(target, new_sha1) &&
3072            files_log_ref_write(refs, refname, lock->old_oid.hash,
3073                                new_sha1, logmsg, 0, &err)) {
3074                error("%s", err.buf);
3075                strbuf_release(&err);
3076        }
3077}
3078
3079static int create_symref_locked(struct files_ref_store *refs,
3080                                struct ref_lock *lock, const char *refname,
3081                                const char *target, const char *logmsg)
3082{
3083        if (prefer_symlink_refs && !create_ref_symlink(lock, target)) {
3084                update_symref_reflog(refs, lock, refname, target, logmsg);
3085                return 0;
3086        }
3087
3088        if (!fdopen_lock_file(lock->lk, "w"))
3089                return error("unable to fdopen %s: %s",
3090                             lock->lk->tempfile.filename.buf, strerror(errno));
3091
3092        update_symref_reflog(refs, lock, refname, target, logmsg);
3093
3094        /* no error check; commit_ref will check ferror */
3095        fprintf(lock->lk->tempfile.fp, "ref: %s\n", target);
3096        if (commit_ref(lock) < 0)
3097                return error("unable to write symref for %s: %s", refname,
3098                             strerror(errno));
3099        return 0;
3100}
3101
3102static int files_create_symref(struct ref_store *ref_store,
3103                               const char *refname, const char *target,
3104                               const char *logmsg)
3105{
3106        struct files_ref_store *refs =
3107                files_downcast(ref_store, 0, "create_symref");
3108        struct strbuf err = STRBUF_INIT;
3109        struct ref_lock *lock;
3110        int ret;
3111
3112        lock = lock_ref_sha1_basic(refs, refname, NULL,
3113                                   NULL, NULL, REF_NODEREF, NULL,
3114                                   &err);
3115        if (!lock) {
3116                error("%s", err.buf);
3117                strbuf_release(&err);
3118                return -1;
3119        }
3120
3121        ret = create_symref_locked(refs, lock, refname, target, logmsg);
3122        unlock_ref(lock);
3123        return ret;
3124}
3125
3126int set_worktree_head_symref(const char *gitdir, const char *target, const char *logmsg)
3127{
3128        /*
3129         * FIXME: this obviously will not work well for future refs
3130         * backends. This function needs to die.
3131         */
3132        struct files_ref_store *refs =
3133                files_downcast(get_ref_store(NULL), 0, "set_head_symref");
3134
3135        static struct lock_file head_lock;
3136        struct ref_lock *lock;
3137        struct strbuf head_path = STRBUF_INIT;
3138        const char *head_rel;
3139        int ret;
3140
3141        strbuf_addf(&head_path, "%s/HEAD", absolute_path(gitdir));
3142        if (hold_lock_file_for_update(&head_lock, head_path.buf,
3143                                      LOCK_NO_DEREF) < 0) {
3144                struct strbuf err = STRBUF_INIT;
3145                unable_to_lock_message(head_path.buf, errno, &err);
3146                error("%s", err.buf);
3147                strbuf_release(&err);
3148                strbuf_release(&head_path);
3149                return -1;
3150        }
3151
3152        /* head_rel will be "HEAD" for the main tree, "worktrees/wt/HEAD" for
3153           linked trees */
3154        head_rel = remove_leading_path(head_path.buf,
3155                                       absolute_path(get_git_common_dir()));
3156        /* to make use of create_symref_locked(), initialize ref_lock */
3157        lock = xcalloc(1, sizeof(struct ref_lock));
3158        lock->lk = &head_lock;
3159        lock->ref_name = xstrdup(head_rel);
3160
3161        ret = create_symref_locked(refs, lock, head_rel, target, logmsg);
3162
3163        unlock_ref(lock); /* will free lock */
3164        strbuf_release(&head_path);
3165        return ret;
3166}
3167
3168static int files_reflog_exists(struct ref_store *ref_store,
3169                               const char *refname)
3170{
3171        struct files_ref_store *refs =
3172                files_downcast(ref_store, 0, "reflog_exists");
3173        struct strbuf sb = STRBUF_INIT;
3174        struct stat st;
3175        int ret;
3176
3177        files_reflog_path(refs, &sb, refname);
3178        ret = !lstat(sb.buf, &st) && S_ISREG(st.st_mode);
3179        strbuf_release(&sb);
3180        return ret;
3181}
3182
3183static int files_delete_reflog(struct ref_store *ref_store,
3184                               const char *refname)
3185{
3186        struct files_ref_store *refs =
3187                files_downcast(ref_store, 0, "delete_reflog");
3188        struct strbuf sb = STRBUF_INIT;
3189        int ret;
3190
3191        files_reflog_path(refs, &sb, refname);
3192        ret = remove_path(sb.buf);
3193        strbuf_release(&sb);
3194        return ret;
3195}
3196
3197static int show_one_reflog_ent(struct strbuf *sb, each_reflog_ent_fn fn, void *cb_data)
3198{
3199        struct object_id ooid, noid;
3200        char *email_end, *message;
3201        unsigned long timestamp;
3202        int tz;
3203        const char *p = sb->buf;
3204
3205        /* old SP new SP name <email> SP time TAB msg LF */
3206        if (!sb->len || sb->buf[sb->len - 1] != '\n' ||
3207            parse_oid_hex(p, &ooid, &p) || *p++ != ' ' ||
3208            parse_oid_hex(p, &noid, &p) || *p++ != ' ' ||
3209            !(email_end = strchr(p, '>')) ||
3210            email_end[1] != ' ' ||
3211            !(timestamp = strtoul(email_end + 2, &message, 10)) ||
3212            !message || message[0] != ' ' ||
3213            (message[1] != '+' && message[1] != '-') ||
3214            !isdigit(message[2]) || !isdigit(message[3]) ||
3215            !isdigit(message[4]) || !isdigit(message[5]))
3216                return 0; /* corrupt? */
3217        email_end[1] = '\0';
3218        tz = strtol(message + 1, NULL, 10);
3219        if (message[6] != '\t')
3220                message += 6;
3221        else
3222                message += 7;
3223        return fn(&ooid, &noid, p, timestamp, tz, message, cb_data);
3224}
3225
3226static char *find_beginning_of_line(char *bob, char *scan)
3227{
3228        while (bob < scan && *(--scan) != '\n')
3229                ; /* keep scanning backwards */
3230        /*
3231         * Return either beginning of the buffer, or LF at the end of
3232         * the previous line.
