c90b47232ebc5dd82ff1520af39f61d10dd57434
   1#include "../cache.h"
   2#include "../refs.h"
   3#include "refs-internal.h"
   4#include "../iterator.h"
   5#include "../dir-iterator.h"
   6#include "../lockfile.h"
   7#include "../object.h"
   8#include "../dir.h"
   9
  10struct ref_lock {
  11        char *ref_name;
  12        struct lock_file *lk;
  13        struct object_id old_oid;
  14};
  15
  16struct ref_entry;
  17
  18/*
  19 * Information used (along with the information in ref_entry) to
  20 * describe a single cached reference.  This data structure only
  21 * occurs embedded in a union in struct ref_entry, and only when
  22 * (ref_entry->flag & REF_DIR) is zero.
  23 */
  24struct ref_value {
  25        /*
  26         * The name of the object to which this reference resolves
  27         * (which may be a tag object).  If REF_ISBROKEN, this is
  28         * null.  If REF_ISSYMREF, then this is the name of the object
  29         * referred to by the last reference in the symlink chain.
  30         */
  31        struct object_id oid;
  32
  33        /*
  34         * If REF_KNOWS_PEELED, then this field holds the peeled value
  35         * of this reference, or null if the reference is known not to
  36         * be peelable.  See the documentation for peel_ref() for an
  37         * exact definition of "peelable".
  38         */
  39        struct object_id peeled;
  40};
  41
  42struct files_ref_store;
  43
  44/*
  45 * Information used (along with the information in ref_entry) to
  46 * describe a level in the hierarchy of references.  This data
  47 * structure only occurs embedded in a union in struct ref_entry, and
  48 * only when (ref_entry.flag & REF_DIR) is set.  In that case,
  49 * (ref_entry.flag & REF_INCOMPLETE) determines whether the references
  50 * in the directory have already been read:
  51 *
  52 *     (ref_entry.flag & REF_INCOMPLETE) unset -- a directory of loose
  53 *         or packed references, already read.
  54 *
  55 *     (ref_entry.flag & REF_INCOMPLETE) set -- a directory of loose
  56 *         references that hasn't been read yet (nor has any of its
  57 *         subdirectories).
  58 *
  59 * Entries within a directory are stored within a growable array of
  60 * pointers to ref_entries (entries, nr, alloc).  Entries 0 <= i <
  61 * sorted are sorted by their component name in strcmp() order and the
  62 * remaining entries are unsorted.
  63 *
  64 * Loose references are read lazily, one directory at a time.  When a
  65 * directory of loose references is read, then all of the references
  66 * in that directory are stored, and REF_INCOMPLETE stubs are created
  67 * for any subdirectories, but the subdirectories themselves are not
  68 * read.  The reading is triggered by get_ref_dir().
  69 */
  70struct ref_dir {
  71        int nr, alloc;
  72
  73        /*
  74         * Entries with index 0 <= i < sorted are sorted by name.  New
  75         * entries are appended to the list unsorted, and are sorted
  76         * only when required; thus we avoid the need to sort the list
  77         * after the addition of every reference.
  78         */
  79        int sorted;
  80
  81        /* A pointer to the files_ref_store that contains this ref_dir. */
  82        struct files_ref_store *ref_store;
  83
  84        struct ref_entry **entries;
  85};
  86
  87/*
  88 * Bit values for ref_entry::flag.  REF_ISSYMREF=0x01,
  89 * REF_ISPACKED=0x02, REF_ISBROKEN=0x04 and REF_BAD_NAME=0x08 are
  90 * public values; see refs.h.
  91 */
  92
  93/*
  94 * The field ref_entry->u.value.peeled of this value entry contains
  95 * the correct peeled value for the reference, which might be
  96 * null_sha1 if the reference is not a tag or if it is broken.
  97 */
  98#define REF_KNOWS_PEELED 0x10
  99
 100/* ref_entry represents a directory of references */
 101#define REF_DIR 0x20
 102
 103/*
 104 * Entry has not yet been read from disk (used only for REF_DIR
 105 * entries representing loose references)
 106 */
 107#define REF_INCOMPLETE 0x40
 108
 109/*
 110 * A ref_entry represents either a reference or a "subdirectory" of
 111 * references.
 112 *
 113 * Each directory in the reference namespace is represented by a
 114 * ref_entry with (flags & REF_DIR) set and containing a subdir member
 115 * that holds the entries in that directory that have been read so
 116 * far.  If (flags & REF_INCOMPLETE) is set, then the directory and
 117 * its subdirectories haven't been read yet.  REF_INCOMPLETE is only
 118 * used for loose reference directories.
 119 *
 120 * References are represented by a ref_entry with (flags & REF_DIR)
 121 * unset and a value member that describes the reference's value.  The
 122 * flag member is at the ref_entry level, but it is also needed to
 123 * interpret the contents of the value field (in other words, a
 124 * ref_value object is not very much use without the enclosing
 125 * ref_entry).
 126 *
 127 * Reference names cannot end with slash and directories' names are
 128 * always stored with a trailing slash (except for the top-level
 129 * directory, which is always denoted by "").  This has two nice
 130 * consequences: (1) when the entries in each subdir are sorted
 131 * lexicographically by name (as they usually are), the references in
 132 * a whole tree can be generated in lexicographic order by traversing
 133 * the tree in left-to-right, depth-first order; (2) the names of
 134 * references and subdirectories cannot conflict, and therefore the
 135 * presence of an empty subdirectory does not block the creation of a
 136 * similarly-named reference.  (The fact that reference names with the
 137 * same leading components can conflict *with each other* is a
 138 * separate issue that is regulated by verify_refname_available().)
 139 *
 140 * Please note that the name field contains the fully-qualified
 141 * reference (or subdirectory) name.  Space could be saved by only
 142 * storing the relative names.  But that would require the full names
 143 * to be generated on the fly when iterating in do_for_each_ref(), and
 144 * would break callback functions, who have always been able to assume
 145 * that the name strings that they are passed will not be freed during
 146 * the iteration.
 147 */
 148struct ref_entry {
 149        unsigned char flag; /* ISSYMREF? ISPACKED? */
 150        union {
 151                struct ref_value value; /* if not (flags&REF_DIR) */
 152                struct ref_dir subdir; /* if (flags&REF_DIR) */
 153        } u;
 154        /*
 155         * The full name of the reference (e.g., "refs/heads/master")
 156         * or the full name of the directory with a trailing slash
 157         * (e.g., "refs/heads/"):
 158         */
 159        char name[FLEX_ARRAY];
 160};
 161
 162static void read_loose_refs(const char *dirname, struct ref_dir *dir);
 163static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len);
 164static struct ref_entry *create_dir_entry(struct files_ref_store *ref_store,
 165                                          const char *dirname, size_t len,
 166                                          int incomplete);
 167static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry);
 168static int files_log_ref_write(struct files_ref_store *refs,
 169                               const char *refname, const unsigned char *old_sha1,
 170                               const unsigned char *new_sha1, const char *msg,
 171                               int flags, struct strbuf *err);
 172
 173static struct ref_dir *get_ref_dir(struct ref_entry *entry)
 174{
 175        struct ref_dir *dir;
 176        assert(entry->flag & REF_DIR);
 177        dir = &entry->u.subdir;
 178        if (entry->flag & REF_INCOMPLETE) {
 179                read_loose_refs(entry->name, dir);
 180
 181                /*
 182                 * Manually add refs/bisect, which, being
 183                 * per-worktree, might not appear in the directory
 184                 * listing for refs/ in the main repo.
 185                 */
 186                if (!strcmp(entry->name, "refs/")) {
 187                        int pos = search_ref_dir(dir, "refs/bisect/", 12);
 188                        if (pos < 0) {
 189                                struct ref_entry *child_entry;
 190                                child_entry = create_dir_entry(dir->ref_store,
 191                                                               "refs/bisect/",
 192                                                               12, 1);
 193                                add_entry_to_dir(dir, child_entry);
 194                                read_loose_refs("refs/bisect",
 195                                                &child_entry->u.subdir);
 196                        }
 197                }
 198                entry->flag &= ~REF_INCOMPLETE;
 199        }
 200        return dir;
 201}
 202
 203static struct ref_entry *create_ref_entry(const char *refname,
 204                                          const unsigned char *sha1, int flag,
 205                                          int check_name)
 206{
 207        struct ref_entry *ref;
 208
 209        if (check_name &&
 210            check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
 211                die("Reference has invalid format: '%s'", refname);
 212        FLEX_ALLOC_STR(ref, name, refname);
 213        hashcpy(ref->u.value.oid.hash, sha1);
 214        oidclr(&ref->u.value.peeled);
 215        ref->flag = flag;
 216        return ref;
 217}
 218
 219static void clear_ref_dir(struct ref_dir *dir);
 220
 221static void free_ref_entry(struct ref_entry *entry)
 222{
 223        if (entry->flag & REF_DIR) {
 224                /*
 225                 * Do not use get_ref_dir() here, as that might
 226                 * trigger the reading of loose refs.
 227                 */
 228                clear_ref_dir(&entry->u.subdir);
 229        }
 230        free(entry);
 231}
 232
 233/*
 234 * Add a ref_entry to the end of dir (unsorted).  Entry is always
 235 * stored directly in dir; no recursion into subdirectories is
 236 * done.
 237 */
 238static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
 239{
 240        ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
 241        dir->entries[dir->nr++] = entry;
 242        /* optimize for the case that entries are added in order */
 243        if (dir->nr == 1 ||
 244            (dir->nr == dir->sorted + 1 &&
 245             strcmp(dir->entries[dir->nr - 2]->name,
 246                    dir->entries[dir->nr - 1]->name) < 0))
 247                dir->sorted = dir->nr;
 248}
 249
 250/*
 251 * Clear and free all entries in dir, recursively.
 252 */
 253static void clear_ref_dir(struct ref_dir *dir)
 254{
 255        int i;
 256        for (i = 0; i < dir->nr; i++)
 257                free_ref_entry(dir->entries[i]);
 258        free(dir->entries);
 259        dir->sorted = dir->nr = dir->alloc = 0;
 260        dir->entries = NULL;
 261}
 262
 263/*
 264 * Create a struct ref_entry object for the specified dirname.
 265 * dirname is the name of the directory with a trailing slash (e.g.,
 266 * "refs/heads/") or "" for the top-level directory.
 267 */
 268static struct ref_entry *create_dir_entry(struct files_ref_store *ref_store,
 269                                          const char *dirname, size_t len,
 270                                          int incomplete)
 271{
 272        struct ref_entry *direntry;
 273        FLEX_ALLOC_MEM(direntry, name, dirname, len);
 274        direntry->u.subdir.ref_store = ref_store;
 275        direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
 276        return direntry;
 277}
 278
 279static int ref_entry_cmp(const void *a, const void *b)
 280{
 281        struct ref_entry *one = *(struct ref_entry **)a;
 282        struct ref_entry *two = *(struct ref_entry **)b;
 283        return strcmp(one->name, two->name);
 284}
 285
 286static void sort_ref_dir(struct ref_dir *dir);
 287
 288struct string_slice {
 289        size_t len;
 290        const char *str;
 291};
 292
 293static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
 294{
 295        const struct string_slice *key = key_;
 296        const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
 297        int cmp = strncmp(key->str, ent->name, key->len);
 298        if (cmp)
 299                return cmp;
 300        return '\0' - (unsigned char)ent->name[key->len];
 301}
 302
 303/*
 304 * Return the index of the entry with the given refname from the
 305 * ref_dir (non-recursively), sorting dir if necessary.  Return -1 if
 306 * no such entry is found.  dir must already be complete.
 307 */
 308static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
 309{
 310        struct ref_entry **r;
 311        struct string_slice key;
 312
 313        if (refname == NULL || !dir->nr)
 314                return -1;
 315
 316        sort_ref_dir(dir);
 317        key.len = len;
 318        key.str = refname;
 319        r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
 320                    ref_entry_cmp_sslice);
 321
 322        if (r == NULL)
 323                return -1;
 324
 325        return r - dir->entries;
 326}
 327
 328/*
 329 * Search for a directory entry directly within dir (without
 330 * recursing).  Sort dir if necessary.  subdirname must be a directory
 331 * name (i.e., end in '/').  If mkdir is set, then create the
 332 * directory if it is missing; otherwise, return NULL if the desired
 333 * directory cannot be found.  dir must already be complete.
 334 */
 335static struct ref_dir *search_for_subdir(struct ref_dir *dir,
 336                                         const char *subdirname, size_t len,
 337                                         int mkdir)
 338{
 339        int entry_index = search_ref_dir(dir, subdirname, len);
 340        struct ref_entry *entry;
 341        if (entry_index == -1) {
 342                if (!mkdir)
 343                        return NULL;
 344                /*
 345                 * Since dir is complete, the absence of a subdir
 346                 * means that the subdir really doesn't exist;
 347                 * therefore, create an empty record for it but mark
 348                 * the record complete.
 349                 */
 350                entry = create_dir_entry(dir->ref_store, subdirname, len, 0);
 351                add_entry_to_dir(dir, entry);
 352        } else {
 353                entry = dir->entries[entry_index];
 354        }
 355        return get_ref_dir(entry);
 356}
 357
 358/*
 359 * If refname is a reference name, find the ref_dir within the dir
 360 * tree that should hold refname.  If refname is a directory name
 361 * (i.e., ends in '/'), then return that ref_dir itself.  dir must
 362 * represent the top-level directory and must already be complete.
 363 * Sort ref_dirs and recurse into subdirectories as necessary.  If
 364 * mkdir is set, then create any missing directories; otherwise,
 365 * return NULL if the desired directory cannot be found.
 366 */
 367static struct ref_dir *find_containing_dir(struct ref_dir *dir,
 368                                           const char *refname, int mkdir)
 369{
 370        const char *slash;
 371        for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
 372                size_t dirnamelen = slash - refname + 1;
 373                struct ref_dir *subdir;
 374                subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
 375                if (!subdir) {
 376                        dir = NULL;
 377                        break;
 378                }
 379                dir = subdir;
 380        }
 381
 382        return dir;
 383}
 384
 385/*
 386 * Find the value entry with the given name in dir, sorting ref_dirs
 387 * and recursing into subdirectories as necessary.  If the name is not
 388 * found or it corresponds to a directory entry, return NULL.
 389 */
 390static struct ref_entry *find_ref(struct ref_dir *dir, const char *refname)
 391{
 392        int entry_index;
 393        struct ref_entry *entry;
 394        dir = find_containing_dir(dir, refname, 0);
 395        if (!dir)
 396                return NULL;
 397        entry_index = search_ref_dir(dir, refname, strlen(refname));
 398        if (entry_index == -1)
 399                return NULL;
 400        entry = dir->entries[entry_index];
 401        return (entry->flag & REF_DIR) ? NULL : entry;
 402}
 403
 404/*
 405 * Remove the entry with the given name from dir, recursing into
 406 * subdirectories as necessary.  If refname is the name of a directory
 407 * (i.e., ends with '/'), then remove the directory and its contents.
 408 * If the removal was successful, return the number of entries
 409 * remaining in the directory entry that contained the deleted entry.
 410 * If the name was not found, return -1.  Please note that this
 411 * function only deletes the entry from the cache; it does not delete
 412 * it from the filesystem or ensure that other cache entries (which
 413 * might be symbolic references to the removed entry) are updated.
 414 * Nor does it remove any containing dir entries that might be made
 415 * empty by the removal.  dir must represent the top-level directory
 416 * and must already be complete.
 417 */
 418static int remove_entry(struct ref_dir *dir, const char *refname)
 419{
 420        int refname_len = strlen(refname);
 421        int entry_index;
 422        struct ref_entry *entry;
 423        int is_dir = refname[refname_len - 1] == '/';
 424        if (is_dir) {
 425                /*
 426                 * refname represents a reference directory.  Remove
 427                 * the trailing slash; otherwise we will get the
 428                 * directory *representing* refname rather than the
 429                 * one *containing* it.
 430                 */
 431                char *dirname = xmemdupz(refname, refname_len - 1);
 432                dir = find_containing_dir(dir, dirname, 0);
 433                free(dirname);
 434        } else {
 435                dir = find_containing_dir(dir, refname, 0);
 436        }
 437        if (!dir)
 438                return -1;
 439        entry_index = search_ref_dir(dir, refname, refname_len);
 440        if (entry_index == -1)
 441                return -1;
 442        entry = dir->entries[entry_index];
 443
 444        memmove(&dir->entries[entry_index],
 445                &dir->entries[entry_index + 1],
 446                (dir->nr - entry_index - 1) * sizeof(*dir->entries)
 447                );
 448        dir->nr--;
 449        if (dir->sorted > entry_index)
 450                dir->sorted--;
 451        free_ref_entry(entry);
 452        return dir->nr;
 453}
 454
 455/*
 456 * Add a ref_entry to the ref_dir (unsorted), recursing into
 457 * subdirectories as necessary.  dir must represent the top-level
 458 * directory.  Return 0 on success.
 459 */
 460static int add_ref(struct ref_dir *dir, struct ref_entry *ref)
 461{
 462        dir = find_containing_dir(dir, ref->name, 1);
 463        if (!dir)
 464                return -1;
 465        add_entry_to_dir(dir, ref);
 466        return 0;
 467}
 468
 469/*
 470 * Emit a warning and return true iff ref1 and ref2 have the same name
 471 * and the same sha1.  Die if they have the same name but different
 472 * sha1s.
 473 */
 474static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
 475{
 476        if (strcmp(ref1->name, ref2->name))
 477                return 0;
 478
 479        /* Duplicate name; make sure that they don't conflict: */
 480
 481        if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
 482                /* This is impossible by construction */
 483                die("Reference directory conflict: %s", ref1->name);
 484
 485        if (oidcmp(&ref1->u.value.oid, &ref2->u.value.oid))
 486                die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
 487
 488        warning("Duplicated ref: %s", ref1->name);
 489        return 1;
 490}
 491
 492/*
 493 * Sort the entries in dir non-recursively (if they are not already
 494 * sorted) and remove any duplicate entries.
 495 */
 496static void sort_ref_dir(struct ref_dir *dir)
 497{
 498        int i, j;
 499        struct ref_entry *last = NULL;
 500
 501        /*
 502         * This check also prevents passing a zero-length array to qsort(),
 503         * which is a problem on some platforms.