3233         */
3234        return scan;
3235}
3236
3237static int files_for_each_reflog_ent_reverse(struct ref_store *ref_store,
3238                                             const char *refname,
3239                                             each_reflog_ent_fn fn,
3240                                             void *cb_data)
3241{
3242        struct files_ref_store *refs =
3243                files_downcast(ref_store, 0, "for_each_reflog_ent_reverse");
3244        struct strbuf sb = STRBUF_INIT;
3245        FILE *logfp;
3246        long pos;
3247        int ret = 0, at_tail = 1;
3248
3249        files_reflog_path(refs, &sb, refname);
3250        logfp = fopen(sb.buf, "r");
3251        strbuf_release(&sb);
3252        if (!logfp)
3253                return -1;
3254
3255        /* Jump to the end */
3256        if (fseek(logfp, 0, SEEK_END) < 0)
3257                return error("cannot seek back reflog for %s: %s",
3258                             refname, strerror(errno));
3259        pos = ftell(logfp);
3260        while (!ret && 0 < pos) {
3261                int cnt;
3262                size_t nread;
3263                char buf[BUFSIZ];
3264                char *endp, *scanp;
3265
3266                /* Fill next block from the end */
3267                cnt = (sizeof(buf) < pos) ? sizeof(buf) : pos;
3268                if (fseek(logfp, pos - cnt, SEEK_SET))
3269                        return error("cannot seek back reflog for %s: %s",
3270                                     refname, strerror(errno));
3271                nread = fread(buf, cnt, 1, logfp);
3272                if (nread != 1)
3273                        return error("cannot read %d bytes from reflog for %s: %s",
3274                                     cnt, refname, strerror(errno));
3275                pos -= cnt;
3276
3277                scanp = endp = buf + cnt;
3278                if (at_tail && scanp[-1] == '\n')
3279                        /* Looking at the final LF at the end of the file */
3280                        scanp--;
3281                at_tail = 0;
3282
3283                while (buf < scanp) {
3284                        /*
3285                         * terminating LF of the previous line, or the beginning
3286                         * of the buffer.
3287                         */
3288                        char *bp;
3289
3290                        bp = find_beginning_of_line(buf, scanp);
3291
3292                        if (*bp == '\n') {
3293                                /*
3294                                 * The newline is the end of the previous line,
3295                                 * so we know we have complete line starting
3296                                 * at (bp + 1). Prefix it onto any prior data
3297                                 * we collected for the line and process it.
3298                                 */
3299                                strbuf_splice(&sb, 0, 0, bp + 1, endp - (bp + 1));
3300                                scanp = bp;
3301                                endp = bp + 1;
3302                                ret = show_one_reflog_ent(&sb, fn, cb_data);
3303                                strbuf_reset(&sb);
3304                                if (ret)
3305                                        break;
3306                        } else if (!pos) {
3307                                /*
3308                                 * We are at the start of the buffer, and the
3309                                 * start of the file; there is no previous
3310                                 * line, and we have everything for this one.
3311                                 * Process it, and we can end the loop.
3312                                 */
3313                                strbuf_splice(&sb, 0, 0, buf, endp - buf);
3314                                ret = show_one_reflog_ent(&sb, fn, cb_data);
3315                                strbuf_reset(&sb);
3316                                break;
3317                        }
3318
3319                        if (bp == buf) {
3320                                /*
3321                                 * We are at the start of the buffer, and there
3322                                 * is more file to read backwards. Which means
3323                                 * we are in the middle of a line. Note that we
3324                                 * may get here even if *bp was a newline; that
3325                                 * just means we are at the exact end of the
3326                                 * previous line, rather than some spot in the
3327                                 * middle.
3328                                 *
3329                                 * Save away what we have to be combined with
3330                                 * the data from the next read.
3331                                 */
3332                                strbuf_splice(&sb, 0, 0, buf, endp - buf);
3333                                break;
3334                        }
3335                }
3336
3337        }
3338        if (!ret && sb.len)
3339                die("BUG: reverse reflog parser had leftover data");
3340
3341        fclose(logfp);
3342        strbuf_release(&sb);
3343        return ret;
3344}
3345
3346static int files_for_each_reflog_ent(struct ref_store *ref_store,
3347                                     const char *refname,
3348                                     each_reflog_ent_fn fn, void *cb_data)
3349{
3350        struct files_ref_store *refs =
3351                files_downcast(ref_store, 0, "for_each_reflog_ent");
3352        FILE *logfp;
3353        struct strbuf sb = STRBUF_INIT;
3354        int ret = 0;
3355
3356        files_reflog_path(refs, &sb, refname);
3357        logfp = fopen(sb.buf, "r");
3358        strbuf_release(&sb);
3359        if (!logfp)
3360                return -1;
3361
3362        while (!ret && !strbuf_getwholeline(&sb, logfp, '\n'))
3363                ret = show_one_reflog_ent(&sb, fn, cb_data);
3364        fclose(logfp);
3365        strbuf_release(&sb);
3366        return ret;
3367}
3368
3369struct files_reflog_iterator {
3370        struct ref_iterator base;
3371
3372        struct dir_iterator *dir_iterator;
3373        struct object_id oid;
3374};
3375
3376static int files_reflog_iterator_advance(struct ref_iterator *ref_iterator)
3377{
3378        struct files_reflog_iterator *iter =
3379                (struct files_reflog_iterator *)ref_iterator;
3380        struct dir_iterator *diter = iter->dir_iterator;
3381        int ok;
3382
3383        while ((ok = dir_iterator_advance(diter)) == ITER_OK) {
3384                int flags;
3385
3386                if (!S_ISREG(diter->st.st_mode))
3387                        continue;
3388                if (diter->basename[0] == '.')
3389                        continue;
3390                if (ends_with(diter->basename, ".lock"))
3391                        continue;
3392
3393                if (read_ref_full(diter->relative_path, 0,
3394                                  iter->oid.hash, &flags)) {
3395                        error("bad ref for %s", diter->path.buf);
3396                        continue;
3397                }
3398
3399                iter->base.refname = diter->relative_path;
3400                iter->base.oid = &iter->oid;
3401                iter->base.flags = flags;
3402                return ITER_OK;
3403        }
3404
3405        iter->dir_iterator = NULL;
3406        if (ref_iterator_abort(ref_iterator) == ITER_ERROR)
3407                ok = ITER_ERROR;
3408        return ok;
3409}
3410
3411static int files_reflog_iterator_peel(struct ref_iterator *ref_iterator,
3412                                   struct object_id *peeled)
3413{
3414        die("BUG: ref_iterator_peel() called for reflog_iterator");
3415}
3416
3417static int files_reflog_iterator_abort(struct ref_iterator *ref_iterator)
3418{
3419        struct files_reflog_iterator *iter =
3420                (struct files_reflog_iterator *)ref_iterator;
3421        int ok = ITER_DONE;
3422
3423        if (iter->dir_iterator)
3424                ok = dir_iterator_abort(iter->dir_iterator);
3425
3426        base_ref_iterator_free(ref_iterator);
3427        return ok;
3428}
3429
3430static struct ref_iterator_vtable files_reflog_iterator_vtable = {
3431        files_reflog_iterator_advance,
3432        files_reflog_iterator_peel,
3433        files_reflog_iterator_abort
3434};
3435
3436static struct ref_iterator *files_reflog_iterator_begin(struct ref_store *ref_store)
3437{
3438        struct files_ref_store *refs =
3439                files_downcast(ref_store, 0, "reflog_iterator_begin");
3440        struct files_reflog_iterator *iter = xcalloc(1, sizeof(*iter));
3441        struct ref_iterator *ref_iterator = &iter->base;
3442        struct strbuf sb = STRBUF_INIT;
3443
3444        base_ref_iterator_init(ref_iterator, &files_reflog_iterator_vtable);
3445        files_reflog_path(refs, &sb, NULL);
3446        iter->dir_iterator = dir_iterator_begin(sb.buf);
3447        strbuf_release(&sb);
3448        return ref_iterator;
3449}
3450
3451static int ref_update_reject_duplicates(struct string_list *refnames,
3452                                        struct strbuf *err)
3453{
3454        int i, n = refnames->nr;
3455
3456        assert(err);
3457
3458        for (i = 1; i < n; i++)
3459                if (!strcmp(refnames->items[i - 1].string, refnames->items[i].string)) {
3460                        strbuf_addf(err,
3461                                    "multiple updates for ref '%s' not allowed.",
3462                                    refnames->items[i].string);
3463                        return 1;
3464                }
3465        return 0;
3466}
3467
3468/*
3469 * If update is a direct update of head_ref (the reference pointed to
3470 * by HEAD), then add an extra REF_LOG_ONLY update for HEAD.
3471 */
3472static int split_head_update(struct ref_update *update,
3473                             struct ref_transaction *transaction,
3474                             const char *head_ref,
3475                             struct string_list *affected_refnames,
3476                             struct strbuf *err)
3477{
3478        struct string_list_item *item;
3479        struct ref_update *new_update;
3480
3481        if ((update->flags & REF_LOG_ONLY) ||
3482            (update->flags & REF_ISPRUNING) ||
3483            (update->flags & REF_UPDATE_VIA_HEAD))
3484                return 0;
3485
3486        if (strcmp(update->refname, head_ref))
3487                return 0;
3488
3489        /*
3490         * First make sure that HEAD is not already in the
3491         * transaction. This insertion is O(N) in the transaction
3492         * size, but it happens at most once per transaction.
3493         */
3494        item = string_list_insert(affected_refnames, "HEAD");
3495        if (item->util) {
3496                /* An entry already existed */
3497                strbuf_addf(err,
3498                            "multiple updates for 'HEAD' (including one "
3499                            "via its referent '%s') are not allowed",
3500                            update->refname);
3501                return TRANSACTION_NAME_CONFLICT;
3502        }
3503
3504        new_update = ref_transaction_add_update(
3505                        transaction, "HEAD",
3506                        update->flags | REF_LOG_ONLY | REF_NODEREF,
3507                        update->new_sha1, update->old_sha1,
3508                        update->msg);
3509
3510        item->util = new_update;
3511
3512        return 0;
3513}
3514
3515/*
3516 * update is for a symref that points at referent and doesn't have
3517 * REF_NODEREF set. Split it into two updates:
3518 * - The original update, but with REF_LOG_ONLY and REF_NODEREF set
3519 * - A new, separate update for the referent reference
3520 * Note that the new update will itself be subject to splitting when
3521 * the iteration gets to it.