 504         */
 505        if (dir->sorted == dir->nr)
 506                return;
 507
 508        QSORT(dir->entries, dir->nr, ref_entry_cmp);
 509
 510        /* Remove any duplicates: */
 511        for (i = 0, j = 0; j < dir->nr; j++) {
 512                struct ref_entry *entry = dir->entries[j];
 513                if (last && is_dup_ref(last, entry))
 514                        free_ref_entry(entry);
 515                else
 516                        last = dir->entries[i++] = entry;
 517        }
 518        dir->sorted = dir->nr = i;
 519}
 520
 521/*
 522 * Return true if refname, which has the specified oid and flags, can
 523 * be resolved to an object in the database. If the referred-to object
 524 * does not exist, emit a warning and return false.
 525 */
 526static int ref_resolves_to_object(const char *refname,
 527                                  const struct object_id *oid,
 528                                  unsigned int flags)
 529{
 530        if (flags & REF_ISBROKEN)
 531                return 0;
 532        if (!has_sha1_file(oid->hash)) {
 533                error("%s does not point to a valid object!", refname);
 534                return 0;
 535        }
 536        return 1;
 537}
 538
 539/*
 540 * Return true if the reference described by entry can be resolved to
 541 * an object in the database; otherwise, emit a warning and return
 542 * false.
 543 */
 544static int entry_resolves_to_object(struct ref_entry *entry)
 545{
 546        return ref_resolves_to_object(entry->name,
 547                                      &entry->u.value.oid, entry->flag);
 548}
 549
 550typedef int each_ref_entry_fn(struct ref_entry *entry, void *cb_data);
 551
 552/*
 553 * Call fn for each reference in dir that has index in the range
 554 * offset <= index < dir->nr.  Recurse into subdirectories that are in
 555 * that index range, sorting them before iterating.  This function
 556 * does not sort dir itself; it should be sorted beforehand.  fn is
 557 * called for all references, including broken ones.
 558 */
 559static int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
 560                                    each_ref_entry_fn fn, void *cb_data)
 561{
 562        int i;
 563        assert(dir->sorted == dir->nr);
 564        for (i = offset; i < dir->nr; i++) {
 565                struct ref_entry *entry = dir->entries[i];
 566                int retval;
 567                if (entry->flag & REF_DIR) {
 568                        struct ref_dir *subdir = get_ref_dir(entry);
 569                        sort_ref_dir(subdir);
 570                        retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
 571                } else {
 572                        retval = fn(entry, cb_data);
 573                }
 574                if (retval)
 575                        return retval;
 576        }
 577        return 0;
 578}
 579
 580/*
 581 * Load all of the refs from the dir into our in-memory cache. The hard work
 582 * of loading loose refs is done by get_ref_dir(), so we just need to recurse
 583 * through all of the sub-directories. We do not even need to care about
 584 * sorting, as traversal order does not matter to us.
 585 */
 586static void prime_ref_dir(struct ref_dir *dir)
 587{
 588        int i;
 589        for (i = 0; i < dir->nr; i++) {
 590                struct ref_entry *entry = dir->entries[i];
 591                if (entry->flag & REF_DIR)
 592                        prime_ref_dir(get_ref_dir(entry));
 593        }
 594}
 595
 596/*
 597 * A level in the reference hierarchy that is currently being iterated
 598 * through.
 599 */
 600struct cache_ref_iterator_level {
 601        /*
 602         * The ref_dir being iterated over at this level. The ref_dir
 603         * is sorted before being stored here.
 604         */
 605        struct ref_dir *dir;
 606
 607        /*
 608         * The index of the current entry within dir (which might
 609         * itself be a directory). If index == -1, then the iteration
 610         * hasn't yet begun. If index == dir->nr, then the iteration
 611         * through this level is over.
 612         */
 613        int index;
 614};
 615
 616/*
 617 * Represent an iteration through a ref_dir in the memory cache. The
 618 * iteration recurses through subdirectories.
 619 */
 620struct cache_ref_iterator {
 621        struct ref_iterator base;
 622
 623        /*
 624         * The number of levels currently on the stack. This is always
 625         * at least 1, because when it becomes zero the iteration is
 626         * ended and this struct is freed.
 627         */
 628        size_t levels_nr;
 629
 630        /* The number of levels that have been allocated on the stack */
 631        size_t levels_alloc;
 632
 633        /*
 634         * A stack of levels. levels[0] is the uppermost level that is
 635         * being iterated over in this iteration. (This is not
 636         * necessary the top level in the references hierarchy. If we
 637         * are iterating through a subtree, then levels[0] will hold
 638         * the ref_dir for that subtree, and subsequent levels will go
 639         * on from there.)
 640         */
 641        struct cache_ref_iterator_level *levels;
 642};
 643
 644static int cache_ref_iterator_advance(struct ref_iterator *ref_iterator)
 645{
 646        struct cache_ref_iterator *iter =
 647                (struct cache_ref_iterator *)ref_iterator;
 648
 649        while (1) {
 650                struct cache_ref_iterator_level *level =
 651                        &iter->levels[iter->levels_nr - 1];
 652                struct ref_dir *dir = level->dir;
 653                struct ref_entry *entry;
 654
 655                if (level->index == -1)
 656                        sort_ref_dir(dir);
 657
 658                if (++level->index == level->dir->nr) {
 659                        /* This level is exhausted; pop up a level */
 660                        if (--iter->levels_nr == 0)
 661                                return ref_iterator_abort(ref_iterator);
 662
 663                        continue;
 664                }
 665
 666                entry = dir->entries[level->index];
 667
 668                if (entry->flag & REF_DIR) {
 669                        /* push down a level */
 670                        ALLOC_GROW(iter->levels, iter->levels_nr + 1,
 671                                   iter->levels_alloc);
 672
 673                        level = &iter->levels[iter->levels_nr++];
 674                        level->dir = get_ref_dir(entry);
 675                        level->index = -1;
 676                } else {
 677                        iter->base.refname = entry->name;
 678                        iter->base.oid = &entry->u.value.oid;
 679                        iter->base.flags = entry->flag;
 680                        return ITER_OK;
 681                }
 682        }
 683}
 684
 685static enum peel_status peel_entry(struct ref_entry *entry, int repeel);
 686
 687static int cache_ref_iterator_peel(struct ref_iterator *ref_iterator,
 688                                   struct object_id *peeled)
 689{
 690        struct cache_ref_iterator *iter =
 691                (struct cache_ref_iterator *)ref_iterator;
 692        struct cache_ref_iterator_level *level;
 693        struct ref_entry *entry;
 694
 695        level = &iter->levels[iter->levels_nr - 1];
 696
 697        if (level->index == -1)
 698                die("BUG: peel called before advance for cache iterator");
 699
 700        entry = level->dir->entries[level->index];
 701
 702        if (peel_entry(entry, 0))
 703                return -1;
 704        oidcpy(peeled, &entry->u.value.peeled);
 705        return 0;
 706}
 707
 708static int cache_ref_iterator_abort(struct ref_iterator *ref_iterator)
 709{
 710        struct cache_ref_iterator *iter =
 711                (struct cache_ref_iterator *)ref_iterator;
 712
 713        free(iter->levels);
 714        base_ref_iterator_free(ref_iterator);
 715        return ITER_DONE;
 716}
 717
 718static struct ref_iterator_vtable cache_ref_iterator_vtable = {
 719        cache_ref_iterator_advance,
 720        cache_ref_iterator_peel,
 721        cache_ref_iterator_abort
 722};
 723
 724static struct ref_iterator *cache_ref_iterator_begin(struct ref_dir *dir)
 725{
 726        struct cache_ref_iterator *iter;
 727        struct ref_iterator *ref_iterator;
 728        struct cache_ref_iterator_level *level;
 729
 730        iter = xcalloc(1, sizeof(*iter));
 731        ref_iterator = &iter->base;
 732        base_ref_iterator_init(ref_iterator, &cache_ref_iterator_vtable);
 733        ALLOC_GROW(iter->levels, 10, iter->levels_alloc);
 734
 735        iter->levels_nr = 1;
 736        level = &iter->levels[0];
 737        level->index = -1;
 738        level->dir = dir;
 739
 740        return ref_iterator;
 741}
 742
 743struct nonmatching_ref_data {
 744        const struct string_list *skip;
 745        const char *conflicting_refname;
 746};
 747
 748static int nonmatching_ref_fn(struct ref_entry *entry, void *vdata)
 749{
 750        struct nonmatching_ref_data *data = vdata;
 751
 752        if (data->skip && string_list_has_string(data->skip, entry->name))
 753                return 0;
 754
 755        data->conflicting_refname = entry->name;
 756        return 1;
 757}
 758
 759/*
 760 * Return 0 if a reference named refname could be created without
 761 * conflicting with the name of an existing reference in dir.
 762 * See verify_refname_available for more information.
 763 */
 764static int verify_refname_available_dir(const char *refname,
 765                                        const struct string_list *extras,
 766                                        const struct string_list *skip,
 767                                        struct ref_dir *dir,
 768                                        struct strbuf *err)
 769{
 770        const char *slash;
 771        const char *extra_refname;
 772        int pos;
 773        struct strbuf dirname = STRBUF_INIT;
 774        int ret = -1;
 775
 776        /*
 777         * For the sake of comments in this function, suppose that
 778         * refname is "refs/foo/bar".
 779         */
 780
 781        assert(err);
 782
 783        strbuf_grow(&dirname, strlen(refname) + 1);
 784        for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
 785                /* Expand dirname to the new prefix, not including the trailing slash: */
 786                strbuf_add(&dirname, refname + dirname.len, slash - refname - dirname.len);
 787
 788                /*
 789                 * We are still at a leading dir of the refname (e.g.,
 790                 * "refs/foo"; if there is a reference with that name,
 791                 * it is a conflict, *unless* it is in skip.
 792                 */
 793                if (dir) {
 794                        pos = search_ref_dir(dir, dirname.buf, dirname.len);
 795                        if (pos >= 0 &&
 796                            (!skip || !string_list_has_string(skip, dirname.buf))) {
 797                                /*
 798                                 * We found a reference whose name is
 799                                 * a proper prefix of refname; e.g.,
 800                                 * "refs/foo", and is not in skip.
 801                                 */
 802                                strbuf_addf(err, "'%s' exists; cannot create '%s'",
 803                                            dirname.buf, refname);
 804                                goto cleanup;
 805                        }
 806                }
 807
 808                if (extras && string_list_has_string(extras, dirname.buf) &&
 809                    (!skip || !string_list_has_string(skip, dirname.buf))) {
 810                        strbuf_addf(err, "cannot process '%s' and '%s' at the same time",
 811                                    refname, dirname.buf);
 812                        goto cleanup;
 813                }
 814
 815                /*
 816                 * Otherwise, we can try to continue our search with
 817                 * the next component. So try to look up the
 818                 * directory, e.g., "refs/foo/". If we come up empty,
 819                 * we know there is nothing under this whole prefix,
 820                 * but even in that case we still have to continue the
 821                 * search for conflicts with extras.
 822                 */
 823                strbuf_addch(&dirname, '/');
 824                if (dir) {
 825                        pos = search_ref_dir(dir, dirname.buf, dirname.len);
 826                        if (pos < 0) {
 827                                /*
 828                                 * There was no directory "refs/foo/",
 829                                 * so there is nothing under this
 830                                 * whole prefix. So there is no need
 831                                 * to continue looking for conflicting
 832                                 * references. But we need to continue
 833                                 * looking for conflicting extras.
 834                                 */
 835                                dir = NULL;
 836                        } else {
 837                                dir = get_ref_dir(dir->entries[pos]);
 838                        }
 839                }
 840        }
 841
 842        /*
 843         * We are at the leaf of our refname (e.g., "refs/foo/bar").
 844         * There is no point in searching for a reference with that
 845         * name, because a refname isn't considered to conflict with
 846         * itself. But we still need to check for references whose
 847         * names are in the "refs/foo/bar/" namespace, because they
 848         * *do* conflict.
 849         */
 850        strbuf_addstr(&dirname, refname + dirname.len);
 851        strbuf_addch(&dirname, '/');
 852
 853        if (dir) {
 854                pos = search_ref_dir(dir, dirname.buf, dirname.len);
 855
 856                if (pos >= 0) {
 857                        /*
 858                         * We found a directory named "$refname/"
 859                         * (e.g., "refs/foo/bar/"). It is a problem
 860                         * iff it contains any ref that is not in
 861                         * "skip".
 862                         */
 863                        struct nonmatching_ref_data data;
 864
 865                        data.skip = skip;
 866                        data.conflicting_refname = NULL;
 867                        dir = get_ref_dir(dir->entries[pos]);
 868                        sort_ref_dir(dir);
 869                        if (do_for_each_entry_in_dir(dir, 0, nonmatching_ref_fn, &data)) {
 870                                strbuf_addf(err, "'%s' exists; cannot create '%s'",
 871                                            data.conflicting_refname, refname);
 872                                goto cleanup;
 873                        }
 874                }
 875        }
 876
 877        extra_refname = find_descendant_ref(dirname.buf, extras, skip);
 878        if (extra_refname)
 879                strbuf_addf(err, "cannot process '%s' and '%s' at the same time",
 880                            refname, extra_refname);
 881        else
 882                ret = 0;
 883
 884cleanup:
 885        strbuf_release(&dirname);
 886        return ret;
 887}
 888
 889struct packed_ref_cache {
 890        struct ref_entry *root;
 891
 892        /*
 893         * Count of references to the data structure in this instance,
 894         * including the pointer from files_ref_store::packed if any.
 895         * The data will not be freed as long as the reference count
 896         * is nonzero.
 897         */
 898        unsigned int referrers;
 899
 900        /*
 901         * Iff the packed-refs file associated with this instance is
 902         * currently locked for writing, this points at the associated
 903         * lock (which is owned by somebody else).  The referrer count
 904         * is also incremented when the file is locked and decremented
 905         * when it is unlocked.
 906         */
 907        struct lock_file *lock;
 908
 909        /* The metadata from when this packed-refs cache was read */
 910        struct stat_validity validity;
 911};
 912
 913/*
 914 * Future: need to be in "struct repository"
 915 * when doing a full libification.
 916 */
 917struct files_ref_store {
 918        struct ref_store base;
 919        unsigned int store_flags;
 920
 921        char *gitdir;
 922        char *gitcommondir;
 923        char *packed_refs_path;
 924
 925        struct ref_entry *loose;
 926        struct packed_ref_cache *packed;
 927};
 928
 929/* Lock used for the main packed-refs file: */
 930static struct lock_file packlock;
 931
 932/*
 933 * Increment the reference count of *packed_refs.
 934 */
 935static void acquire_packed_ref_cache(struct packed_ref_cache *packed_refs)
 936{
 937        packed_refs->referrers++;
 938}
 939
 940/*
 941 * Decrease the reference count of *packed_refs.  If it goes to zero,
 942 * free *packed_refs and return true; otherwise return false.
 943 */
 944static int release_packed_ref_cache(struct packed_ref_cache *packed_refs)
 945{
 946        if (!--packed_refs->referrers) {
 947                free_ref_entry(packed_refs->root);
 948                stat_validity_clear(&packed_refs->validity);
 949                free(packed_refs);
 950                return 1;
 951        } else {
 952                return 0;
 953        }
 954}
 955
 956static void clear_packed_ref_cache(struct files_ref_store *refs)
 957{
 958        if (refs->packed) {
 959                struct packed_ref_cache *packed_refs = refs->packed;
 960
 961                if (packed_refs->lock)
 962                        die("internal error: packed-ref cache cleared while locked");
 963                refs->packed = NULL;
 964                release_packed_ref_cache(packed_refs);
 965        }
 966}
 967
 968static void clear_loose_ref_cache(struct files_ref_store *refs)
 969{
 970        if (refs->loose) {
 971                free_ref_entry(refs->loose);
 972                refs->loose = NULL;
 973        }
 974}
 975
 976/*
 977 * Create a new submodule ref cache and add it to the internal
 978 * set of caches.
 979 */
 980static struct ref_store *files_ref_store_create(const char *gitdir,
 981                                                unsigned int flags)
 982{
 983        struct files_ref_store *refs = xcalloc(1, sizeof(*refs));
 984        struct ref_store *ref_store = (struct ref_store *)refs;
 985        struct strbuf sb = STRBUF_INIT;
 986
 987        base_ref_store_init(ref_store, &refs_be_files);
 988        refs->store_flags = flags;
 989
 990        refs->gitdir = xstrdup(gitdir);
 991        get_common_dir_noenv(&sb, gitdir);
 992        refs->gitcommondir = strbuf_detach(&sb, NULL);
 993        strbuf_addf(&sb, "%s/packed-refs", refs->gitcommondir);
 994        refs->packed_refs_path = strbuf_detach(&sb, NULL);
 995
 996        return ref_store;
 997}
 998
 999/*
1000 * Die if refs is not the main ref store. caller is used in any
1001 * necessary error messages.
1002 */
1003static void files_assert_main_repository(struct files_ref_store *refs,
1004                                         const char *caller)
1005{
1006        if (refs->store_flags & REF_STORE_MAIN)
1007                return;
1008
1009        die("BUG: operation %s only allowed for main ref store", caller);
1010}
1011
1012/*
1013 * Downcast ref_store to files_ref_store. Die if ref_store is not a
1014 * files_ref_store. required_flags is compared with ref_store's
1015 * store_flags to ensure the ref_store has all required capabilities.
1016 * "caller" is used in any necessary error messages.
1017 */
1018static struct files_ref_store *files_downcast(struct ref_store *ref_store,
1019                                              unsigned int required_flags,
1020                                              const char *caller)
1021{
1022        struct files_ref_store *refs;
1023
1024        if (ref_store->be != &refs_be_files)
1025                die("BUG: ref_store is type \"%s\" not \"files\" in %s",
1026                    ref_store->be->name, caller);
1027
1028        refs = (struct files_ref_store *)ref_store;
1029
1030        if ((refs->store_flags & required_flags) != required_flags)
1031                die("BUG: operation %s requires abilities 0x%x, but only have 0x%x",
1032                    caller, required_flags, refs->store_flags);
1033
1034        return refs;
1035}
1036
1037/* The length of a peeled reference line in packed-refs, including EOL: */
1038#define PEELED_LINE_LENGTH 42
1039
1040/*
1041 * The packed-refs header line that we write out.  Perhaps other
1042 * traits will be added later.  The trailing space is required.
1043 */
1044static const char PACKED_REFS_HEADER[] =
1045        "# pack-refs with: peeled fully-peeled \n";
1046
1047/*
1048 * Parse one line from a packed-refs file.  Write the SHA1 to sha1.
1049 * Return a pointer to the refname within the line (null-terminated),
1050 * or NULL if there was a problem.
1051 */
1052static const char *parse_ref_line(struct strbuf *line, unsigned char *sha1)
1053{
1054        const char *ref;
1055
1056        /*
1057         * 42: the answer to everything.