3522 */
3523static int split_symref_update(struct files_ref_store *refs,
3524                               struct ref_update *update,
3525                               const char *referent,
3526                               struct ref_transaction *transaction,
3527                               struct string_list *affected_refnames,
3528                               struct strbuf *err)
3529{
3530        struct string_list_item *item;
3531        struct ref_update *new_update;
3532        unsigned int new_flags;
3533
3534        /*
3535         * First make sure that referent is not already in the
3536         * transaction. This insertion is O(N) in the transaction
3537         * size, but it happens at most once per symref in a
3538         * transaction.
3539         */
3540        item = string_list_insert(affected_refnames, referent);
3541        if (item->util) {
3542                /* An entry already existed */
3543                strbuf_addf(err,
3544                            "multiple updates for '%s' (including one "
3545                            "via symref '%s') are not allowed",
3546                            referent, update->refname);
3547                return TRANSACTION_NAME_CONFLICT;
3548        }
3549
3550        new_flags = update->flags;
3551        if (!strcmp(update->refname, "HEAD")) {
3552                /*
3553                 * Record that the new update came via HEAD, so that
3554                 * when we process it, split_head_update() doesn't try
3555                 * to add another reflog update for HEAD. Note that
3556                 * this bit will be propagated if the new_update
3557                 * itself needs to be split.
3558                 */
3559                new_flags |= REF_UPDATE_VIA_HEAD;
3560        }
3561
3562        new_update = ref_transaction_add_update(
3563                        transaction, referent, new_flags,
3564                        update->new_sha1, update->old_sha1,
3565                        update->msg);
3566
3567        new_update->parent_update = update;
3568
3569        /*
3570         * Change the symbolic ref update to log only. Also, it
3571         * doesn't need to check its old SHA-1 value, as that will be
3572         * done when new_update is processed.
3573         */
3574        update->flags |= REF_LOG_ONLY | REF_NODEREF;
3575        update->flags &= ~REF_HAVE_OLD;
3576
3577        item->util = new_update;
3578
3579        return 0;
3580}
3581
3582/*
3583 * Return the refname under which update was originally requested.
3584 */
3585static const char *original_update_refname(struct ref_update *update)
3586{
3587        while (update->parent_update)
3588                update = update->parent_update;
3589
3590        return update->refname;
3591}
3592
3593/*
3594 * Check whether the REF_HAVE_OLD and old_oid values stored in update
3595 * are consistent with oid, which is the reference's current value. If
3596 * everything is OK, return 0; otherwise, write an error message to
3597 * err and return -1.
3598 */
3599static int check_old_oid(struct ref_update *update, struct object_id *oid,
3600                         struct strbuf *err)
3601{
3602        if (!(update->flags & REF_HAVE_OLD) ||
3603                   !hashcmp(oid->hash, update->old_sha1))
3604                return 0;
3605
3606        if (is_null_sha1(update->old_sha1))
3607                strbuf_addf(err, "cannot lock ref '%s': "
3608                            "reference already exists",
3609                            original_update_refname(update));
3610        else if (is_null_oid(oid))
3611                strbuf_addf(err, "cannot lock ref '%s': "
3612                            "reference is missing but expected %s",
3613                            original_update_refname(update),
3614                            sha1_to_hex(update->old_sha1));
3615        else
3616                strbuf_addf(err, "cannot lock ref '%s': "
3617                            "is at %s but expected %s",
3618                            original_update_refname(update),
3619                            oid_to_hex(oid),
3620                            sha1_to_hex(update->old_sha1));
3621
3622        return -1;
3623}
3624
3625/*
3626 * Prepare for carrying out update:
3627 * - Lock the reference referred to by update.
3628 * - Read the reference under lock.
3629 * - Check that its old SHA-1 value (if specified) is correct, and in
3630 *   any case record it in update->lock->old_oid for later use when
3631 *   writing the reflog.
3632 * - If it is a symref update without REF_NODEREF, split it up into a
3633 *   REF_LOG_ONLY update of the symref and add a separate update for
3634 *   the referent to transaction.
3635 * - If it is an update of head_ref, add a corresponding REF_LOG_ONLY
3636 *   update of HEAD.
3637 */
3638static int lock_ref_for_update(struct files_ref_store *refs,
3639                               struct ref_update *update,
3640                               struct ref_transaction *transaction,
3641                               const char *head_ref,
3642                               struct string_list *affected_refnames,
3643                               struct strbuf *err)
3644{
3645        struct strbuf referent = STRBUF_INIT;
3646        int mustexist = (update->flags & REF_HAVE_OLD) &&
3647                !is_null_sha1(update->old_sha1);
3648        int ret;
3649        struct ref_lock *lock;
3650
3651        files_assert_main_repository(refs, "lock_ref_for_update");
3652
3653        if ((update->flags & REF_HAVE_NEW) && is_null_sha1(update->new_sha1))
3654                update->flags |= REF_DELETING;
3655
3656        if (head_ref) {
3657                ret = split_head_update(update, transaction, head_ref,
3658                                        affected_refnames, err);
3659                if (ret)
3660                        return ret;
3661        }
3662
3663        ret = lock_raw_ref(refs, update->refname, mustexist,
3664                           affected_refnames, NULL,
3665                           &lock, &referent,
3666                           &update->type, err);
3667        if (ret) {
3668                char *reason;
3669
3670                reason = strbuf_detach(err, NULL);
3671                strbuf_addf(err, "cannot lock ref '%s': %s",
3672                            original_update_refname(update), reason);
3673                free(reason);
3674                return ret;
3675        }
3676
3677        update->backend_data = lock;
3678
3679        if (update->type & REF_ISSYMREF) {
3680                if (update->flags & REF_NODEREF) {
3681                        /*
3682                         * We won't be reading the referent as part of
3683                         * the transaction, so we have to read it here
3684                         * to record and possibly check old_sha1:
3685                         */
3686                        if (read_ref_full(referent.buf, 0,
3687                                          lock->old_oid.hash, NULL)) {
3688                                if (update->flags & REF_HAVE_OLD) {
3689                                        strbuf_addf(err, "cannot lock ref '%s': "
3690                                                    "error reading reference",
3691                                                    original_update_refname(update));
3692                                        return -1;
3693                                }
3694                        } else if (check_old_oid(update, &lock->old_oid, err)) {
3695                                return TRANSACTION_GENERIC_ERROR;
3696                        }
3697                } else {
3698                        /*
3699                         * Create a new update for the reference this
3700                         * symref is pointing at. Also, we will record
3701                         * and verify old_sha1 for this update as part
3702                         * of processing the split-off update, so we
3703                         * don't have to do it here.
3704                         */
3705                        ret = split_symref_update(refs, update,
3706                                                  referent.buf, transaction,
3707                                                  affected_refnames, err);
3708                        if (ret)
3709                                return ret;
3710                }
3711        } else {
3712                struct ref_update *parent_update;
3713
3714                if (check_old_oid(update, &lock->old_oid, err))
3715                        return TRANSACTION_GENERIC_ERROR;
3716
3717                /*
3718                 * If this update is happening indirectly because of a
3719                 * symref update, record the old SHA-1 in the parent
3720                 * update:
3721                 */
3722                for (parent_update = update->parent_update;
3723                     parent_update;
3724                     parent_update = parent_update->parent_update) {
3725                        struct ref_lock *parent_lock = parent_update->backend_data;
3726                        oidcpy(&parent_lock->old_oid, &lock->old_oid);
3727                }
3728        }
3729
3730        if ((update->flags & REF_HAVE_NEW) &&
3731            !(update->flags & REF_DELETING) &&
3732            !(update->flags & REF_LOG_ONLY)) {
3733                if (!(update->type & REF_ISSYMREF) &&
3734                    !hashcmp(lock->old_oid.hash, update->new_sha1)) {
3735                        /*
3736                         * The reference already has the desired
3737                         * value, so we don't need to write it.
3738                         */
3739                } else if (write_ref_to_lockfile(lock, update->new_sha1,
3740                                                 err)) {
3741                        char *write_err = strbuf_detach(err, NULL);
3742
3743                        /*
3744                         * The lock was freed upon failure of
3745                         * write_ref_to_lockfile():
3746                         */
3747                        update->backend_data = NULL;
3748                        strbuf_addf(err,
3749                                    "cannot update ref '%s': %s",
3750                                    update->refname, write_err);
3751                        free(write_err);
3752                        return TRANSACTION_GENERIC_ERROR;
3753                } else {
3754                        update->flags |= REF_NEEDS_COMMIT;
3755                }
3756        }
3757        if (!(update->flags & REF_NEEDS_COMMIT)) {
3758                /*
3759                 * We didn't call write_ref_to_lockfile(), so
3760                 * the lockfile is still open. Close it to
3761                 * free up the file descriptor:
3762                 */
3763                if (close_ref(lock)) {
3764                        strbuf_addf(err, "couldn't close '%s.lock'",
3765                                    update->refname);
3766                        return TRANSACTION_GENERIC_ERROR;
3767                }
3768        }
3769        return 0;
3770}
3771
3772static int files_transaction_commit(struct ref_store *ref_store,
3773                                    struct ref_transaction *transaction,
3774                                    struct strbuf *err)
3775{
3776        struct files_ref_store *refs =
3777                files_downcast(ref_store, 0, "ref_transaction_commit");
3778        int ret = 0, i;
3779        struct string_list refs_to_delete = STRING_LIST_INIT_NODUP;
3780        struct string_list_item *ref_to_delete;
3781        struct string_list affected_refnames = STRING_LIST_INIT_NODUP;
3782        char *head_ref = NULL;
3783        int head_type;
3784        struct object_id head_oid;
3785        struct strbuf sb = STRBUF_INIT;
3786
3787        assert(err);
3788
3789        if (transaction->state != REF_TRANSACTION_OPEN)
3790                die("BUG: commit called for transaction that is not open");
3791
3792        if (!transaction->nr) {
3793                transaction->state = REF_TRANSACTION_CLOSED;
3794                return 0;
3795        }
3796
3797        /*
3798         * Fail if a refname appears more than once in the
3799         * transaction. (If we end up splitting up any updates using
3800         * split_symref_update() or split_head_update(), those
3801         * functions will check that the new updates don't have the
3802         * same refname as any existing ones.)
3803         */
3804        for (i = 0; i < transaction->nr; i++) {
3805                struct ref_update *update = transaction->updates[i];
3806                struct string_list_item *item =
3807                        string_list_append(&affected_refnames, update->refname);
3808
3809                /*
3810                 * We store a pointer to update in item->util, but at
3811                 * the moment we never use the value of this field
3812                 * except to check whether it is non-NULL.
3813                 */
3814                item->util = update;
3815        }
3816        string_list_sort(&affected_refnames);
3817        if (ref_update_reject_duplicates(&affected_refnames, err)) {
3818                ret = TRANSACTION_GENERIC_ERROR;
3819                goto cleanup;
3820        }
3821
3822        /*
3823         * Special hack: If a branch is updated directly and HEAD
3824         * points to it (may happen on the remote side of a push
3825         * for example) then logically the HEAD reflog should be
3826         * updated too.