1058         *
1059         * In this case, it happens to be the answer to
1060         *  40 (length of sha1 hex representation)
1061         *  +1 (space in between hex and name)
1062         *  +1 (newline at the end of the line)
1063         */
1064        if (line->len <= 42)
1065                return NULL;
1066
1067        if (get_sha1_hex(line->buf, sha1) < 0)
1068                return NULL;
1069        if (!isspace(line->buf[40]))
1070                return NULL;
1071
1072        ref = line->buf + 41;
1073        if (isspace(*ref))
1074                return NULL;
1075
1076        if (line->buf[line->len - 1] != '\n')
1077                return NULL;
1078        line->buf[--line->len] = 0;
1079
1080        return ref;
1081}
1082
1083/*
1084 * Read f, which is a packed-refs file, into dir.
1085 *
1086 * A comment line of the form "# pack-refs with: " may contain zero or
1087 * more traits. We interpret the traits as follows:
1088 *
1089 *   No traits:
1090 *
1091 *      Probably no references are peeled. But if the file contains a
1092 *      peeled value for a reference, we will use it.
1093 *
1094 *   peeled:
1095 *
1096 *      References under "refs/tags/", if they *can* be peeled, *are*
1097 *      peeled in this file. References outside of "refs/tags/" are
1098 *      probably not peeled even if they could have been, but if we find
1099 *      a peeled value for such a reference we will use it.
1100 *
1101 *   fully-peeled:
1102 *
1103 *      All references in the file that can be peeled are peeled.
1104 *      Inversely (and this is more important), any references in the
1105 *      file for which no peeled value is recorded is not peelable. This
1106 *      trait should typically be written alongside "peeled" for
1107 *      compatibility with older clients, but we do not require it
1108 *      (i.e., "peeled" is a no-op if "fully-peeled" is set).
1109 */
1110static void read_packed_refs(FILE *f, struct ref_dir *dir)
1111{
1112        struct ref_entry *last = NULL;
1113        struct strbuf line = STRBUF_INIT;
1114        enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled = PEELED_NONE;
1115
1116        while (strbuf_getwholeline(&line, f, '\n') != EOF) {
1117                unsigned char sha1[20];
1118                const char *refname;
1119                const char *traits;
1120
1121                if (skip_prefix(line.buf, "# pack-refs with:", &traits)) {
1122                        if (strstr(traits, " fully-peeled "))
1123                                peeled = PEELED_FULLY;
1124                        else if (strstr(traits, " peeled "))
1125                                peeled = PEELED_TAGS;
1126                        /* perhaps other traits later as well */
1127                        continue;
1128                }
1129
1130                refname = parse_ref_line(&line, sha1);
1131                if (refname) {
1132                        int flag = REF_ISPACKED;
1133
1134                        if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
1135                                if (!refname_is_safe(refname))
1136                                        die("packed refname is dangerous: %s", refname);
1137                                hashclr(sha1);
1138                                flag |= REF_BAD_NAME | REF_ISBROKEN;
1139                        }
1140                        last = create_ref_entry(refname, sha1, flag, 0);
1141                        if (peeled == PEELED_FULLY ||
1142                            (peeled == PEELED_TAGS && starts_with(refname, "refs/tags/")))
1143                                last->flag |= REF_KNOWS_PEELED;
1144                        add_ref(dir, last);
1145                        continue;
1146                }
1147                if (last &&
1148                    line.buf[0] == '^' &&
1149                    line.len == PEELED_LINE_LENGTH &&
1150                    line.buf[PEELED_LINE_LENGTH - 1] == '\n' &&
1151                    !get_sha1_hex(line.buf + 1, sha1)) {
1152                        hashcpy(last->u.value.peeled.hash, sha1);
1153                        /*
1154                         * Regardless of what the file header said,
1155                         * we definitely know the value of *this*
1156                         * reference:
1157                         */
1158                        last->flag |= REF_KNOWS_PEELED;
1159                }
1160        }
1161
1162        strbuf_release(&line);
1163}
1164
1165static const char *files_packed_refs_path(struct files_ref_store *refs)
1166{
1167        return refs->packed_refs_path;
1168}
1169
1170static void files_reflog_path(struct files_ref_store *refs,
1171                              struct strbuf *sb,
1172                              const char *refname)
1173{
1174        if (!refname) {
1175                /*
1176                 * FIXME: of course this is wrong in multi worktree
1177                 * setting. To be fixed real soon.
1178                 */
1179                strbuf_addf(sb, "%s/logs", refs->gitcommondir);
1180                return;
1181        }
1182
1183        switch (ref_type(refname)) {
1184        case REF_TYPE_PER_WORKTREE:
1185        case REF_TYPE_PSEUDOREF:
1186                strbuf_addf(sb, "%s/logs/%s", refs->gitdir, refname);
1187                break;
1188        case REF_TYPE_NORMAL:
1189                strbuf_addf(sb, "%s/logs/%s", refs->gitcommondir, refname);
1190                break;
1191        default:
1192                die("BUG: unknown ref type %d of ref %s",
1193                    ref_type(refname), refname);
1194        }
1195}
1196
1197static void files_ref_path(struct files_ref_store *refs,
1198                           struct strbuf *sb,
1199                           const char *refname)
1200{
1201        switch (ref_type(refname)) {
1202        case REF_TYPE_PER_WORKTREE:
1203        case REF_TYPE_PSEUDOREF:
1204                strbuf_addf(sb, "%s/%s", refs->gitdir, refname);
1205                break;
1206        case REF_TYPE_NORMAL:
1207                strbuf_addf(sb, "%s/%s", refs->gitcommondir, refname);
1208                break;
1209        default:
1210                die("BUG: unknown ref type %d of ref %s",
1211                    ref_type(refname), refname);
1212        }
1213}
1214
1215/*
1216 * Get the packed_ref_cache for the specified files_ref_store,
1217 * creating it if necessary.
1218 */
1219static struct packed_ref_cache *get_packed_ref_cache(struct files_ref_store *refs)
1220{
1221        const char *packed_refs_file = files_packed_refs_path(refs);
1222
1223        if (refs->packed &&
1224            !stat_validity_check(&refs->packed->validity, packed_refs_file))
1225                clear_packed_ref_cache(refs);
1226
1227        if (!refs->packed) {
1228                FILE *f;
1229
1230                refs->packed = xcalloc(1, sizeof(*refs->packed));
1231                acquire_packed_ref_cache(refs->packed);
1232                refs->packed->root = create_dir_entry(refs, "", 0, 0);
1233                f = fopen(packed_refs_file, "r");
1234                if (f) {
1235                        stat_validity_update(&refs->packed->validity, fileno(f));
1236                        read_packed_refs(f, get_ref_dir(refs->packed->root));
1237                        fclose(f);
1238                }
1239        }
1240        return refs->packed;
1241}
1242
1243static struct ref_dir *get_packed_ref_dir(struct packed_ref_cache *packed_ref_cache)
1244{
1245        return get_ref_dir(packed_ref_cache->root);
1246}
1247
1248static struct ref_dir *get_packed_refs(struct files_ref_store *refs)
1249{
1250        return get_packed_ref_dir(get_packed_ref_cache(refs));
1251}
1252
1253/*
1254 * Add a reference to the in-memory packed reference cache.  This may
1255 * only be called while the packed-refs file is locked (see
1256 * lock_packed_refs()).  To actually write the packed-refs file, call
1257 * commit_packed_refs().
1258 */
1259static void add_packed_ref(struct files_ref_store *refs,
1260                           const char *refname, const unsigned char *sha1)
1261{
1262        struct packed_ref_cache *packed_ref_cache = get_packed_ref_cache(refs);
1263
1264        if (!packed_ref_cache->lock)
1265                die("internal error: packed refs not locked");
1266        add_ref(get_packed_ref_dir(packed_ref_cache),
1267                create_ref_entry(refname, sha1, REF_ISPACKED, 1));
1268}
1269
1270/*
1271 * Read the loose references from the namespace dirname into dir
1272 * (without recursing).  dirname must end with '/'.  dir must be the
1273 * directory entry corresponding to dirname.
1274 */
1275static void read_loose_refs(const char *dirname, struct ref_dir *dir)
1276{
1277        struct files_ref_store *refs = dir->ref_store;
1278        DIR *d;
1279        struct dirent *de;
1280        int dirnamelen = strlen(dirname);
1281        struct strbuf refname;
1282        struct strbuf path = STRBUF_INIT;
1283        size_t path_baselen;
1284
1285        files_ref_path(refs, &path, dirname);
1286        path_baselen = path.len;
1287
1288        d = opendir(path.buf);
1289        if (!d) {
1290                strbuf_release(&path);
1291                return;
1292        }
1293
1294        strbuf_init(&refname, dirnamelen + 257);
1295        strbuf_add(&refname, dirname, dirnamelen);
1296
1297        while ((de = readdir(d)) != NULL) {
1298                unsigned char sha1[20];
1299                struct stat st;
1300                int flag;
1301
1302                if (de->d_name[0] == '.')
1303                        continue;
1304                if (ends_with(de->d_name, ".lock"))
1305                        continue;
1306                strbuf_addstr(&refname, de->d_name);
1307                strbuf_addstr(&path, de->d_name);
1308                if (stat(path.buf, &st) < 0) {
1309                        ; /* silently ignore */
1310                } else if (S_ISDIR(st.st_mode)) {
1311                        strbuf_addch(&refname, '/');
1312                        add_entry_to_dir(dir,
1313                                         create_dir_entry(refs, refname.buf,
1314                                                          refname.len, 1));
1315                } else {
1316                        if (!resolve_ref_recursively(&refs->base,
1317                                                     refname.buf,
1318                                                     RESOLVE_REF_READING,
1319                                                     sha1, &flag)) {
1320                                hashclr(sha1);
1321                                flag |= REF_ISBROKEN;
1322                        } else if (is_null_sha1(sha1)) {
1323                                /*
1324                                 * It is so astronomically unlikely
1325                                 * that NULL_SHA1 is the SHA-1 of an
1326                                 * actual object that we consider its
1327                                 * appearance in a loose reference
1328                                 * file to be repo corruption
1329                                 * (probably due to a software bug).
1330                                 */
1331                                flag |= REF_ISBROKEN;
1332                        }
1333
1334                        if (check_refname_format(refname.buf,
1335                                                 REFNAME_ALLOW_ONELEVEL)) {
1336                                if (!refname_is_safe(refname.buf))
1337                                        die("loose refname is dangerous: %s", refname.buf);
1338                                hashclr(sha1);
1339                                flag |= REF_BAD_NAME | REF_ISBROKEN;
1340                        }
1341                        add_entry_to_dir(dir,
1342                                         create_ref_entry(refname.buf, sha1, flag, 0));
1343                }
1344                strbuf_setlen(&refname, dirnamelen);
1345                strbuf_setlen(&path, path_baselen);
1346        }
1347        strbuf_release(&refname);
1348        strbuf_release(&path);
1349        closedir(d);
1350}
1351
1352static struct ref_dir *get_loose_refs(struct files_ref_store *refs)
1353{
1354        if (!refs->loose) {
1355                /*
1356                 * Mark the top-level directory complete because we
1357                 * are about to read the only subdirectory that can
1358                 * hold references:
1359                 */
1360                refs->loose = create_dir_entry(refs, "", 0, 0);
1361                /*
1362                 * Create an incomplete entry for "refs/":
1363                 */
1364                add_entry_to_dir(get_ref_dir(refs->loose),
1365                                 create_dir_entry(refs, "refs/", 5, 1));
1366        }
1367        return get_ref_dir(refs->loose);
1368}
1369
1370/*
1371 * Return the ref_entry for the given refname from the packed
1372 * references.  If it does not exist, return NULL.
1373 */
1374static struct ref_entry *get_packed_ref(struct files_ref_store *refs,
1375                                        const char *refname)
1376{
1377        return find_ref(get_packed_refs(refs), refname);
1378}
1379
1380/*
1381 * A loose ref file doesn't exist; check for a packed ref.
1382 */
1383static int resolve_packed_ref(struct files_ref_store *refs,
1384                              const char *refname,
1385                              unsigned char *sha1, unsigned int *flags)
1386{
1387        struct ref_entry *entry;
1388
1389        /*
1390         * The loose reference file does not exist; check for a packed
1391         * reference.
1392         */
1393        entry = get_packed_ref(refs, refname);
1394        if (entry) {
1395                hashcpy(sha1, entry->u.value.oid.hash);
1396                *flags |= REF_ISPACKED;
1397                return 0;
1398        }
1399        /* refname is not a packed reference. */
1400        return -1;
1401}
1402
1403static int files_read_raw_ref(struct ref_store *ref_store,
1404                              const char *refname, unsigned char *sha1,
1405                              struct strbuf *referent, unsigned int *type)
1406{
1407        struct files_ref_store *refs =
1408                files_downcast(ref_store, REF_STORE_READ, "read_raw_ref");
1409        struct strbuf sb_contents = STRBUF_INIT;
1410        struct strbuf sb_path = STRBUF_INIT;
1411        const char *path;
1412        const char *buf;
1413        struct stat st;
1414        int fd;
1415        int ret = -1;
1416        int save_errno;
1417        int remaining_retries = 3;
1418
1419        *type = 0;
1420        strbuf_reset(&sb_path);
1421
1422        files_ref_path(refs, &sb_path, refname);
1423
1424        path = sb_path.buf;
1425
1426stat_ref:
1427        /*
1428         * We might have to loop back here to avoid a race
1429         * condition: first we lstat() the file, then we try
1430         * to read it as a link or as a file.  But if somebody
1431         * changes the type of the file (file <-> directory
1432         * <-> symlink) between the lstat() and reading, then
1433         * we don't want to report that as an error but rather
1434         * try again starting with the lstat().
1435         *
1436         * We'll keep a count of the retries, though, just to avoid
1437         * any confusing situation sending us into an infinite loop.
1438         */
1439
1440        if (remaining_retries-- <= 0)
1441                goto out;
1442
1443        if (lstat(path, &st) < 0) {
1444                if (errno != ENOENT)
1445                        goto out;
1446                if (resolve_packed_ref(refs, refname, sha1, type)) {
1447                        errno = ENOENT;
1448                        goto out;
1449                }
1450                ret = 0;
1451                goto out;
1452        }
1453
1454        /* Follow "normalized" - ie "refs/.." symlinks by hand */
1455        if (S_ISLNK(st.st_mode)) {
1456                strbuf_reset(&sb_contents);
1457                if (strbuf_readlink(&sb_contents, path, 0) < 0) {
1458                        if (errno == ENOENT || errno == EINVAL)
1459                                /* inconsistent with lstat; retry */
1460                                goto stat_ref;
1461                        else
1462                                goto out;
1463                }
1464                if (starts_with(sb_contents.buf, "refs/") &&
1465                    !check_refname_format(sb_contents.buf, 0)) {
1466                        strbuf_swap(&sb_contents, referent);
1467                        *type |= REF_ISSYMREF;
1468                        ret = 0;
1469                        goto out;
1470                }
1471                /*
1472                 * It doesn't look like a refname; fall through to just
1473                 * treating it like a non-symlink, and reading whatever it
1474                 * points to.
1475                 */
1476        }
1477
1478        /* Is it a directory? */
1479        if (S_ISDIR(st.st_mode)) {
1480                /*
1481                 * Even though there is a directory where the loose
1482                 * ref is supposed to be, there could still be a
1483                 * packed ref:
1484                 */
1485                if (resolve_packed_ref(refs, refname, sha1, type)) {
1486                        errno = EISDIR;
1487                        goto out;
1488                }
1489                ret = 0;
1490                goto out;
1491        }
1492
1493        /*
1494         * Anything else, just open it and try to use it as
1495         * a ref
1496         */
1497        fd = open(path, O_RDONLY);
1498        if (fd < 0) {
1499                if (errno == ENOENT && !S_ISLNK(st.st_mode))
1500                        /* inconsistent with lstat; retry */
1501                        goto stat_ref;
1502                else
1503                        goto out;
1504        }
1505        strbuf_reset(&sb_contents);
1506        if (strbuf_read(&sb_contents, fd, 256) < 0) {
1507                int save_errno = errno;
1508                close(fd);
1509                errno = save_errno;
1510                goto out;
1511        }
1512        close(fd);
1513        strbuf_rtrim(&sb_contents);
1514        buf = sb_contents.buf;
1515        if (starts_with(buf, "ref:")) {
1516                buf += 4;
1517                while (isspace(*buf))
1518                        buf++;
1519
1520                strbuf_reset(referent);
1521                strbuf_addstr(referent, buf);
1522                *type |= REF_ISSYMREF;
1523                ret = 0;
1524                goto out;
1525        }
1526
1527        /*
1528         * Please note that FETCH_HEAD has additional
1529         * data after the sha.
1530         */
1531        if (get_sha1_hex(buf, sha1) ||
1532            (buf[40] != '\0' && !isspace(buf[40]))) {
1533                *type |= REF_ISBROKEN;
1534                errno = EINVAL;
1535                goto out;
1536        }
1537
1538        ret = 0;
1539
1540out:
1541        save_errno = errno;
1542        strbuf_release(&sb_path);
1543        strbuf_release(&sb_contents);
1544        errno = save_errno;
1545        return ret;
1546}
1547
1548static void unlock_ref(struct ref_lock *lock)
1549{
1550        /* Do not free lock->lk -- atexit() still looks at them */
1551        if (lock->lk)
1552                rollback_lock_file(lock->lk);
1553        free(lock->ref_name);
1554        free(lock);
1555}
1556
1557/*
1558 * Lock refname, without following symrefs, and set *lock_p to point
1559 * at a newly-allocated lock object. Fill in lock->old_oid, referent,
1560 * and type similarly to read_raw_ref().
1561 *
1562 * The caller must verify that refname is a "safe" reference name (in
1563 * the sense of refname_is_safe()) before calling this function.
1564 *
1565 * If the reference doesn't already exist, verify that refname doesn't
1566 * have a D/F conflict with any existing references. extras and skip
1567 * are passed to verify_refname_available_dir() for this check.
1568 *
1569 * If mustexist is not set and the reference is not found or is
1570 * broken, lock the reference anyway but clear sha1.
1571 *
1572 * Return 0 on success. On failure, write an error message to err and
1573 * return TRANSACTION_NAME_CONFLICT or TRANSACTION_GENERIC_ERROR.