3827         *
3828         * A generic solution would require reverse symref lookups,
3829         * but finding all symrefs pointing to a given branch would be
3830         * rather costly for this rare event (the direct update of a
3831         * branch) to be worth it. So let's cheat and check with HEAD
3832         * only, which should cover 99% of all usage scenarios (even
3833         * 100% of the default ones).
3834         *
3835         * So if HEAD is a symbolic reference, then record the name of
3836         * the reference that it points to. If we see an update of
3837         * head_ref within the transaction, then split_head_update()
3838         * arranges for the reflog of HEAD to be updated, too.
3839         */
3840        head_ref = resolve_refdup("HEAD", RESOLVE_REF_NO_RECURSE,
3841                                  head_oid.hash, &head_type);
3842
3843        if (head_ref && !(head_type & REF_ISSYMREF)) {
3844                free(head_ref);
3845                head_ref = NULL;
3846        }
3847
3848        /*
3849         * Acquire all locks, verify old values if provided, check
3850         * that new values are valid, and write new values to the
3851         * lockfiles, ready to be activated. Only keep one lockfile
3852         * open at a time to avoid running out of file descriptors.
3853         */
3854        for (i = 0; i < transaction->nr; i++) {
3855                struct ref_update *update = transaction->updates[i];
3856
3857                ret = lock_ref_for_update(refs, update, transaction,
3858                                          head_ref, &affected_refnames, err);
3859                if (ret)
3860                        goto cleanup;
3861        }
3862
3863        /* Perform updates first so live commits remain referenced */
3864        for (i = 0; i < transaction->nr; i++) {
3865                struct ref_update *update = transaction->updates[i];
3866                struct ref_lock *lock = update->backend_data;
3867
3868                if (update->flags & REF_NEEDS_COMMIT ||
3869                    update->flags & REF_LOG_ONLY) {
3870                        if (files_log_ref_write(refs,
3871                                                lock->ref_name,
3872                                                lock->old_oid.hash,
3873                                                update->new_sha1,
3874                                                update->msg, update->flags,
3875                                                err)) {
3876                                char *old_msg = strbuf_detach(err, NULL);
3877
3878                                strbuf_addf(err, "cannot update the ref '%s': %s",
3879                                            lock->ref_name, old_msg);
3880                                free(old_msg);
3881                                unlock_ref(lock);
3882                                update->backend_data = NULL;
3883                                ret = TRANSACTION_GENERIC_ERROR;
3884                                goto cleanup;
3885                        }
3886                }
3887                if (update->flags & REF_NEEDS_COMMIT) {
3888                        clear_loose_ref_cache(refs);
3889                        if (commit_ref(lock)) {
3890                                strbuf_addf(err, "couldn't set '%s'", lock->ref_name);
3891                                unlock_ref(lock);
3892                                update->backend_data = NULL;
3893                                ret = TRANSACTION_GENERIC_ERROR;
3894                                goto cleanup;
3895                        }
3896                }
3897        }
3898        /* Perform deletes now that updates are safely completed */
3899        for (i = 0; i < transaction->nr; i++) {
3900                struct ref_update *update = transaction->updates[i];
3901                struct ref_lock *lock = update->backend_data;
3902
3903                if (update->flags & REF_DELETING &&
3904                    !(update->flags & REF_LOG_ONLY)) {
3905                        if (!(update->type & REF_ISPACKED) ||
3906                            update->type & REF_ISSYMREF) {
3907                                /* It is a loose reference. */
3908                                strbuf_reset(&sb);
3909                                files_ref_path(refs, &sb, lock->ref_name);
3910                                if (unlink_or_msg(sb.buf, err)) {
3911                                        ret = TRANSACTION_GENERIC_ERROR;
3912                                        goto cleanup;
3913                                }
3914                                update->flags |= REF_DELETED_LOOSE;
3915                        }
3916
3917                        if (!(update->flags & REF_ISPRUNING))
3918                                string_list_append(&refs_to_delete,
3919                                                   lock->ref_name);
3920                }
3921        }
3922
3923        if (repack_without_refs(refs, &refs_to_delete, err)) {
3924                ret = TRANSACTION_GENERIC_ERROR;
3925                goto cleanup;
3926        }
3927
3928        /* Delete the reflogs of any references that were deleted: */
3929        for_each_string_list_item(ref_to_delete, &refs_to_delete) {
3930                strbuf_reset(&sb);
3931                files_reflog_path(refs, &sb, ref_to_delete->string);
3932                if (!unlink_or_warn(sb.buf))
3933                        try_remove_empty_parents(refs, ref_to_delete->string,
3934                                                 REMOVE_EMPTY_PARENTS_REFLOG);
3935        }
3936
3937        clear_loose_ref_cache(refs);
3938
3939cleanup:
3940        strbuf_release(&sb);
3941        transaction->state = REF_TRANSACTION_CLOSED;
3942
3943        for (i = 0; i < transaction->nr; i++) {
3944                struct ref_update *update = transaction->updates[i];
3945                struct ref_lock *lock = update->backend_data;
3946
3947                if (lock)
3948                        unlock_ref(lock);
3949
3950                if (update->flags & REF_DELETED_LOOSE) {
3951                        /*
3952                         * The loose reference was deleted. Delete any
3953                         * empty parent directories. (Note that this
3954                         * can only work because we have already
3955                         * removed the lockfile.)
3956                         */
3957                        try_remove_empty_parents(refs, update->refname,
3958                                                 REMOVE_EMPTY_PARENTS_REF);
3959                }
3960        }
3961
3962        string_list_clear(&refs_to_delete, 0);
3963        free(head_ref);
3964        string_list_clear(&affected_refnames, 0);
3965
3966        return ret;
3967}
3968
3969static int ref_present(const char *refname,
3970                       const struct object_id *oid, int flags, void *cb_data)
3971{
3972        struct string_list *affected_refnames = cb_data;
3973
3974        return string_list_has_string(affected_refnames, refname);
3975}
3976
3977static int files_initial_transaction_commit(struct ref_store *ref_store,
3978                                            struct ref_transaction *transaction,
3979                                            struct strbuf *err)
3980{
3981        struct files_ref_store *refs =
3982                files_downcast(ref_store, 0, "initial_ref_transaction_commit");
3983        int ret = 0, i;
3984        struct string_list affected_refnames = STRING_LIST_INIT_NODUP;
3985
3986        assert(err);
3987
3988        if (transaction->state != REF_TRANSACTION_OPEN)
3989                die("BUG: commit called for transaction that is not open");
3990
3991        /* Fail if a refname appears more than once in the transaction: */
3992        for (i = 0; i < transaction->nr; i++)
3993                string_list_append(&affected_refnames,
3994                                   transaction->updates[i]->refname);
3995        string_list_sort(&affected_refnames);
3996        if (ref_update_reject_duplicates(&affected_refnames, err)) {
3997                ret = TRANSACTION_GENERIC_ERROR;
3998                goto cleanup;
3999        }
4000
4001        /*
4002         * It's really undefined to call this function in an active
4003         * repository or when there are existing references: we are
4004         * only locking and changing packed-refs, so (1) any
4005         * simultaneous processes might try to change a reference at
4006         * the same time we do, and (2) any existing loose versions of
4007         * the references that we are setting would have precedence
4008         * over our values. But some remote helpers create the remote
4009         * "HEAD" and "master" branches before calling this function,
4010         * so here we really only check that none of the references
4011         * that we are creating already exists.
4012         */
4013        if (for_each_rawref(ref_present, &affected_refnames))
4014                die("BUG: initial ref transaction called with existing refs");
4015
4016        for (i = 0; i < transaction->nr; i++) {
4017                struct ref_update *update = transaction->updates[i];
4018
4019                if ((update->flags & REF_HAVE_OLD) &&
4020                    !is_null_sha1(update->old_sha1))
4021                        die("BUG: initial ref transaction with old_sha1 set");
4022                if (verify_refname_available(update->refname,
4023                                             &affected_refnames, NULL,
4024                                             err)) {
4025                        ret = TRANSACTION_NAME_CONFLICT;
4026                        goto cleanup;
4027                }
4028        }
4029
4030        if (lock_packed_refs(refs, 0)) {
4031                strbuf_addf(err, "unable to lock packed-refs file: %s",
4032                            strerror(errno));
4033                ret = TRANSACTION_GENERIC_ERROR;
4034                goto cleanup;
4035        }
4036
4037        for (i = 0; i < transaction->nr; i++) {
4038                struct ref_update *update = transaction->updates[i];
4039
4040                if ((update->flags & REF_HAVE_NEW) &&
4041                    !is_null_sha1(update->new_sha1))
4042                        add_packed_ref(refs, update->refname, update->new_sha1);
4043        }
4044
4045        if (commit_packed_refs(refs)) {
4046                strbuf_addf(err, "unable to commit packed-refs file: %s",
4047                            strerror(errno));
4048                ret = TRANSACTION_GENERIC_ERROR;
4049                goto cleanup;
4050        }
4051
4052cleanup:
4053        transaction->state = REF_TRANSACTION_CLOSED;
4054        string_list_clear(&affected_refnames, 0);
4055        return ret;
4056}
4057
4058struct expire_reflog_cb {
4059        unsigned int flags;
4060        reflog_expiry_should_prune_fn *should_prune_fn;
4061        void *policy_cb;
4062        FILE *newlog;
4063        struct object_id last_kept_oid;
4064};
4065
4066static int expire_reflog_ent(struct object_id *ooid, struct object_id *noid,
4067                             const char *email, unsigned long timestamp, int tz,
4068                             const char *message, void *cb_data)
4069{
4070        struct expire_reflog_cb *cb = cb_data;
4071        struct expire_reflog_policy_cb *policy_cb = cb->policy_cb;
4072
4073        if (cb->flags & EXPIRE_REFLOGS_REWRITE)
4074                ooid = &cb->last_kept_oid;
4075
4076        if ((*cb->should_prune_fn)(ooid->hash, noid->hash, email, timestamp, tz,
4077                                   message, policy_cb)) {
4078                if (!cb->newlog)
4079                        printf("would prune %s", message);
4080                else if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4081                        printf("prune %s", message);
4082        } else {
4083                if (cb->newlog) {
4084                        fprintf(cb->newlog, "%s %s %s %lu %+05d\t%s",
4085                                oid_to_hex(ooid), oid_to_hex(noid),
4086                                email, timestamp, tz, message);
4087                        oidcpy(&cb->last_kept_oid, noid);
4088                }
4089                if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4090                        printf("keep %s", message);
4091        }
4092        return 0;
4093}
4094
4095static int files_reflog_expire(struct ref_store *ref_store,
4096                               const char *refname, const unsigned char *sha1,
4097                               unsigned int flags,
4098                               reflog_expiry_prepare_fn prepare_fn,
4099                               reflog_expiry_should_prune_fn should_prune_fn,
4100                               reflog_expiry_cleanup_fn cleanup_fn,
4101                               void *policy_cb_data)
4102{
4103        struct files_ref_store *refs =
4104                files_downcast(ref_store, 0, "reflog_expire");
4105        static struct lock_file reflog_lock;
4106        struct expire_reflog_cb cb;
4107        struct ref_lock *lock;
4108        struct strbuf log_file_sb = STRBUF_INIT;
4109        char *log_file;
4110        int status = 0;
4111        int type;
4112        struct strbuf err = STRBUF_INIT;
4113
4114        memset(&cb, 0, sizeof(cb));
4115        cb.flags = flags;
4116        cb.policy_cb = policy_cb_data;
4117        cb.should_prune_fn = should_prune_fn;
4118
4119        /*
4120         * The reflog file is locked by holding the lock on the
4121         * reference itself, plus we might need to update the
4122         * reference if --updateref was specified:
4123         */
4124        lock = lock_ref_sha1_basic(refs, refname, sha1,
4125                                   NULL, NULL, REF_NODEREF,
4126                                   &type, &err);
4127        if (!lock) {
4128                error("cannot lock ref '%s': %s", refname, err.buf);
4129                strbuf_release(&err);
4130                return -1;
4131        }
4132        if (!reflog_exists(refname)) {
4133                unlock_ref(lock);
4134                return 0;
4135        }
4136
4137        files_reflog_path(refs, &log_file_sb, refname);
4138        log_file = strbuf_detach(&log_file_sb, NULL);
4139        if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4140                /*
4141                 * Even though holding $GIT_DIR/logs/$reflog.lock has
4142                 * no locking implications, we use the lock_file
4143                 * machinery here anyway because it does a lot of the
4144                 * work we need, including cleaning up if the program
4145                 * exits unexpectedly.