1574 *
1575 * Implementation note: This function is basically
1576 *
1577 *     lock reference
1578 *     read_raw_ref()
1579 *
1580 * but it includes a lot more code to
1581 * - Deal with possible races with other processes
1582 * - Avoid calling verify_refname_available_dir() when it can be
1583 *   avoided, namely if we were successfully able to read the ref
1584 * - Generate informative error messages in the case of failure
1585 */
1586static int lock_raw_ref(struct files_ref_store *refs,
1587                        const char *refname, int mustexist,
1588                        const struct string_list *extras,
1589                        const struct string_list *skip,
1590                        struct ref_lock **lock_p,
1591                        struct strbuf *referent,
1592                        unsigned int *type,
1593                        struct strbuf *err)
1594{
1595        struct ref_lock *lock;
1596        struct strbuf ref_file = STRBUF_INIT;
1597        int attempts_remaining = 3;
1598        int ret = TRANSACTION_GENERIC_ERROR;
1599
1600        assert(err);
1601        files_assert_main_repository(refs, "lock_raw_ref");
1602
1603        *type = 0;
1604
1605        /* First lock the file so it can't change out from under us. */
1606
1607        *lock_p = lock = xcalloc(1, sizeof(*lock));
1608
1609        lock->ref_name = xstrdup(refname);
1610        files_ref_path(refs, &ref_file, refname);
1611
1612retry:
1613        switch (safe_create_leading_directories(ref_file.buf)) {
1614        case SCLD_OK:
1615                break; /* success */
1616        case SCLD_EXISTS:
1617                /*
1618                 * Suppose refname is "refs/foo/bar". We just failed
1619                 * to create the containing directory, "refs/foo",
1620                 * because there was a non-directory in the way. This
1621                 * indicates a D/F conflict, probably because of
1622                 * another reference such as "refs/foo". There is no
1623                 * reason to expect this error to be transitory.
1624                 */
1625                if (verify_refname_available(refname, extras, skip, err)) {
1626                        if (mustexist) {
1627                                /*
1628                                 * To the user the relevant error is
1629                                 * that the "mustexist" reference is
1630                                 * missing:
1631                                 */
1632                                strbuf_reset(err);
1633                                strbuf_addf(err, "unable to resolve reference '%s'",
1634                                            refname);
1635                        } else {
1636                                /*
1637                                 * The error message set by
1638                                 * verify_refname_available_dir() is OK.
1639                                 */
1640                                ret = TRANSACTION_NAME_CONFLICT;
1641                        }
1642                } else {
1643                        /*
1644                         * The file that is in the way isn't a loose
1645                         * reference. Report it as a low-level
1646                         * failure.
1647                         */
1648                        strbuf_addf(err, "unable to create lock file %s.lock; "
1649                                    "non-directory in the way",
1650                                    ref_file.buf);
1651                }
1652                goto error_return;
1653        case SCLD_VANISHED:
1654                /* Maybe another process was tidying up. Try again. */
1655                if (--attempts_remaining > 0)
1656                        goto retry;
1657                /* fall through */
1658        default:
1659                strbuf_addf(err, "unable to create directory for %s",
1660                            ref_file.buf);
1661                goto error_return;
1662        }
1663
1664        if (!lock->lk)
1665                lock->lk = xcalloc(1, sizeof(struct lock_file));
1666
1667        if (hold_lock_file_for_update(lock->lk, ref_file.buf, LOCK_NO_DEREF) < 0) {
1668                if (errno == ENOENT && --attempts_remaining > 0) {
1669                        /*
1670                         * Maybe somebody just deleted one of the
1671                         * directories leading to ref_file.  Try
1672                         * again:
1673                         */
1674                        goto retry;
1675                } else {
1676                        unable_to_lock_message(ref_file.buf, errno, err);
1677                        goto error_return;
1678                }
1679        }
1680
1681        /*
1682         * Now we hold the lock and can read the reference without
1683         * fear that its value will change.
1684         */
1685
1686        if (files_read_raw_ref(&refs->base, refname,
1687                               lock->old_oid.hash, referent, type)) {
1688                if (errno == ENOENT) {
1689                        if (mustexist) {
1690                                /* Garden variety missing reference. */
1691                                strbuf_addf(err, "unable to resolve reference '%s'",
1692                                            refname);
1693                                goto error_return;
1694                        } else {
1695                                /*
1696                                 * Reference is missing, but that's OK. We
1697                                 * know that there is not a conflict with
1698                                 * another loose reference because
1699                                 * (supposing that we are trying to lock
1700                                 * reference "refs/foo/bar"):
1701                                 *
1702                                 * - We were successfully able to create
1703                                 *   the lockfile refs/foo/bar.lock, so we
1704                                 *   know there cannot be a loose reference
1705                                 *   named "refs/foo".
1706                                 *
1707                                 * - We got ENOENT and not EISDIR, so we
1708                                 *   know that there cannot be a loose
1709                                 *   reference named "refs/foo/bar/baz".
1710                                 */
1711                        }
1712                } else if (errno == EISDIR) {
1713                        /*
1714                         * There is a directory in the way. It might have
1715                         * contained references that have been deleted. If
1716                         * we don't require that the reference already
1717                         * exists, try to remove the directory so that it
1718                         * doesn't cause trouble when we want to rename the
1719                         * lockfile into place later.
1720                         */
1721                        if (mustexist) {
1722                                /* Garden variety missing reference. */
1723                                strbuf_addf(err, "unable to resolve reference '%s'",
1724                                            refname);
1725                                goto error_return;
1726                        } else if (remove_dir_recursively(&ref_file,
1727                                                          REMOVE_DIR_EMPTY_ONLY)) {
1728                                if (verify_refname_available_dir(
1729                                                    refname, extras, skip,
1730                                                    get_loose_refs(refs),
1731                                                    err)) {
1732                                        /*
1733                                         * The error message set by
1734                                         * verify_refname_available() is OK.
1735                                         */
1736                                        ret = TRANSACTION_NAME_CONFLICT;
1737                                        goto error_return;
1738                                } else {
1739                                        /*
1740                                         * We can't delete the directory,
1741                                         * but we also don't know of any
1742                                         * references that it should
1743                                         * contain.
1744                                         */
1745                                        strbuf_addf(err, "there is a non-empty directory '%s' "
1746                                                    "blocking reference '%s'",
1747                                                    ref_file.buf, refname);
1748                                        goto error_return;
1749                                }
1750                        }
1751                } else if (errno == EINVAL && (*type & REF_ISBROKEN)) {
1752                        strbuf_addf(err, "unable to resolve reference '%s': "
1753                                    "reference broken", refname);
1754                        goto error_return;
1755                } else {
1756                        strbuf_addf(err, "unable to resolve reference '%s': %s",
1757                                    refname, strerror(errno));
1758                        goto error_return;
1759                }
1760
1761                /*
1762                 * If the ref did not exist and we are creating it,
1763                 * make sure there is no existing packed ref whose
1764                 * name begins with our refname, nor a packed ref
1765                 * whose name is a proper prefix of our refname.
1766                 */
1767                if (verify_refname_available_dir(
1768                                    refname, extras, skip,
1769                                    get_packed_refs(refs),
1770                                    err)) {
1771                        goto error_return;
1772                }
1773        }
1774
1775        ret = 0;
1776        goto out;
1777
1778error_return:
1779        unlock_ref(lock);
1780        *lock_p = NULL;
1781
1782out:
1783        strbuf_release(&ref_file);
1784        return ret;
1785}
1786
1787/*
1788 * Peel the entry (if possible) and return its new peel_status.  If
1789 * repeel is true, re-peel the entry even if there is an old peeled
1790 * value that is already stored in it.
1791 *
1792 * It is OK to call this function with a packed reference entry that
1793 * might be stale and might even refer to an object that has since
1794 * been garbage-collected.  In such a case, if the entry has
1795 * REF_KNOWS_PEELED then leave the status unchanged and return
1796 * PEEL_PEELED or PEEL_NON_TAG; otherwise, return PEEL_INVALID.
1797 */
1798static enum peel_status peel_entry(struct ref_entry *entry, int repeel)
1799{
1800        enum peel_status status;
1801
1802        if (entry->flag & REF_KNOWS_PEELED) {
1803                if (repeel) {
1804                        entry->flag &= ~REF_KNOWS_PEELED;
1805                        oidclr(&entry->u.value.peeled);
1806                } else {
1807                        return is_null_oid(&entry->u.value.peeled) ?
1808                                PEEL_NON_TAG : PEEL_PEELED;
1809                }
1810        }
1811        if (entry->flag & REF_ISBROKEN)
1812                return PEEL_BROKEN;
1813        if (entry->flag & REF_ISSYMREF)
1814                return PEEL_IS_SYMREF;
1815
1816        status = peel_object(entry->u.value.oid.hash, entry->u.value.peeled.hash);
1817        if (status == PEEL_PEELED || status == PEEL_NON_TAG)
1818                entry->flag |= REF_KNOWS_PEELED;
1819        return status;
1820}
1821
1822static int files_peel_ref(struct ref_store *ref_store,
1823                          const char *refname, unsigned char *sha1)
1824{
1825        struct files_ref_store *refs =
1826                files_downcast(ref_store, REF_STORE_READ | REF_STORE_ODB,
1827                               "peel_ref");
1828        int flag;
1829        unsigned char base[20];
1830
1831        files_assert_main_repository(refs, "peel_ref");
1832
1833        if (current_ref_iter && current_ref_iter->refname == refname) {
1834                struct object_id peeled;
1835
1836                if (ref_iterator_peel(current_ref_iter, &peeled))
1837                        return -1;
1838                hashcpy(sha1, peeled.hash);
1839                return 0;
1840        }
1841
1842        if (read_ref_full(refname, RESOLVE_REF_READING, base, &flag))
1843                return -1;
1844
1845        /*
1846         * If the reference is packed, read its ref_entry from the
1847         * cache in the hope that we already know its peeled value.
1848         * We only try this optimization on packed references because
1849         * (a) forcing the filling of the loose reference cache could
1850         * be expensive and (b) loose references anyway usually do not
1851         * have REF_KNOWS_PEELED.
1852         */
1853        if (flag & REF_ISPACKED) {
1854                struct ref_entry *r = get_packed_ref(refs, refname);
1855                if (r) {
1856                        if (peel_entry(r, 0))
1857                                return -1;
1858                        hashcpy(sha1, r->u.value.peeled.hash);
1859                        return 0;
1860                }
1861        }
1862
1863        return peel_object(base, sha1);
1864}
1865
1866struct files_ref_iterator {
1867        struct ref_iterator base;
1868
1869        struct packed_ref_cache *packed_ref_cache;
1870        struct ref_iterator *iter0;
1871        unsigned int flags;
1872};
1873
1874static int files_ref_iterator_advance(struct ref_iterator *ref_iterator)
1875{
1876        struct files_ref_iterator *iter =
1877                (struct files_ref_iterator *)ref_iterator;
1878        int ok;
1879
1880        while ((ok = ref_iterator_advance(iter->iter0)) == ITER_OK) {
1881                if (iter->flags & DO_FOR_EACH_PER_WORKTREE_ONLY &&
1882                    ref_type(iter->iter0->refname) != REF_TYPE_PER_WORKTREE)
1883                        continue;
1884
1885                if (!(iter->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
1886                    !ref_resolves_to_object(iter->iter0->refname,
1887                                            iter->iter0->oid,
1888                                            iter->iter0->flags))
1889                        continue;
1890
1891                iter->base.refname = iter->iter0->refname;
1892                iter->base.oid = iter->iter0->oid;
1893                iter->base.flags = iter->iter0->flags;
1894                return ITER_OK;
1895        }
1896
1897        iter->iter0 = NULL;
1898        if (ref_iterator_abort(ref_iterator) != ITER_DONE)
1899                ok = ITER_ERROR;
1900
1901        return ok;
1902}
1903
1904static int files_ref_iterator_peel(struct ref_iterator *ref_iterator,
1905                                   struct object_id *peeled)
1906{
1907        struct files_ref_iterator *iter =
1908                (struct files_ref_iterator *)ref_iterator;
1909
1910        return ref_iterator_peel(iter->iter0, peeled);
1911}
1912
1913static int files_ref_iterator_abort(struct ref_iterator *ref_iterator)
1914{
1915        struct files_ref_iterator *iter =
1916                (struct files_ref_iterator *)ref_iterator;
1917        int ok = ITER_DONE;
1918
1919        if (iter->iter0)
1920                ok = ref_iterator_abort(iter->iter0);
1921
1922        release_packed_ref_cache(iter->packed_ref_cache);
1923        base_ref_iterator_free(ref_iterator);
1924        return ok;
1925}
1926
1927static struct ref_iterator_vtable files_ref_iterator_vtable = {
1928        files_ref_iterator_advance,
1929        files_ref_iterator_peel,
1930        files_ref_iterator_abort
1931};
1932
1933static struct ref_iterator *files_ref_iterator_begin(
1934                struct ref_store *ref_store,
1935                const char *prefix, unsigned int flags)
1936{
1937        struct files_ref_store *refs;
1938        struct ref_dir *loose_dir, *packed_dir;
1939        struct ref_iterator *loose_iter, *packed_iter;
1940        struct files_ref_iterator *iter;
1941        struct ref_iterator *ref_iterator;
1942
1943        if (ref_paranoia < 0)
1944                ref_paranoia = git_env_bool("GIT_REF_PARANOIA", 0);
1945        if (ref_paranoia)
1946                flags |= DO_FOR_EACH_INCLUDE_BROKEN;
1947
1948        refs = files_downcast(ref_store,
1949                              REF_STORE_READ | (ref_paranoia ? 0 : REF_STORE_ODB),
1950                              "ref_iterator_begin");
1951
1952        iter = xcalloc(1, sizeof(*iter));
1953        ref_iterator = &iter->base;
1954        base_ref_iterator_init(ref_iterator, &files_ref_iterator_vtable);
1955
1956        /*
1957         * We must make sure that all loose refs are read before
1958         * accessing the packed-refs file; this avoids a race
1959         * condition if loose refs are migrated to the packed-refs
1960         * file by a simultaneous process, but our in-memory view is
1961         * from before the migration. We ensure this as follows:
1962         * First, we call prime_ref_dir(), which pre-reads the loose
1963         * references for the subtree into the cache. (If they've
1964         * already been read, that's OK; we only need to guarantee
1965         * that they're read before the packed refs, not *how much*
1966         * before.) After that, we call get_packed_ref_cache(), which
1967         * internally checks whether the packed-ref cache is up to
1968         * date with what is on disk, and re-reads it if not.
1969         */
1970
1971        loose_dir = get_loose_refs(refs);
1972
1973        if (prefix && *prefix)
1974                loose_dir = find_containing_dir(loose_dir, prefix, 0);
1975
1976        if (loose_dir) {
1977                prime_ref_dir(loose_dir);
1978                loose_iter = cache_ref_iterator_begin(loose_dir);
1979        } else {
1980                /* There's nothing to iterate over. */
1981                loose_iter = empty_ref_iterator_begin();
1982        }
1983
1984        iter->packed_ref_cache = get_packed_ref_cache(refs);
1985        acquire_packed_ref_cache(iter->packed_ref_cache);
1986        packed_dir = get_packed_ref_dir(iter->packed_ref_cache);
1987
1988        if (prefix && *prefix)
1989                packed_dir = find_containing_dir(packed_dir, prefix, 0);
1990
1991        if (packed_dir) {
1992                packed_iter = cache_ref_iterator_begin(packed_dir);
1993        } else {
1994                /* There's nothing to iterate over. */
1995                packed_iter = empty_ref_iterator_begin();
1996        }
1997
1998        iter->iter0 = overlay_ref_iterator_begin(loose_iter, packed_iter);
1999        iter->flags = flags;
2000
2001        return ref_iterator;
2002}
2003
2004/*
2005 * Verify that the reference locked by lock has the value old_sha1.
2006 * Fail if the reference doesn't exist and mustexist is set. Return 0
2007 * on success. On error, write an error message to err, set errno, and
2008 * return a negative value.
2009 */
2010static int verify_lock(struct ref_lock *lock,
2011                       const unsigned char *old_sha1, int mustexist,
2012                       struct strbuf *err)
2013{
2014        assert(err);
2015
2016        if (read_ref_full(lock->ref_name,
2017                          mustexist ? RESOLVE_REF_READING : 0,
2018                          lock->old_oid.hash, NULL)) {
2019                if (old_sha1) {
2020                        int save_errno = errno;
2021                        strbuf_addf(err, "can't verify ref '%s'", lock->ref_name);
2022                        errno = save_errno;
2023                        return -1;
2024                } else {
2025                        oidclr(&lock->old_oid);
2026                        return 0;
2027                }
2028        }
2029        if (old_sha1 && hashcmp(lock->old_oid.hash, old_sha1)) {
2030                strbuf_addf(err, "ref '%s' is at %s but expected %s",
2031                            lock->ref_name,
2032                            oid_to_hex(&lock->old_oid),
2033                            sha1_to_hex(old_sha1));
2034                errno = EBUSY;
2035                return -1;
2036        }
2037        return 0;
2038}
2039
2040static int remove_empty_directories(struct strbuf *path)
2041{
2042        /*
2043         * we want to create a file but there is a directory there;
2044         * if that is an empty directory (or a directory that contains
2045         * only empty directories), remove them.
2046         */
2047        return remove_dir_recursively(path, REMOVE_DIR_EMPTY_ONLY);
2048}
2049
2050static int create_reflock(const char *path, void *cb)
2051{
2052        struct lock_file *lk = cb;
2053
2054        return hold_lock_file_for_update(lk, path, LOCK_NO_DEREF) < 0 ? -1 : 0;
2055}
2056
2057/*
2058 * Locks a ref returning the lock on success and NULL on failure.
2059 * On failure errno is set to something meaningful.
2060 */
2061static struct ref_lock *lock_ref_sha1_basic(struct files_ref_store *refs,
2062                                            const char *refname,
2063                                            const unsigned char *old_sha1,
2064                                            const struct string_list *extras,
2065                                            const struct string_list *skip,
2066                                            unsigned int flags, int *type,
2067                                            struct strbuf *err)
2068{
2069        struct strbuf ref_file = STRBUF_INIT;
2070        struct ref_lock *lock;
2071        int last_errno = 0;
2072        int mustexist = (old_sha1 && !is_null_sha1(old_sha1));
2073        int resolve_flags = RESOLVE_REF_NO_RECURSE;
2074        int resolved;
2075
2076        files_assert_main_repository(refs, "lock_ref_sha1_basic");
2077        assert(err);
2078
2079        lock = xcalloc(1, sizeof(struct ref_lock));
2080
2081        if (mustexist)
2082                resolve_flags |= RESOLVE_REF_READING;
2083        if (flags & REF_DELETING)
2084                resolve_flags |= RESOLVE_REF_ALLOW_BAD_NAME;
2085
2086        files_ref_path(refs, &ref_file, refname);
2087        resolved = !!resolve_ref_unsafe(refname, resolve_flags,
2088                                        lock->old_oid.hash, type);
2089        if (!resolved && errno == EISDIR) {
2090                /*
2091                 * we are trying to lock foo but we used to
2092                 * have foo/bar which now does not exist;
2093                 * it is normal for the empty directory 'foo'
2094                 * to remain.
2095                 */
2096                if (remove_empty_directories(&ref_file)) {
2097                        last_errno = errno;
2098                        if (!verify_refname_available_dir(
2099                                            refname, extras, skip,
2100                                            get_loose_refs(refs), err))
2101                                strbuf_addf(err, "there are still refs under '%s'",
2102                                            refname);
2103                        goto error_return;
2104                }
2105                resolved = !!resolve_ref_unsafe(refname, resolve_flags,
2106                                                lock->old_oid.hash, type);
2107        }
2108        if (!resolved) {
2109                last_errno = errno;
2110                if (last_errno != ENOTDIR ||
2111                    !verify_refname_available_dir(
2112                                    refname, extras, skip,
2113                                    get_loose_refs(refs), err))
2114                        strbuf_addf(err, "unable to resolve reference '%s': %s",
2115                                    refname, strerror(last_errno));
2116
2117                goto error_return;
2118        }
2119
2120        /*
2121         * If the ref did not exist and we are creating it, make sure
2122         * there is no existing packed ref whose name begins with our
2123         * refname, nor a packed ref whose name is a proper prefix of
2124         * our refname.
2125         */
2126        if (is_null_oid(&lock->old_oid) &&
2127            verify_refname_available_dir(refname, extras, skip,
2128                                         get_packed_refs(refs),
2129                                         err)) {
2130                last_errno = ENOTDIR;
2131                goto error_return;
2132        }
2133
2134        lock->lk = xcalloc(1, sizeof(struct lock_file));
2135
2136        lock->ref_name = xstrdup(refname);
2137
2138        if (raceproof_create_file(ref_file.buf, create_reflock, lock->lk)) {
2139                last_errno = errno;
2140                unable_to_lock_message(ref_file.buf, errno, err);
2141                goto error_return;
2142        }
2143
2144        if (verify_lock(lock, old_sha1, mustexist, err)) {
2145                last_errno = errno;
2146                goto error_return;
2147        }
2148        goto out;
2149
2150 error_return:
2151        unlock_ref(lock);
2152        lock = NULL;
2153
2154 out:
2155        strbuf_release(&ref_file);
2156        errno = last_errno;
2157        return lock;
2158}
2159
2160/*
2161 * Write an entry to the packed-refs file for the specified refname.
2162 * If peeled is non-NULL, write it as the entry's peeled value.
2163 */
2164static void write_packed_entry(FILE *fh, char *refname, unsigned char *sha1,
2165                               unsigned char *peeled)
2166{
2167        fprintf_or_die(fh, "%s %s\n", sha1_to_hex(sha1), refname);
2168        if (peeled)
2169                fprintf_or_die(fh, "^%s\n", sha1_to_hex(peeled));
2170}
2171
2172/*
2173 * An each_ref_entry_fn that writes the entry to a packed-refs file.
2174 */
2175static int write_packed_entry_fn(struct ref_entry *entry, void *cb_data)
2176{
2177        enum peel_status peel_status = peel_entry(entry, 0);
2178
2179        if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2180                error("internal error: %s is not a valid packed reference!",
2181                      entry->name);
2182        write_packed_entry(cb_data, entry->name, entry->u.value.oid.hash,
2183                           peel_status == PEEL_PEELED ?
2184                           entry->u.value.peeled.hash : NULL);
2185        return 0;
2186}
2187
2188/*
2189 * Lock the packed-refs file for writing. Flags is passed to
2190 * hold_lock_file_for_update(). Return 0 on success. On errors, set
2191 * errno appropriately and return a nonzero value.
2192 */
2193static int lock_packed_refs(struct files_ref_store *refs, int flags)
2194{
2195        static int timeout_configured = 0;
2196        static int timeout_value = 1000;
2197        struct packed_ref_cache *packed_ref_cache;
2198
2199        files_assert_main_repository(refs, "lock_packed_refs");
2200
2201        if (!timeout_configured) {
2202                git_config_get_int("core.packedrefstimeout", &timeout_value);
2203                timeout_configured = 1;
2204        }
2205
2206        if (hold_lock_file_for_update_timeout(
2207                            &packlock, files_packed_refs_path(refs),
2208                            flags, timeout_value) < 0)
2209                return -1;
2210        /*
2211         * Get the current packed-refs while holding the lock.  If the
2212         * packed-refs file has been modified since we last read it,
2213         * this will automatically invalidate the cache and re-read
2214         * the packed-refs file.
2215         */
2216        packed_ref_cache = get_packed_ref_cache(refs);
2217        packed_ref_cache->lock = &packlock;
2218        /* Increment the reference count to prevent it from being freed: */
2219        acquire_packed_ref_cache(packed_ref_cache);
2220        return 0;
2221}
2222
2223/*
2224 * Write the current version of the packed refs cache from memory to
2225 * disk. The packed-refs file must already be locked for writing (see
2226 * lock_packed_refs()). Return zero on success. On errors, set errno
2227 * and return a nonzero value
2228 */
2229static int commit_packed_refs(struct files_ref_store *refs)
2230{
2231        struct packed_ref_cache *packed_ref_cache =
2232                get_packed_ref_cache(refs);
2233        int error = 0;
2234        int save_errno = 0;
2235        FILE *out;
2236
2237        files_assert_main_repository(refs, "commit_packed_refs");
2238
2239        if (!packed_ref_cache->lock)
2240                die("internal error: packed-refs not locked");
2241
2242        out = fdopen_lock_file(packed_ref_cache->lock, "w");
2243        if (!out)
2244                die_errno("unable to fdopen packed-refs descriptor");
2245
2246        fprintf_or_die(out, "%s", PACKED_REFS_HEADER);
2247        do_for_each_entry_in_dir(get_packed_ref_dir(packed_ref_cache),
2248                                 0, write_packed_entry_fn, out);
2249
2250        if (commit_lock_file(packed_ref_cache->lock)) {
2251                save_errno = errno;
2252                error = -1;
2253        }
2254        packed_ref_cache->lock = NULL;
2255        release_packed_ref_cache(packed_ref_cache);
2256        errno = save_errno;
2257        return error;
2258}
2259
2260/*
2261 * Rollback the lockfile for the packed-refs file, and discard the
2262 * in-memory packed reference cache.  (The packed-refs file will be
2263 * read anew if it is needed again after this function is called.)
2264 */
2265static void rollback_packed_refs(struct files_ref_store *refs)
2266{
2267        struct packed_ref_cache *packed_ref_cache =
2268                get_packed_ref_cache(refs);
2269
2270        files_assert_main_repository(refs, "rollback_packed_refs");
2271
2272        if (!packed_ref_cache->lock)
2273                die("internal error: packed-refs not locked");
2274        rollback_lock_file(packed_ref_cache->lock);
2275        packed_ref_cache->lock = NULL;
2276        release_packed_ref_cache(packed_ref_cache);
2277        clear_packed_ref_cache(refs);
2278}
2279
2280struct ref_to_prune {
2281        struct ref_to_prune *next;
2282        unsigned char sha1[20];
2283        char name[FLEX_ARRAY];
2284};
2285
2286struct pack_refs_cb_data {
2287        unsigned int flags;
2288        struct ref_dir *packed_refs;
2289        struct ref_to_prune *ref_to_prune;
2290};
2291
2292/*
2293 * An each_ref_entry_fn that is run over loose references only.  If
2294 * the loose reference can be packed, add an entry in the packed ref
2295 * cache.  If the reference should be pruned, also add it to
2296 * ref_to_prune in the pack_refs_cb_data.
2297 */
2298static int pack_if_possible_fn(struct ref_entry *entry, void *cb_data)
2299{
2300        struct pack_refs_cb_data *cb = cb_data;
2301        enum peel_status peel_status;
2302        struct ref_entry *packed_entry;
2303        int is_tag_ref = starts_with(entry->name, "refs/tags/");
2304
2305        /* Do not pack per-worktree refs: */
2306        if (ref_type(entry->name) != REF_TYPE_NORMAL)
2307                return 0;
2308
2309        /* ALWAYS pack tags */
2310        if (!(cb->flags & PACK_REFS_ALL) && !is_tag_ref)
2311                return 0;
2312
2313        /* Do not pack symbolic or broken refs: */
2314        if ((entry->flag & REF_ISSYMREF) || !entry_resolves_to_object(entry))
2315                return 0;
2316
2317        /* Add a packed ref cache entry equivalent to the loose entry. */
2318        peel_status = peel_entry(entry, 1);
2319        if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2320                die("internal error peeling reference %s (%s)",
2321                    entry->name, oid_to_hex(&entry->u.value.oid));
2322        packed_entry = find_ref(cb->packed_refs, entry->name);
2323        if (packed_entry) {
2324                /* Overwrite existing packed entry with info from loose entry */
2325                packed_entry->flag = REF_ISPACKED | REF_KNOWS_PEELED;
2326                oidcpy(&packed_entry->u.value.oid, &entry->u.value.oid);
2327        } else {
2328                packed_entry = create_ref_entry(entry->name, entry->u.value.oid.hash,
2329                                                REF_ISPACKED | REF_KNOWS_PEELED, 0);
2330                add_ref(cb->packed_refs, packed_entry);
2331        }
2332        oidcpy(&packed_entry->u.value.peeled, &entry->u.value.peeled);
2333
2334        /* Schedule the loose reference for pruning if requested. */
2335        if ((cb->flags & PACK_REFS_PRUNE)) {
2336                struct ref_to_prune *n;
2337                FLEX_ALLOC_STR(n, name, entry->name);
2338                hashcpy(n->sha1, entry->u.value.oid.hash);
2339                n->next = cb->ref_to_prune;
2340                cb->ref_to_prune = n;
2341        }
2342        return 0;
2343}
2344
2345enum {
2346        REMOVE_EMPTY_PARENTS_REF = 0x01,
2347        REMOVE_EMPTY_PARENTS_REFLOG = 0x02
2348};
2349
2350/*
2351 * Remove empty parent directories associated with the specified
2352 * reference and/or its reflog, but spare [logs/]refs/ and immediate
2353 * subdirs. flags is a combination of REMOVE_EMPTY_PARENTS_REF and/or
2354 * REMOVE_EMPTY_PARENTS_REFLOG.
2355 */
2356static void try_remove_empty_parents(struct files_ref_store *refs,
2357                                     const char *refname,
2358                                     unsigned int flags)
2359{
2360        struct strbuf buf = STRBUF_INIT;
2361        struct strbuf sb = STRBUF_INIT;
2362        char *p, *q;
2363        int i;
2364
2365        strbuf_addstr(&buf, refname);
2366        p = buf.buf;
2367        for (i = 0; i < 2; i++) { /* refs/{heads,tags,...}/ */
2368                while (*p && *p != '/')
2369                        p++;
2370                /* tolerate duplicate slashes; see check_refname_format() */
2371                while (*p == '/')
2372                        p++;
2373        }
2374        q = buf.buf + buf.len;
2375        while (flags & (REMOVE_EMPTY_PARENTS_REF | REMOVE_EMPTY_PARENTS_REFLOG)) {
2376                while (q > p && *q != '/')
2377                        q--;
2378                while (q > p && *(q-1) == '/')
2379                        q--;
2380                if (q == p)
2381                        break;
2382                strbuf_setlen(&buf, q - buf.buf);
2383
2384                strbuf_reset(&sb);
2385                files_ref_path(refs, &sb, buf.buf);
2386                if ((flags & REMOVE_EMPTY_PARENTS_REF) && rmdir(sb.buf))
2387                        flags &= ~REMOVE_EMPTY_PARENTS_REF;
2388
2389                strbuf_reset(&sb);
2390                files_reflog_path(refs, &sb, buf.buf);
2391                if ((flags & REMOVE_EMPTY_PARENTS_REFLOG) && rmdir(sb.buf))
2392                        flags &= ~REMOVE_EMPTY_PARENTS_REFLOG;
2393        }
2394        strbuf_release(&buf);
2395        strbuf_release(&sb);
2396}
2397
2398/* make sure nobody touched the ref, and unlink */
2399static void prune_ref(struct ref_to_prune *r)
2400{
2401        struct ref_transaction *transaction;
2402        struct strbuf err = STRBUF_INIT;
2403
2404        if (check_refname_format(r->name, 0))
2405                return;
2406
2407        transaction = ref_transaction_begin(&err);
2408        if (!transaction ||
2409            ref_transaction_delete(transaction, r->name, r->sha1,
2410                                   REF_ISPRUNING | REF_NODEREF, NULL, &err) ||
2411            ref_transaction_commit(transaction, &err)) {
2412                ref_transaction_free(transaction);
2413                error("%s", err.buf);
2414                strbuf_release(&err);
2415                return;
2416        }
2417        ref_transaction_free(transaction);
2418        strbuf_release(&err);
2419}
2420
2421static void prune_refs(struct ref_to_prune *r)
2422{
2423        while (r) {
2424                prune_ref(r);
2425                r = r->next;
2426        }
2427}
2428
2429static int files_pack_refs(struct ref_store *ref_store, unsigned int flags)
2430{
2431        struct files_ref_store *refs =
2432                files_downcast(ref_store, REF_STORE_WRITE | REF_STORE_ODB,
2433                               "pack_refs");
2434        struct pack_refs_cb_data cbdata;
2435
2436        memset(&cbdata, 0, sizeof(cbdata));
2437        cbdata.flags = flags;
2438
2439        lock_packed_refs(refs, LOCK_DIE_ON_ERROR);
2440        cbdata.packed_refs = get_packed_refs(refs);
2441
2442        do_for_each_entry_in_dir(get_loose_refs(refs), 0,
2443                                 pack_if_possible_fn, &cbdata);
2444
2445        if (commit_packed_refs(refs))
2446                die_errno("unable to overwrite old ref-pack file");
2447
2448        prune_refs(cbdata.ref_to_prune);
2449        return 0;
2450}
2451
2452/*
2453 * Rewrite the packed-refs file, omitting any refs listed in
2454 * 'refnames'. On error, leave packed-refs unchanged, write an error
2455 * message to 'err', and return a nonzero value.
2456 *
2457 * The refs in 'refnames' needn't be sorted. `err` must not be NULL.
2458 */
2459static int repack_without_refs(struct files_ref_store *refs,
2460                               struct string_list *refnames, struct strbuf *err)
2461{
2462        struct ref_dir *packed;
2463        struct string_list_item *refname;
2464        int ret, needs_repacking = 0, removed = 0;
2465
2466        files_assert_main_repository(refs, "repack_without_refs");
2467        assert(err);
2468
2469        /* Look for a packed ref */
2470        for_each_string_list_item(refname, refnames) {
2471                if (get_packed_ref(refs, refname->string)) {
2472                        needs_repacking = 1;
2473                        break;
2474                }
2475        }
2476
2477        /* Avoid locking if we have nothing to do */
2478        if (!needs_repacking)
2479                return 0; /* no refname exists in packed refs */
2480
2481        if (lock_packed_refs(refs, 0)) {
2482                unable_to_lock_message(files_packed_refs_path(refs), errno, err);
2483                return -1;
2484        }
2485        packed = get_packed_refs(refs);
2486
2487        /* Remove refnames from the cache */
2488        for_each_string_list_item(refname, refnames)
2489                if (remove_entry(packed, refname->string) != -1)
2490                        removed = 1;
2491        if (!removed) {
2492                /*
2493                 * All packed entries disappeared while we were
2494                 * acquiring the lock.
2495                 */
2496                rollback_packed_refs(refs);
2497                return 0;
2498        }
2499
2500        /* Write what remains */
2501        ret = commit_packed_refs(refs);
2502        if (ret)
2503                strbuf_addf(err, "unable to overwrite old ref-pack file: %s",
2504                            strerror(errno));
2505        return ret;
2506}
2507
2508static int files_delete_refs(struct ref_store *ref_store,
2509                             struct string_list *refnames, unsigned int flags)
2510{
2511        struct files_ref_store *refs =
2512                files_downcast(ref_store, REF_STORE_WRITE, "delete_refs");
2513        struct strbuf err = STRBUF_INIT;
2514        int i, result = 0;
2515
2516        if (!refnames->nr)
2517                return 0;
2518
2519        result = repack_without_refs(refs, refnames, &err);
2520        if (result) {
2521                /*
2522                 * If we failed to rewrite the packed-refs file, then
2523                 * it is unsafe to try to remove loose refs, because
2524                 * doing so might expose an obsolete packed value for
2525                 * a reference that might even point at an object that
2526                 * has been garbage collected.
2527                 */
2528                if (refnames->nr == 1)
2529                        error(_("could not delete reference %s: %s"),
2530                              refnames->items[0].string, err.buf);
2531                else
2532                        error(_("could not delete references: %s"), err.buf);
2533
2534                goto out;
2535        }
2536
2537        for (i = 0; i < refnames->nr; i++) {
2538                const char *refname = refnames->items[i].string;
2539
2540                if (delete_ref(NULL, refname, NULL, flags))
2541                        result |= error(_("could not remove reference %s"), refname);
2542        }
2543
2544out:
2545        strbuf_release(&err);
2546        return result;
2547}
2548
2549/*
2550 * People using contrib's git-new-workdir have .git/logs/refs ->
2551 * /some/other/path/.git/logs/refs, and that may live on another device.
2552 *
2553 * IOW, to avoid cross device rename errors, the temporary renamed log must
2554 * live into logs/refs.
2555 */
2556#define TMP_RENAMED_LOG  "refs/.tmp-renamed-log"
2557
2558struct rename_cb {
2559        const char *tmp_renamed_log;
2560        int true_errno;
2561};
2562
2563static int rename_tmp_log_callback(const char *path, void *cb_data)
2564{
2565        struct rename_cb *cb = cb_data;
2566
2567        if (rename(cb->tmp_renamed_log, path)) {
2568                /*
2569                 * rename(a, b) when b is an existing directory ought
2570                 * to result in ISDIR, but Solaris 5.8 gives ENOTDIR.
2571                 * Sheesh. Record the true errno for error reporting,
2572                 * but report EISDIR to raceproof_create_file() so
2573                 * that it knows to retry.