4146                 */
4147                if (hold_lock_file_for_update(&reflog_lock, log_file, 0) < 0) {
4148                        struct strbuf err = STRBUF_INIT;
4149                        unable_to_lock_message(log_file, errno, &err);
4150                        error("%s", err.buf);
4151                        strbuf_release(&err);
4152                        goto failure;
4153                }
4154                cb.newlog = fdopen_lock_file(&reflog_lock, "w");
4155                if (!cb.newlog) {
4156                        error("cannot fdopen %s (%s)",
4157                              get_lock_file_path(&reflog_lock), strerror(errno));
4158                        goto failure;
4159                }
4160        }
4161
4162        (*prepare_fn)(refname, sha1, cb.policy_cb);
4163        for_each_reflog_ent(refname, expire_reflog_ent, &cb);
4164        (*cleanup_fn)(cb.policy_cb);
4165
4166        if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4167                /*
4168                 * It doesn't make sense to adjust a reference pointed
4169                 * to by a symbolic ref based on expiring entries in
4170                 * the symbolic reference's reflog. Nor can we update
4171                 * a reference if there are no remaining reflog
4172                 * entries.
4173                 */
4174                int update = (flags & EXPIRE_REFLOGS_UPDATE_REF) &&
4175                        !(type & REF_ISSYMREF) &&
4176                        !is_null_oid(&cb.last_kept_oid);
4177
4178                if (close_lock_file(&reflog_lock)) {
4179                        status |= error("couldn't write %s: %s", log_file,
4180                                        strerror(errno));
4181                } else if (update &&
4182                           (write_in_full(get_lock_file_fd(lock->lk),
4183                                oid_to_hex(&cb.last_kept_oid), GIT_SHA1_HEXSZ) != GIT_SHA1_HEXSZ ||
4184                            write_str_in_full(get_lock_file_fd(lock->lk), "\n") != 1 ||
4185                            close_ref(lock) < 0)) {
4186                        status |= error("couldn't write %s",
4187                                        get_lock_file_path(lock->lk));
4188                        rollback_lock_file(&reflog_lock);
4189                } else if (commit_lock_file(&reflog_lock)) {
4190                        status |= error("unable to write reflog '%s' (%s)",
4191                                        log_file, strerror(errno));
4192                } else if (update && commit_ref(lock)) {
4193                        status |= error("couldn't set %s", lock->ref_name);
4194                }
4195        }
4196        free(log_file);
4197        unlock_ref(lock);
4198        return status;
4199
4200 failure:
4201        rollback_lock_file(&reflog_lock);
4202        free(log_file);
4203        unlock_ref(lock);
4204        return -1;
4205}
4206
4207static int files_init_db(struct ref_store *ref_store, struct strbuf *err)
4208{
4209        struct files_ref_store *refs =
4210                files_downcast(ref_store, 0, "init_db");
4211        struct strbuf sb = STRBUF_INIT;
4212
4213        /*
4214         * Create .git/refs/{heads,tags}
4215         */
4216        files_ref_path(refs, &sb, "refs/heads");
4217        safe_create_dir(sb.buf, 1);
4218
4219        strbuf_reset(&sb);
4220        files_ref_path(refs, &sb, "refs/tags");
4221        safe_create_dir(sb.buf, 1);
4222
4223        strbuf_release(&sb);
4224        return 0;
4225}
4226
4227struct ref_storage_be refs_be_files = {
4228        NULL,
4229        "files",
4230        files_ref_store_create,
4231        files_init_db,
4232        files_transaction_commit,
4233        files_initial_transaction_commit,
4234
4235        files_pack_refs,
4236        files_peel_ref,
4237        files_create_symref,
4238        files_delete_refs,
4239        files_rename_ref,
4240
4241        files_ref_iterator_begin,
4242        files_read_raw_ref,
4243        files_verify_refname_available,
4244
4245        files_reflog_iterator_begin,
4246        files_for_each_reflog_ent,
4247        files_for_each_reflog_ent_reverse,
4248        files_reflog_exists,
4249        files_create_reflog,
4250        files_delete_reflog,
4251        files_reflog_expire
4252};