2574                 */
2575                cb->true_errno = errno;
2576                if (errno == ENOTDIR)
2577                        errno = EISDIR;
2578                return -1;
2579        } else {
2580                return 0;
2581        }
2582}
2583
2584static int rename_tmp_log(struct files_ref_store *refs, const char *newrefname)
2585{
2586        struct strbuf path = STRBUF_INIT;
2587        struct strbuf tmp = STRBUF_INIT;
2588        struct rename_cb cb;
2589        int ret;
2590
2591        files_reflog_path(refs, &path, newrefname);
2592        files_reflog_path(refs, &tmp, TMP_RENAMED_LOG);
2593        cb.tmp_renamed_log = tmp.buf;
2594        ret = raceproof_create_file(path.buf, rename_tmp_log_callback, &cb);
2595        if (ret) {
2596                if (errno == EISDIR)
2597                        error("directory not empty: %s", path.buf);
2598                else
2599                        error("unable to move logfile %s to %s: %s",
2600                              tmp.buf, path.buf,
2601                              strerror(cb.true_errno));
2602        }
2603
2604        strbuf_release(&path);
2605        strbuf_release(&tmp);
2606        return ret;
2607}
2608
2609static int files_verify_refname_available(struct ref_store *ref_store,
2610                                          const char *newname,
2611                                          const struct string_list *extras,
2612                                          const struct string_list *skip,
2613                                          struct strbuf *err)
2614{
2615        struct files_ref_store *refs =
2616                files_downcast(ref_store, REF_STORE_READ, "verify_refname_available");
2617        struct ref_dir *packed_refs = get_packed_refs(refs);
2618        struct ref_dir *loose_refs = get_loose_refs(refs);
2619
2620        if (verify_refname_available_dir(newname, extras, skip,
2621                                         packed_refs, err) ||
2622            verify_refname_available_dir(newname, extras, skip,
2623                                         loose_refs, err))
2624                return -1;
2625
2626        return 0;
2627}
2628
2629static int write_ref_to_lockfile(struct ref_lock *lock,
2630                                 const unsigned char *sha1, struct strbuf *err);
2631static int commit_ref_update(struct files_ref_store *refs,
2632                             struct ref_lock *lock,
2633                             const unsigned char *sha1, const char *logmsg,
2634                             struct strbuf *err);
2635
2636static int files_rename_ref(struct ref_store *ref_store,
2637                            const char *oldrefname, const char *newrefname,
2638                            const char *logmsg)
2639{
2640        struct files_ref_store *refs =
2641                files_downcast(ref_store, REF_STORE_WRITE, "rename_ref");
2642        unsigned char sha1[20], orig_sha1[20];
2643        int flag = 0, logmoved = 0;
2644        struct ref_lock *lock;
2645        struct stat loginfo;
2646        struct strbuf sb_oldref = STRBUF_INIT;
2647        struct strbuf sb_newref = STRBUF_INIT;
2648        struct strbuf tmp_renamed_log = STRBUF_INIT;
2649        int log, ret;
2650        struct strbuf err = STRBUF_INIT;
2651
2652        files_reflog_path(refs, &sb_oldref, oldrefname);
2653        files_reflog_path(refs, &sb_newref, newrefname);
2654        files_reflog_path(refs, &tmp_renamed_log, TMP_RENAMED_LOG);
2655
2656        log = !lstat(sb_oldref.buf, &loginfo);
2657        if (log && S_ISLNK(loginfo.st_mode)) {
2658                ret = error("reflog for %s is a symlink", oldrefname);
2659                goto out;
2660        }
2661
2662        if (!resolve_ref_unsafe(oldrefname, RESOLVE_REF_READING | RESOLVE_REF_NO_RECURSE,
2663                                orig_sha1, &flag)) {
2664                ret = error("refname %s not found", oldrefname);
2665                goto out;
2666        }
2667
2668        if (flag & REF_ISSYMREF) {
2669                ret = error("refname %s is a symbolic ref, renaming it is not supported",
2670                            oldrefname);
2671                goto out;
2672        }
2673        if (!rename_ref_available(oldrefname, newrefname)) {
2674                ret = 1;
2675                goto out;
2676        }
2677
2678        if (log && rename(sb_oldref.buf, tmp_renamed_log.buf)) {
2679                ret = error("unable to move logfile logs/%s to logs/"TMP_RENAMED_LOG": %s",
2680                            oldrefname, strerror(errno));
2681                goto out;
2682        }
2683
2684        if (delete_ref(logmsg, oldrefname, orig_sha1, REF_NODEREF)) {
2685                error("unable to delete old %s", oldrefname);
2686                goto rollback;
2687        }
2688
2689        /*
2690         * Since we are doing a shallow lookup, sha1 is not the
2691         * correct value to pass to delete_ref as old_sha1. But that
2692         * doesn't matter, because an old_sha1 check wouldn't add to
2693         * the safety anyway; we want to delete the reference whatever
2694         * its current value.
2695         */
2696        if (!read_ref_full(newrefname, RESOLVE_REF_READING | RESOLVE_REF_NO_RECURSE,
2697                           sha1, NULL) &&
2698            delete_ref(NULL, newrefname, NULL, REF_NODEREF)) {
2699                if (errno == EISDIR) {
2700                        struct strbuf path = STRBUF_INIT;
2701                        int result;
2702
2703                        files_ref_path(refs, &path, newrefname);
2704                        result = remove_empty_directories(&path);
2705                        strbuf_release(&path);
2706
2707                        if (result) {
2708                                error("Directory not empty: %s", newrefname);
2709                                goto rollback;
2710                        }
2711                } else {
2712                        error("unable to delete existing %s", newrefname);
2713                        goto rollback;
2714                }
2715        }
2716
2717        if (log && rename_tmp_log(refs, newrefname))
2718                goto rollback;
2719
2720        logmoved = log;
2721
2722        lock = lock_ref_sha1_basic(refs, newrefname, NULL, NULL, NULL,
2723                                   REF_NODEREF, NULL, &err);
2724        if (!lock) {
2725                error("unable to rename '%s' to '%s': %s", oldrefname, newrefname, err.buf);
2726                strbuf_release(&err);
2727                goto rollback;
2728        }
2729        hashcpy(lock->old_oid.hash, orig_sha1);
2730
2731        if (write_ref_to_lockfile(lock, orig_sha1, &err) ||
2732            commit_ref_update(refs, lock, orig_sha1, logmsg, &err)) {
2733                error("unable to write current sha1 into %s: %s", newrefname, err.buf);
2734                strbuf_release(&err);
2735                goto rollback;
2736        }
2737
2738        ret = 0;
2739        goto out;
2740
2741 rollback:
2742        lock = lock_ref_sha1_basic(refs, oldrefname, NULL, NULL, NULL,
2743                                   REF_NODEREF, NULL, &err);
2744        if (!lock) {
2745                error("unable to lock %s for rollback: %s", oldrefname, err.buf);
2746                strbuf_release(&err);
2747                goto rollbacklog;
2748        }
2749
2750        flag = log_all_ref_updates;
2751        log_all_ref_updates = LOG_REFS_NONE;
2752        if (write_ref_to_lockfile(lock, orig_sha1, &err) ||
2753            commit_ref_update(refs, lock, orig_sha1, NULL, &err)) {
2754                error("unable to write current sha1 into %s: %s", oldrefname, err.buf);
2755                strbuf_release(&err);
2756        }
2757        log_all_ref_updates = flag;
2758
2759 rollbacklog:
2760        if (logmoved && rename(sb_newref.buf, sb_oldref.buf))
2761                error("unable to restore logfile %s from %s: %s",
2762                        oldrefname, newrefname, strerror(errno));
2763        if (!logmoved && log &&
2764            rename(tmp_renamed_log.buf, sb_oldref.buf))
2765                error("unable to restore logfile %s from logs/"TMP_RENAMED_LOG": %s",
2766                        oldrefname, strerror(errno));
2767        ret = 1;
2768 out:
2769        strbuf_release(&sb_newref);
2770        strbuf_release(&sb_oldref);
2771        strbuf_release(&tmp_renamed_log);
2772
2773        return ret;
2774}
2775
2776static int close_ref(struct ref_lock *lock)
2777{
2778        if (close_lock_file(lock->lk))
2779                return -1;
2780        return 0;
2781}
2782
2783static int commit_ref(struct ref_lock *lock)
2784{
2785        char *path = get_locked_file_path(lock->lk);
2786        struct stat st;
2787
2788        if (!lstat(path, &st) && S_ISDIR(st.st_mode)) {
2789                /*
2790                 * There is a directory at the path we want to rename
2791                 * the lockfile to. Hopefully it is empty; try to
2792                 * delete it.
2793                 */
2794                size_t len = strlen(path);
2795                struct strbuf sb_path = STRBUF_INIT;
2796
2797                strbuf_attach(&sb_path, path, len, len);
2798
2799                /*
2800                 * If this fails, commit_lock_file() will also fail
2801                 * and will report the problem.
2802                 */
2803                remove_empty_directories(&sb_path);
2804                strbuf_release(&sb_path);
2805        } else {
2806                free(path);
2807        }
2808
2809        if (commit_lock_file(lock->lk))
2810                return -1;
2811        return 0;
2812}
2813
2814static int open_or_create_logfile(const char *path, void *cb)
2815{
2816        int *fd = cb;
2817
2818        *fd = open(path, O_APPEND | O_WRONLY | O_CREAT, 0666);
2819        return (*fd < 0) ? -1 : 0;
2820}
2821
2822/*
2823 * Create a reflog for a ref. If force_create = 0, only create the
2824 * reflog for certain refs (those for which should_autocreate_reflog
2825 * returns non-zero). Otherwise, create it regardless of the reference
2826 * name. If the logfile already existed or was created, return 0 and
2827 * set *logfd to the file descriptor opened for appending to the file.
2828 * If no logfile exists and we decided not to create one, return 0 and
2829 * set *logfd to -1. On failure, fill in *err, set *logfd to -1, and
2830 * return -1.
2831 */
2832static int log_ref_setup(struct files_ref_store *refs,
2833                         const char *refname, int force_create,
2834                         int *logfd, struct strbuf *err)
2835{
2836        struct strbuf logfile_sb = STRBUF_INIT;
2837        char *logfile;
2838
2839        files_reflog_path(refs, &logfile_sb, refname);
2840        logfile = strbuf_detach(&logfile_sb, NULL);
2841
2842        if (force_create || should_autocreate_reflog(refname)) {
2843                if (raceproof_create_file(logfile, open_or_create_logfile, logfd)) {
2844                        if (errno == ENOENT)
2845                                strbuf_addf(err, "unable to create directory for '%s': "
2846                                            "%s", logfile, strerror(errno));
2847                        else if (errno == EISDIR)
2848                                strbuf_addf(err, "there are still logs under '%s'",
2849                                            logfile);
2850                        else
2851                                strbuf_addf(err, "unable to append to '%s': %s",
2852                                            logfile, strerror(errno));
2853
2854                        goto error;
2855                }
2856        } else {
2857                *logfd = open(logfile, O_APPEND | O_WRONLY, 0666);
2858                if (*logfd < 0) {
2859                        if (errno == ENOENT || errno == EISDIR) {
2860                                /*
2861                                 * The logfile doesn't already exist,
2862                                 * but that is not an error; it only
2863                                 * means that we won't write log
2864                                 * entries to it.
2865                                 */
2866                                ;
2867                        } else {
2868                                strbuf_addf(err, "unable to append to '%s': %s",
2869                                            logfile, strerror(errno));
2870                                goto error;
2871                        }
2872                }
2873        }
2874
2875        if (*logfd >= 0)
2876                adjust_shared_perm(logfile);
2877
2878        free(logfile);
2879        return 0;
2880
2881error:
2882        free(logfile);
2883        return -1;
2884}
2885
2886static int files_create_reflog(struct ref_store *ref_store,
2887                               const char *refname, int force_create,
2888                               struct strbuf *err)
2889{
2890        struct files_ref_store *refs =
2891                files_downcast(ref_store, REF_STORE_WRITE, "create_reflog");
2892        int fd;
2893
2894        if (log_ref_setup(refs, refname, force_create, &fd, err))
2895                return -1;
2896
2897        if (fd >= 0)
2898                close(fd);
2899
2900        return 0;
2901}
2902
2903static int log_ref_write_fd(int fd, const unsigned char *old_sha1,
2904                            const unsigned char *new_sha1,
2905                            const char *committer, const char *msg)
2906{
2907        int msglen, written;
2908        unsigned maxlen, len;
2909        char *logrec;
2910
2911        msglen = msg ? strlen(msg) : 0;
2912        maxlen = strlen(committer) + msglen + 100;
2913        logrec = xmalloc(maxlen);
2914        len = xsnprintf(logrec, maxlen, "%s %s %s\n",
2915                        sha1_to_hex(old_sha1),
2916                        sha1_to_hex(new_sha1),
2917                        committer);
2918        if (msglen)
2919                len += copy_reflog_msg(logrec + len - 1, msg) - 1;
2920
2921        written = len <= maxlen ? write_in_full(fd, logrec, len) : -1;
2922        free(logrec);
2923        if (written != len)
2924                return -1;
2925
2926        return 0;
2927}
2928
2929static int files_log_ref_write(struct files_ref_store *refs,
2930                               const char *refname, const unsigned char *old_sha1,
2931                               const unsigned char *new_sha1, const char *msg,
2932                               int flags, struct strbuf *err)
2933{
2934        int logfd, result;
2935
2936        if (log_all_ref_updates == LOG_REFS_UNSET)
2937                log_all_ref_updates = is_bare_repository() ? LOG_REFS_NONE : LOG_REFS_NORMAL;
2938
2939        result = log_ref_setup(refs, refname,
2940                               flags & REF_FORCE_CREATE_REFLOG,
2941                               &logfd, err);
2942
2943        if (result)
2944                return result;
2945
2946        if (logfd < 0)
2947                return 0;
2948        result = log_ref_write_fd(logfd, old_sha1, new_sha1,
2949                                  git_committer_info(0), msg);
2950        if (result) {
2951                struct strbuf sb = STRBUF_INIT;
2952                int save_errno = errno;
2953
2954                files_reflog_path(refs, &sb, refname);
2955                strbuf_addf(err, "unable to append to '%s': %s",
2956                            sb.buf, strerror(save_errno));
2957                strbuf_release(&sb);
2958                close(logfd);
2959                return -1;
2960        }
2961        if (close(logfd)) {
2962                struct strbuf sb = STRBUF_INIT;
2963                int save_errno = errno;
2964
2965                files_reflog_path(refs, &sb, refname);
2966                strbuf_addf(err, "unable to append to '%s': %s",
2967                            sb.buf, strerror(save_errno));
2968                strbuf_release(&sb);
2969                return -1;
2970        }
2971        return 0;
2972}
2973
2974/*
2975 * Write sha1 into the open lockfile, then close the lockfile. On
2976 * errors, rollback the lockfile, fill in *err and
2977 * return -1.
2978 */
2979static int write_ref_to_lockfile(struct ref_lock *lock,
2980                                 const unsigned char *sha1, struct strbuf *err)
2981{
2982        static char term = '\n';
2983        struct object *o;
2984        int fd;
2985
2986        o = parse_object(sha1);
2987        if (!o) {
2988                strbuf_addf(err,
2989                            "trying to write ref '%s' with nonexistent object %s",
2990                            lock->ref_name, sha1_to_hex(sha1));
2991                unlock_ref(lock);
2992                return -1;
2993        }
2994        if (o->type != OBJ_COMMIT && is_branch(lock->ref_name)) {
2995                strbuf_addf(err,
2996                            "trying to write non-commit object %s to branch '%s'",
2997                            sha1_to_hex(sha1), lock->ref_name);
2998                unlock_ref(lock);
2999                return -1;
3000        }
3001        fd = get_lock_file_fd(lock->lk);
3002        if (write_in_full(fd, sha1_to_hex(sha1), 40) != 40 ||
3003            write_in_full(fd, &term, 1) != 1 ||
3004            close_ref(lock) < 0) {
3005                strbuf_addf(err,
3006                            "couldn't write '%s'", get_lock_file_path(lock->lk));
3007                unlock_ref(lock);
3008                return -1;
3009        }
3010        return 0;
3011}
3012
3013/*
3014 * Commit a change to a loose reference that has already been written
3015 * to the loose reference lockfile. Also update the reflogs if
3016 * necessary, using the specified lockmsg (which can be NULL).
3017 */
3018static int commit_ref_update(struct files_ref_store *refs,
3019                             struct ref_lock *lock,
3020                             const unsigned char *sha1, const char *logmsg,
3021                             struct strbuf *err)
3022{
3023        files_assert_main_repository(refs, "commit_ref_update");
3024
3025        clear_loose_ref_cache(refs);
3026        if (files_log_ref_write(refs, lock->ref_name,
3027                                lock->old_oid.hash, sha1,
3028                                logmsg, 0, err)) {
3029                char *old_msg = strbuf_detach(err, NULL);
3030                strbuf_addf(err, "cannot update the ref '%s': %s",
3031                            lock->ref_name, old_msg);
3032                free(old_msg);
3033                unlock_ref(lock);
3034                return -1;
3035        }
3036
3037        if (strcmp(lock->ref_name, "HEAD") != 0) {
3038                /*
3039                 * Special hack: If a branch is updated directly and HEAD
3040                 * points to it (may happen on the remote side of a push
3041                 * for example) then logically the HEAD reflog should be
3042                 * updated too.
3043                 * A generic solution implies reverse symref information,
3044                 * but finding all symrefs pointing to the given branch
3045                 * would be rather costly for this rare event (the direct
3046                 * update of a branch) to be worth it.  So let's cheat and
3047                 * check with HEAD only which should cover 99% of all usage
3048                 * scenarios (even 100% of the default ones).
3049                 */
3050                unsigned char head_sha1[20];
3051                int head_flag;
3052                const char *head_ref;
3053
3054                head_ref = resolve_ref_unsafe("HEAD", RESOLVE_REF_READING,
3055                                              head_sha1, &head_flag);
3056                if (head_ref && (head_flag & REF_ISSYMREF) &&
3057                    !strcmp(head_ref, lock->ref_name)) {
3058                        struct strbuf log_err = STRBUF_INIT;
3059                        if (files_log_ref_write(refs, "HEAD",
3060                                                lock->old_oid.hash, sha1,
3061                                                logmsg, 0, &log_err)) {
3062                                error("%s", log_err.buf);
3063                                strbuf_release(&log_err);
3064                        }
3065                }
3066        }
3067
3068        if (commit_ref(lock)) {
3069                strbuf_addf(err, "couldn't set '%s'", lock->ref_name);
3070                unlock_ref(lock);
3071                return -1;
3072        }
3073
3074        unlock_ref(lock);
3075        return 0;
3076}
3077
3078static int create_ref_symlink(struct ref_lock *lock, const char *target)
3079{
3080        int ret = -1;
3081#ifndef NO_SYMLINK_HEAD
3082        char *ref_path = get_locked_file_path(lock->lk);
3083        unlink(ref_path);
3084        ret = symlink(target, ref_path);
3085        free(ref_path);
3086
3087        if (ret)
3088                fprintf(stderr, "no symlink - falling back to symbolic ref\n");
3089#endif
3090        return ret;
3091}
3092
3093static void update_symref_reflog(struct files_ref_store *refs,
3094                                 struct ref_lock *lock, const char *refname,
3095                                 const char *target, const char *logmsg)
3096{
3097        struct strbuf err = STRBUF_INIT;
3098        unsigned char new_sha1[20];
3099        if (logmsg && !read_ref(target, new_sha1) &&
3100            files_log_ref_write(refs, refname, lock->old_oid.hash,
3101                                new_sha1, logmsg, 0, &err)) {
3102                error("%s", err.buf);
3103                strbuf_release(&err);
3104        }
3105}
3106
3107static int create_symref_locked(struct files_ref_store *refs,
3108                                struct ref_lock *lock, const char *refname,
3109                                const char *target, const char *logmsg)
3110{
3111        if (prefer_symlink_refs && !create_ref_symlink(lock, target)) {
3112                update_symref_reflog(refs, lock, refname, target, logmsg);
3113                return 0;
3114        }
3115
3116        if (!fdopen_lock_file(lock->lk, "w"))
3117                return error("unable to fdopen %s: %s",
3118                             lock->lk->tempfile.filename.buf, strerror(errno));
3119
3120        update_symref_reflog(refs, lock, refname, target, logmsg);
3121
3122        /* no error check; commit_ref will check ferror */
3123        fprintf(lock->lk->tempfile.fp, "ref: %s\n", target);
3124        if (commit_ref(lock) < 0)
3125                return error("unable to write symref for %s: %s", refname,
3126                             strerror(errno));
3127        return 0;
3128}
3129
3130static int files_create_symref(struct ref_store *ref_store,
3131                               const char *refname, const char *target,
3132                               const char *logmsg)
3133{
3134        struct files_ref_store *refs =
3135                files_downcast(ref_store, REF_STORE_WRITE, "create_symref");
3136        struct strbuf err = STRBUF_INIT;
3137        struct ref_lock *lock;
3138        int ret;
3139
3140        lock = lock_ref_sha1_basic(refs, refname, NULL,
3141                                   NULL, NULL, REF_NODEREF, NULL,
3142                                   &err);
3143        if (!lock) {
3144                error("%s", err.buf);
3145                strbuf_release(&err);
3146                return -1;
3147        }
3148
3149        ret = create_symref_locked(refs, lock, refname, target, logmsg);
3150        unlock_ref(lock);
3151        return ret;
3152}
3153
3154int set_worktree_head_symref(const char *gitdir, const char *target, const char *logmsg)
3155{
3156        /*
3157         * FIXME: this obviously will not work well for future refs
3158         * backends. This function needs to die.
3159         */
3160        struct files_ref_store *refs =
3161                files_downcast(get_main_ref_store(),
3162                               REF_STORE_WRITE,
3163                               "set_head_symref");
3164
3165        static struct lock_file head_lock;
3166        struct ref_lock *lock;
3167        struct strbuf head_path = STRBUF_INIT;
3168        const char *head_rel;
3169        int ret;
3170
3171        strbuf_addf(&head_path, "%s/HEAD", absolute_path(gitdir));
3172        if (hold_lock_file_for_update(&head_lock, head_path.buf,
3173                                      LOCK_NO_DEREF) < 0) {
3174                struct strbuf err = STRBUF_INIT;
3175                unable_to_lock_message(head_path.buf, errno, &err);
3176                error("%s", err.buf);
3177                strbuf_release(&err);
3178                strbuf_release(&head_path);
3179                return -1;
3180        }
3181
3182        /* head_rel will be "HEAD" for the main tree, "worktrees/wt/HEAD" for
3183           linked trees */
3184        head_rel = remove_leading_path(head_path.buf,
3185                                       absolute_path(get_git_common_dir()));
3186        /* to make use of create_symref_locked(), initialize ref_lock */
3187        lock = xcalloc(1, sizeof(struct ref_lock));
3188        lock->lk = &head_lock;
3189        lock->ref_name = xstrdup(head_rel);
3190
3191        ret = create_symref_locked(refs, lock, head_rel, target, logmsg);
3192
3193        unlock_ref(lock); /* will free lock */
3194        strbuf_release(&head_path);
3195        return ret;
3196}
3197
3198static int files_reflog_exists(struct ref_store *ref_store,
3199                               const char *refname)
3200{
3201        struct files_ref_store *refs =
3202                files_downcast(ref_store, REF_STORE_READ, "reflog_exists");
3203        struct strbuf sb = STRBUF_INIT;
3204        struct stat st;
3205        int ret;
3206
3207        files_reflog_path(refs, &sb, refname);
3208        ret = !lstat(sb.buf, &st) && S_ISREG(st.st_mode);
3209        strbuf_release(&sb);
3210        return ret;
3211}
3212
3213static int files_delete_reflog(struct ref_store *ref_store,
3214                               const char *refname)
3215{
3216        struct files_ref_store *refs =
3217                files_downcast(ref_store, REF_STORE_WRITE, "delete_reflog");
3218        struct strbuf sb = STRBUF_INIT;
3219        int ret;
3220
3221        files_reflog_path(refs, &sb, refname);
3222        ret = remove_path(sb.buf);
3223        strbuf_release(&sb);
3224        return ret;
3225}
3226
3227static int show_one_reflog_ent(struct strbuf *sb, each_reflog_ent_fn fn, void *cb_data)
3228{
3229        struct object_id ooid, noid;
3230        char *email_end, *message;
3231        unsigned long timestamp;
3232        int tz;
3233        const char *p = sb->buf;
3234
3235        /* old SP new SP name <email> SP time TAB msg LF */
3236        if (!sb->len || sb->buf[sb->len - 1] != '\n' ||
3237            parse_oid_hex(p, &ooid, &p) || *p++ != ' ' ||
3238            parse_oid_hex(p, &noid, &p) || *p++ != ' ' ||
3239            !(email_end = strchr(p, '>')) ||
3240            email_end[1] != ' ' ||
3241            !(timestamp = strtoul(email_end + 2, &message, 10)) ||
3242            !message || message[0] != ' ' ||
3243            (message[1] != '+' && message[1] != '-') ||
3244            !isdigit(message[2]) || !isdigit(message[3]) ||
3245            !isdigit(message[4]) || !isdigit(message[5]))
3246                return 0; /* corrupt? */
3247        email_end[1] = '\0';
3248        tz = strtol(message + 1, NULL, 10);
3249        if (message[6] != '\t')
3250                message += 6;
3251        else
3252                message += 7;
3253        return fn(&ooid, &noid, p, timestamp, tz, message, cb_data);
3254}
3255
3256static char *find_beginning_of_line(char *bob, char *scan)
3257{
3258        while (bob < scan && *(--scan) != '\n')
3259                ; /* keep scanning backwards */
3260        /*
3261         * Return either beginning of the buffer, or LF at the end of
3262         * the previous line.
3263         */
3264        return scan;
3265}
3266
3267static int files_for_each_reflog_ent_reverse(struct ref_store *ref_store,
3268                                             const char *refname,
3269                                             each_reflog_ent_fn fn,
3270                                             void *cb_data)
3271{
3272        struct files_ref_store *refs =
3273                files_downcast(ref_store, REF_STORE_READ,
3274                               "for_each_reflog_ent_reverse");
3275        struct strbuf sb = STRBUF_INIT;
3276        FILE *logfp;
3277        long pos;
3278        int ret = 0, at_tail = 1;
3279
3280        files_reflog_path(refs, &sb, refname);
3281        logfp = fopen(sb.buf, "r");
3282        strbuf_release(&sb);
3283        if (!logfp)
3284                return -1;
3285
3286        /* Jump to the end */
3287        if (fseek(logfp, 0, SEEK_END) < 0)
3288                return error("cannot seek back reflog for %s: %s",
3289                             refname, strerror(errno));
3290        pos = ftell(logfp);
3291        while (!ret && 0 < pos) {
3292                int cnt;
3293                size_t nread;
3294                char buf[BUFSIZ];
3295                char *endp, *scanp;
3296
3297                /* Fill next block from the end */
3298                cnt = (sizeof(buf) < pos) ? sizeof(buf) : pos;
3299                if (fseek(logfp, pos - cnt, SEEK_SET))
3300                        return error("cannot seek back reflog for %s: %s",
3301                                     refname, strerror(errno));
3302                nread = fread(buf, cnt, 1, logfp);
3303                if (nread != 1)
3304                        return error("cannot read %d bytes from reflog for %s: %s",
3305                                     cnt, refname, strerror(errno));
3306                pos -= cnt;
3307
3308                scanp = endp = buf + cnt;
3309                if (at_tail && scanp[-1] == '\n')
3310                        /* Looking at the final LF at the end of the file */
3311                        scanp--;
3312                at_tail = 0;
3313
3314                while (buf < scanp) {
3315                        /*
3316                         * terminating LF of the previous line, or the beginning
3317                         * of the buffer.
3318                         */
3319                        char *bp;
3320
3321                        bp = find_beginning_of_line(buf, scanp);
3322
3323                        if (*bp == '\n') {
3324                                /*
3325                                 * The newline is the end of the previous line,
3326                                 * so we know we have complete line starting
3327                                 * at (bp + 1). Prefix it onto any prior data
3328                                 * we collected for the line and process it.
3329                                 */
3330                                strbuf_splice(&sb, 0, 0, bp + 1, endp - (bp + 1));
3331                                scanp = bp;
3332                                endp = bp + 1;
3333                                ret = show_one_reflog_ent(&sb, fn, cb_data);
3334                                strbuf_reset(&sb);
3335                                if (ret)
3336                                        break;
3337                        } else if (!pos) {
3338                                /*
3339                                 * We are at the start of the buffer, and the
3340                                 * start of the file; there is no previous
3341                                 * line, and we have everything for this one.
3342                                 * Process it, and we can end the loop.
3343                                 */
3344                                strbuf_splice(&sb, 0, 0, buf, endp - buf);
3345                                ret = show_one_reflog_ent(&sb, fn, cb_data);
3346                                strbuf_reset(&sb);
3347                                break;
3348                        }
3349
3350                        if (bp == buf) {
3351                                /*
3352                                 * We are at the start of the buffer, and there
3353                                 * is more file to read backwards. Which means
3354                                 * we are in the middle of a line. Note that we
3355                                 * may get here even if *bp was a newline; that
3356                                 * just means we are at the exact end of the
3357                                 * previous line, rather than some spot in the
3358                                 * middle.
3359                                 *
3360                                 * Save away what we have to be combined with
3361                                 * the data from the next read.
3362                                 */
3363                                strbuf_splice(&sb, 0, 0, buf, endp - buf);
3364                                break;
3365                        }
3366                }
3367
3368        }
3369        if (!ret && sb.len)
3370                die("BUG: reverse reflog parser had leftover data");
3371
3372        fclose(logfp);
3373        strbuf_release(&sb);
3374        return ret;
3375}
3376
3377static int files_for_each_reflog_ent(struct ref_store *ref_store,
3378                                     const char *refname,
3379                                     each_reflog_ent_fn fn, void *cb_data)
3380{
3381        struct files_ref_store *refs =
3382                files_downcast(ref_store, REF_STORE_READ,
3383                               "for_each_reflog_ent");
3384        FILE *logfp;
3385        struct strbuf sb = STRBUF_INIT;
3386        int ret = 0;
3387
3388        files_reflog_path(refs, &sb, refname);
3389        logfp = fopen(sb.buf, "r");
3390        strbuf_release(&sb);
3391        if (!logfp)
3392                return -1;
3393
3394        while (!ret && !strbuf_getwholeline(&sb, logfp, '\n'))
3395                ret = show_one_reflog_ent(&sb, fn, cb_data);
3396        fclose(logfp);
3397        strbuf_release(&sb);
3398        return ret;
3399}
3400
3401struct files_reflog_iterator {
3402        struct ref_iterator base;
3403
3404        struct dir_iterator *dir_iterator;
3405        struct object_id oid;
3406};
3407
3408static int files_reflog_iterator_advance(struct ref_iterator *ref_iterator)
3409{
3410        struct files_reflog_iterator *iter =
3411                (struct files_reflog_iterator *)ref_iterator;
3412        struct dir_iterator *diter = iter->dir_iterator;
3413        int ok;
3414
3415        while ((ok = dir_iterator_advance(diter)) == ITER_OK) {
3416                int flags;
3417
3418                if (!S_ISREG(diter->st.st_mode))
3419                        continue;
3420                if (diter->basename[0] == '.')
3421                        continue;
3422                if (ends_with(diter->basename, ".lock"))
3423                        continue;
3424
3425                if (read_ref_full(diter->relative_path, 0,
3426                                  iter->oid.hash, &flags)) {
3427                        error("bad ref for %s", diter->path.buf);
3428                        continue;
3429                }
3430
3431                iter->base.refname = diter->relative_path;
3432                iter->base.oid = &iter->oid;
3433                iter->base.flags = flags;
3434                return ITER_OK;
3435        }
3436
3437        iter->dir_iterator = NULL;
3438        if (ref_iterator_abort(ref_iterator) == ITER_ERROR)
3439                ok = ITER_ERROR;
3440        return ok;
3441}
3442
3443static int files_reflog_iterator_peel(struct ref_iterator *ref_iterator,
3444                                   struct object_id *peeled)
3445{
3446        die("BUG: ref_iterator_peel() called for reflog_iterator");
3447}
3448
3449static int files_reflog_iterator_abort(struct ref_iterator *ref_iterator)
3450{
3451        struct files_reflog_iterator *iter =
3452                (struct files_reflog_iterator *)ref_iterator;
3453        int ok = ITER_DONE;
3454
3455        if (iter->dir_iterator)
3456                ok = dir_iterator_abort(iter->dir_iterator);
3457
3458        base_ref_iterator_free(ref_iterator);
3459        return ok;
3460}
3461
3462static struct ref_iterator_vtable files_reflog_iterator_vtable = {
3463        files_reflog_iterator_advance,
3464        files_reflog_iterator_peel,
3465        files_reflog_iterator_abort
3466};
3467
3468static struct ref_iterator *files_reflog_iterator_begin(struct ref_store *ref_store)
3469{
3470        struct files_ref_store *refs =
3471                files_downcast(ref_store, REF_STORE_READ,
3472                               "reflog_iterator_begin");
3473        struct files_reflog_iterator *iter = xcalloc(1, sizeof(*iter));
3474        struct ref_iterator *ref_iterator = &iter->base;
3475        struct strbuf sb = STRBUF_INIT;
3476
3477        base_ref_iterator_init(ref_iterator, &files_reflog_iterator_vtable);
3478        files_reflog_path(refs, &sb, NULL);
3479        iter->dir_iterator = dir_iterator_begin(sb.buf);
3480        strbuf_release(&sb);
3481        return ref_iterator;
3482}
3483
3484static int ref_update_reject_duplicates(struct string_list *refnames,
3485                                        struct strbuf *err)
3486{
3487        int i, n = refnames->nr;
3488
3489        assert(err);
3490
3491        for (i = 1; i < n; i++)
3492                if (!strcmp(refnames->items[i - 1].string, refnames->items[i].string)) {
3493                        strbuf_addf(err,
3494                                    "multiple updates for ref '%s' not allowed.",
3495                                    refnames->items[i].string);
3496                        return 1;
3497                }
3498        return 0;
3499}
3500
3501/*
3502 * If update is a direct update of head_ref (the reference pointed to
3503 * by HEAD), then add an extra REF_LOG_ONLY update for HEAD.
3504 */
3505static int split_head_update(struct ref_update *update,
3506                             struct ref_transaction *transaction,
3507                             const char *head_ref,
3508                             struct string_list *affected_refnames,
3509                             struct strbuf *err)
3510{
3511        struct string_list_item *item;
3512        struct ref_update *new_update;
3513
3514        if ((update->flags & REF_LOG_ONLY) ||
3515            (update->flags & REF_ISPRUNING) ||
3516            (update->flags & REF_UPDATE_VIA_HEAD))
3517                return 0;
3518
3519        if (strcmp(update->refname, head_ref))
3520                return 0;
3521
3522        /*
3523         * First make sure that HEAD is not already in the
3524         * transaction. This insertion is O(N) in the transaction
3525         * size, but it happens at most once per transaction.
3526         */
3527        item = string_list_insert(affected_refnames, "HEAD");
3528        if (item->util) {
3529                /* An entry already existed */
3530                strbuf_addf(err,
3531                            "multiple updates for 'HEAD' (including one "
3532                            "via its referent '%s') are not allowed",
3533                            update->refname);
3534                return TRANSACTION_NAME_CONFLICT;
3535        }
3536
3537        new_update = ref_transaction_add_update(
3538                        transaction, "HEAD",
3539                        update->flags | REF_LOG_ONLY | REF_NODEREF,
3540                        update->new_sha1, update->old_sha1,
3541                        update->msg);
3542
3543        item->util = new_update;
3544
3545        return 0;
3546}
3547
3548/*
3549 * update is for a symref that points at referent and doesn't have
3550 * REF_NODEREF set. Split it into two updates:
3551 * - The original update, but with REF_LOG_ONLY and REF_NODEREF set
3552 * - A new, separate update for the referent reference
3553 * Note that the new update will itself be subject to splitting when
3554 * the iteration gets to it.
3555 */
3556static int split_symref_update(struct files_ref_store *refs,
3557                               struct ref_update *update,
3558                               const char *referent,
3559                               struct ref_transaction *transaction,
3560                               struct string_list *affected_refnames,
3561                               struct strbuf *err)
3562{
3563        struct string_list_item *item;
3564        struct ref_update *new_update;
3565        unsigned int new_flags;
3566
3567        /*
3568         * First make sure that referent is not already in the
3569         * transaction. This insertion is O(N) in the transaction
3570         * size, but it happens at most once per symref in a
3571         * transaction.
3572         */
3573        item = string_list_insert(affected_refnames, referent);
3574        if (item->util) {
3575                /* An entry already existed */
3576                strbuf_addf(err,
3577                            "multiple updates for '%s' (including one "
3578                            "via symref '%s') are not allowed",
3579                            referent, update->refname);
3580                return TRANSACTION_NAME_CONFLICT;
3581        }
3582
3583        new_flags = update->flags;
3584        if (!strcmp(update->refname, "HEAD")) {
3585                /*
3586                 * Record that the new update came via HEAD, so that
3587                 * when we process it, split_head_update() doesn't try
3588                 * to add another reflog update for HEAD. Note that
3589                 * this bit will be propagated if the new_update
3590                 * itself needs to be split.
3591                 */
3592                new_flags |= REF_UPDATE_VIA_HEAD;
3593        }
3594
3595        new_update = ref_transaction_add_update(
3596                        transaction, referent, new_flags,
3597                        update->new_sha1, update->old_sha1,
3598                        update->msg);
3599
3600        new_update->parent_update = update;
3601
3602        /*
3603         * Change the symbolic ref update to log only. Also, it
3604         * doesn't need to check its old SHA-1 value, as that will be
3605         * done when new_update is processed.
3606         */
3607        update->flags |= REF_LOG_ONLY | REF_NODEREF;
3608        update->flags &= ~REF_HAVE_OLD;
3609
3610        item->util = new_update;
3611
3612        return 0;
3613}
3614
3615/*
3616 * Return the refname under which update was originally requested.
3617 */
3618static const char *original_update_refname(struct ref_update *update)
3619{
3620        while (update->parent_update)
3621                update = update->parent_update;
3622
3623        return update->refname;
3624}
3625
3626/*
3627 * Check whether the REF_HAVE_OLD and old_oid values stored in update
3628 * are consistent with oid, which is the reference's current value. If
3629 * everything is OK, return 0; otherwise, write an error message to
3630 * err and return -1.
3631 */
3632static int check_old_oid(struct ref_update *update, struct object_id *oid,
3633                         struct strbuf *err)
3634{
3635        if (!(update->flags & REF_HAVE_OLD) ||
3636                   !hashcmp(oid->hash, update->old_sha1))
3637                return 0;
3638
3639        if (is_null_sha1(update->old_sha1))
3640                strbuf_addf(err, "cannot lock ref '%s': "
3641                            "reference already exists",
3642                            original_update_refname(update));
3643        else if (is_null_oid(oid))
3644                strbuf_addf(err, "cannot lock ref '%s': "
3645                            "reference is missing but expected %s",
3646                            original_update_refname(update),
3647                            sha1_to_hex(update->old_sha1));
3648        else
3649                strbuf_addf(err, "cannot lock ref '%s': "
3650                            "is at %s but expected %s",
3651                            original_update_refname(update),
3652                            oid_to_hex(oid),
3653                            sha1_to_hex(update->old_sha1));
3654
3655        return -1;
3656}
3657
3658/*
3659 * Prepare for carrying out update:
3660 * - Lock the reference referred to by update.
3661 * - Read the reference under lock.
3662 * - Check that its old SHA-1 value (if specified) is correct, and in
3663 *   any case record it in update->lock->old_oid for later use when
3664 *   writing the reflog.
3665 * - If it is a symref update without REF_NODEREF, split it up into a
3666 *   REF_LOG_ONLY update of the symref and add a separate update for
3667 *   the referent to transaction.
3668 * - If it is an update of head_ref, add a corresponding REF_LOG_ONLY
3669 *   update of HEAD.
3670 */
3671static int lock_ref_for_update(struct files_ref_store *refs,
3672                               struct ref_update *update,
3673                               struct ref_transaction *transaction,
3674                               const char *head_ref,
3675                               struct string_list *affected_refnames,
3676                               struct strbuf *err)
3677{
3678        struct strbuf referent = STRBUF_INIT;
3679        int mustexist = (update->flags & REF_HAVE_OLD) &&
3680                !is_null_sha1(update->old_sha1);
3681        int ret;
3682        struct ref_lock *lock;
3683
3684        files_assert_main_repository(refs, "lock_ref_for_update");
3685
3686        if ((update->flags & REF_HAVE_NEW) && is_null_sha1(update->new_sha1))
3687                update->flags |= REF_DELETING;
3688
3689        if (head_ref) {
3690                ret = split_head_update(update, transaction, head_ref,
3691                                        affected_refnames, err);
3692                if (ret)
3693                        return ret;
3694        }
3695
3696        ret = lock_raw_ref(refs, update->refname, mustexist,
3697                           affected_refnames, NULL,
3698                           &lock, &referent,
3699                           &update->type, err);
3700        if (ret) {
3701                char *reason;
3702
3703                reason = strbuf_detach(err, NULL);
3704                strbuf_addf(err, "cannot lock ref '%s': %s",
3705                            original_update_refname(update), reason);
3706                free(reason);
3707                return ret;
3708        }
3709
3710        update->backend_data = lock;
3711
3712        if (update->type & REF_ISSYMREF) {
3713                if (update->flags & REF_NODEREF) {
3714                        /*
3715                         * We won't be reading the referent as part of
3716                         * the transaction, so we have to read it here
3717                         * to record and possibly check old_sha1:
3718                         */
3719                        if (read_ref_full(referent.buf, 0,
3720                                          lock->old_oid.hash, NULL)) {
3721                                if (update->flags & REF_HAVE_OLD) {
3722                                        strbuf_addf(err, "cannot lock ref '%s': "
3723                                                    "error reading reference",
3724                                                    original_update_refname(update));
3725                                        return -1;
3726                                }
3727                        } else if (check_old_oid(update, &lock->old_oid, err)) {
3728                                return TRANSACTION_GENERIC_ERROR;
3729                        }
3730                } else {
3731                        /*
3732                         * Create a new update for the reference this
3733                         * symref is pointing at. Also, we will record
3734                         * and verify old_sha1 for this update as part
3735                         * of processing the split-off update, so we
3736                         * don't have to do it here.
3737                         */
3738                        ret = split_symref_update(refs, update,
3739                                                  referent.buf, transaction,
3740                                                  affected_refnames, err);
3741                        if (ret)
3742                                return ret;
3743                }
3744        } else {
3745                struct ref_update *parent_update;
3746
3747                if (check_old_oid(update, &lock->old_oid, err))
3748                        return TRANSACTION_GENERIC_ERROR;
3749
3750                /*
3751                 * If this update is happening indirectly because of a
3752                 * symref update, record the old SHA-1 in the parent
3753                 * update:
3754                 */
3755                for (parent_update = update->parent_update;
3756                     parent_update;
3757                     parent_update = parent_update->parent_update) {
3758                        struct ref_lock *parent_lock = parent_update->backend_data;
3759                        oidcpy(&parent_lock->old_oid, &lock->old_oid);
3760                }
3761        }
3762
3763        if ((update->flags & REF_HAVE_NEW) &&
3764            !(update->flags & REF_DELETING) &&
3765            !(update->flags & REF_LOG_ONLY)) {
3766                if (!(update->type & REF_ISSYMREF) &&
3767                    !hashcmp(lock->old_oid.hash, update->new_sha1)) {
3768                        /*
3769                         * The reference already has the desired
3770                         * value, so we don't need to write it.
3771                         */
3772                } else if (write_ref_to_lockfile(lock, update->new_sha1,
3773                                                 err)) {
3774                        char *write_err = strbuf_detach(err, NULL);
3775
3776                        /*
3777                         * The lock was freed upon failure of
3778                         * write_ref_to_lockfile():
3779                         */
3780                        update->backend_data = NULL;
3781                        strbuf_addf(err,
3782                                    "cannot update ref '%s': %s",
3783                                    update->refname, write_err);
3784                        free(write_err);
3785                        return TRANSACTION_GENERIC_ERROR;
3786                } else {
3787                        update->flags |= REF_NEEDS_COMMIT;
3788                }
3789        }
3790        if (!(update->flags & REF_NEEDS_COMMIT)) {
3791                /*
3792                 * We didn't call write_ref_to_lockfile(), so
3793                 * the lockfile is still open. Close it to
3794                 * free up the file descriptor:
3795                 */
3796                if (close_ref(lock)) {
3797                        strbuf_addf(err, "couldn't close '%s.lock'",
3798                                    update->refname);
3799                        return TRANSACTION_GENERIC_ERROR;
3800                }
3801        }
3802        return 0;
3803}
3804
3805static int files_transaction_commit(struct ref_store *ref_store,
3806                                    struct ref_transaction *transaction,
3807                                    struct strbuf *err)
3808{
3809        struct files_ref_store *refs =
3810                files_downcast(ref_store, REF_STORE_WRITE,
3811                               "ref_transaction_commit");
3812        int ret = 0, i;
3813        struct string_list refs_to_delete = STRING_LIST_INIT_NODUP;
3814        struct string_list_item *ref_to_delete;
3815        struct string_list affected_refnames = STRING_LIST_INIT_NODUP;
3816        char *head_ref = NULL;
3817        int head_type;
3818        struct object_id head_oid;
3819        struct strbuf sb = STRBUF_INIT;
3820
3821        assert(err);
3822
3823        if (transaction->state != REF_TRANSACTION_OPEN)
3824                die("BUG: commit called for transaction that is not open");
3825
3826        if (!transaction->nr) {
3827                transaction->state = REF_TRANSACTION_CLOSED;
3828                return 0;
3829        }
3830
3831        /*
3832         * Fail if a refname appears more than once in the
3833         * transaction. (If we end up splitting up any updates using
3834         * split_symref_update() or split_head_update(), those
3835         * functions will check that the new updates don't have the
3836         * same refname as any existing ones.)
3837         */
3838        for (i = 0; i < transaction->nr; i++) {
3839                struct ref_update *update = transaction->updates[i];
3840                struct string_list_item *item =
3841                        string_list_append(&affected_refnames, update->refname);
3842
3843                /*
3844                 * We store a pointer to update in item->util, but at
3845                 * the moment we never use the value of this field
3846                 * except to check whether it is non-NULL.
3847                 */
3848                item->util = update;
3849        }
3850        string_list_sort(&affected_refnames);
3851        if (ref_update_reject_duplicates(&affected_refnames, err)) {
3852                ret = TRANSACTION_GENERIC_ERROR;
3853                goto cleanup;
3854        }
3855
3856        /*
3857         * Special hack: If a branch is updated directly and HEAD
3858         * points to it (may happen on the remote side of a push
3859         * for example) then logically the HEAD reflog should be
3860         * updated too.
3861         *
3862         * A generic solution would require reverse symref lookups,
3863         * but finding all symrefs pointing to a given branch would be
3864         * rather costly for this rare event (the direct update of a
3865         * branch) to be worth it. So let's cheat and check with HEAD
3866         * only, which should cover 99% of all usage scenarios (even
3867         * 100% of the default ones).
3868         *
3869         * So if HEAD is a symbolic reference, then record the name of
3870         * the reference that it points to. If we see an update of
3871         * head_ref within the transaction, then split_head_update()
3872         * arranges for the reflog of HEAD to be updated, too.
3873         */
3874        head_ref = resolve_refdup("HEAD", RESOLVE_REF_NO_RECURSE,
3875                                  head_oid.hash, &head_type);
3876
3877        if (head_ref && !(head_type & REF_ISSYMREF)) {
3878                free(head_ref);
3879                head_ref = NULL;
3880        }
3881
3882        /*
3883         * Acquire all locks, verify old values if provided, check
3884         * that new values are valid, and write new values to the
3885         * lockfiles, ready to be activated. Only keep one lockfile
3886         * open at a time to avoid running out of file descriptors.
3887         */
3888        for (i = 0; i < transaction->nr; i++) {
3889                struct ref_update *update = transaction->updates[i];
3890
3891                ret = lock_ref_for_update(refs, update, transaction,
3892                                          head_ref, &affected_refnames, err);
3893                if (ret)
3894                        goto cleanup;
3895        }
3896
3897        /* Perform updates first so live commits remain referenced */
3898        for (i = 0; i < transaction->nr; i++) {
3899                struct ref_update *update = transaction->updates[i];
3900                struct ref_lock *lock = update->backend_data;
3901
3902                if (update->flags & REF_NEEDS_COMMIT ||
3903                    update->flags & REF_LOG_ONLY) {
3904                        if (files_log_ref_write(refs,
3905                                                lock->ref_name,
3906                                                lock->old_oid.hash,
3907                                                update->new_sha1,
3908                                                update->msg, update->flags,
3909                                                err)) {
3910                                char *old_msg = strbuf_detach(err, NULL);
3911
3912                                strbuf_addf(err, "cannot update the ref '%s': %s",
3913                                            lock->ref_name, old_msg);
3914                                free(old_msg);
3915                                unlock_ref(lock);
3916                                update->backend_data = NULL;
3917                                ret = TRANSACTION_GENERIC_ERROR;
3918                                goto cleanup;
3919                        }
3920                }
3921                if (update->flags & REF_NEEDS_COMMIT) {
3922                        clear_loose_ref_cache(refs);
3923                        if (commit_ref(lock)) {
3924                                strbuf_addf(err, "couldn't set '%s'", lock->ref_name);
3925                                unlock_ref(lock);
3926                                update->backend_data = NULL;
3927                                ret = TRANSACTION_GENERIC_ERROR;
3928                                goto cleanup;
3929                        }
3930                }
3931        }
3932        /* Perform deletes now that updates are safely completed */
3933        for (i = 0; i < transaction->nr; i++) {
3934                struct ref_update *update = transaction->updates[i];
3935                struct ref_lock *lock = update->backend_data;
3936
3937                if (update->flags & REF_DELETING &&
3938                    !(update->flags & REF_LOG_ONLY)) {
3939                        if (!(update->type & REF_ISPACKED) ||
3940                            update->type & REF_ISSYMREF) {
3941                                /* It is a loose reference. */
3942                                strbuf_reset(&sb);
3943                                files_ref_path(refs, &sb, lock->ref_name);
3944                                if (unlink_or_msg(sb.buf, err)) {
3945                                        ret = TRANSACTION_GENERIC_ERROR;
3946                                        goto cleanup;
3947                                }
3948                                update->flags |= REF_DELETED_LOOSE;
3949                        }
3950
3951                        if (!(update->flags & REF_ISPRUNING))
3952                                string_list_append(&refs_to_delete,
3953                                                   lock->ref_name);
3954                }
3955        }
3956
3957        if (repack_without_refs(refs, &refs_to_delete, err)) {
3958                ret = TRANSACTION_GENERIC_ERROR;
3959                goto cleanup;
3960        }
3961
3962        /* Delete the reflogs of any references that were deleted: */
3963        for_each_string_list_item(ref_to_delete, &refs_to_delete) {
3964                strbuf_reset(&sb);
3965                files_reflog_path(refs, &sb, ref_to_delete->string);
3966                if (!unlink_or_warn(sb.buf))
3967                        try_remove_empty_parents(refs, ref_to_delete->string,
3968                                                 REMOVE_EMPTY_PARENTS_REFLOG);
3969        }
3970
3971        clear_loose_ref_cache(refs);
3972
3973cleanup:
3974        strbuf_release(&sb);
3975        transaction->state = REF_TRANSACTION_CLOSED;
3976
3977        for (i = 0; i < transaction->nr; i++) {
3978                struct ref_update *update = transaction->updates[i];
3979                struct ref_lock *lock = update->backend_data;
3980
3981                if (lock)
3982                        unlock_ref(lock);
3983
3984                if (update->flags & REF_DELETED_LOOSE) {
3985                        /*
3986                         * The loose reference was deleted. Delete any
3987                         * empty parent directories. (Note that this
3988                         * can only work because we have already
3989                         * removed the lockfile.)
3990                         */
3991                        try_remove_empty_parents(refs, update->refname,
3992                                                 REMOVE_EMPTY_PARENTS_REF);
3993                }
3994        }
3995
3996        string_list_clear(&refs_to_delete, 0);
3997        free(head_ref);
3998        string_list_clear(&affected_refnames, 0);
3999
4000        return ret;
4001}
4002
4003static int ref_present(const char *refname,
4004                       const struct object_id *oid, int flags, void *cb_data)
4005{
4006        struct string_list *affected_refnames = cb_data;
4007
4008        return string_list_has_string(affected_refnames, refname);
4009}
4010
4011static int files_initial_transaction_commit(struct ref_store *ref_store,
4012                                            struct ref_transaction *transaction,
4013                                            struct strbuf *err)
4014{
4015        struct files_ref_store *refs =
4016                files_downcast(ref_store, REF_STORE_WRITE,
4017                               "initial_ref_transaction_commit");
4018        int ret = 0, i;
4019        struct string_list affected_refnames = STRING_LIST_INIT_NODUP;
4020
4021        assert(err);
4022
4023        if (transaction->state != REF_TRANSACTION_OPEN)
4024                die("BUG: commit called for transaction that is not open");
4025
4026        /* Fail if a refname appears more than once in the transaction: */
4027        for (i = 0; i < transaction->nr; i++)
4028                string_list_append(&affected_refnames,
4029                                   transaction->updates[i]->refname);
4030        string_list_sort(&affected_refnames);
4031        if (ref_update_reject_duplicates(&affected_refnames, err)) {
4032                ret = TRANSACTION_GENERIC_ERROR;
4033                goto cleanup;
4034        }
4035
4036        /*
4037         * It's really undefined to call this function in an active
4038         * repository or when there are existing references: we are
4039         * only locking and changing packed-refs, so (1) any
4040         * simultaneous processes might try to change a reference at
4041         * the same time we do, and (2) any existing loose versions of
4042         * the references that we are setting would have precedence
4043         * over our values. But some remote helpers create the remote
4044         * "HEAD" and "master" branches before calling this function,
4045         * so here we really only check that none of the references
4046         * that we are creating already exists.
4047         */
4048        if (for_each_rawref(ref_present, &affected_refnames))
4049                die("BUG: initial ref transaction called with existing refs");
4050
4051        for (i = 0; i < transaction->nr; i++) {
4052                struct ref_update *update = transaction->updates[i];
4053
4054                if ((update->flags & REF_HAVE_OLD) &&
4055                    !is_null_sha1(update->old_sha1))
4056                        die("BUG: initial ref transaction with old_sha1 set");
4057                if (verify_refname_available(update->refname,
4058                                             &affected_refnames, NULL,
4059                                             err)) {
4060                        ret = TRANSACTION_NAME_CONFLICT;
4061                        goto cleanup;
4062                }
4063        }
4064
4065        if (lock_packed_refs(refs, 0)) {
4066                strbuf_addf(err, "unable to lock packed-refs file: %s",
4067                            strerror(errno));
4068                ret = TRANSACTION_GENERIC_ERROR;
4069                goto cleanup;
4070        }
4071
4072        for (i = 0; i < transaction->nr; i++) {
4073                struct ref_update *update = transaction->updates[i];
4074
4075                if ((update->flags & REF_HAVE_NEW) &&
4076                    !is_null_sha1(update->new_sha1))
4077                        add_packed_ref(refs, update->refname, update->new_sha1);
4078        }
4079
4080        if (commit_packed_refs(refs)) {
4081                strbuf_addf(err, "unable to commit packed-refs file: %s",
4082                            strerror(errno));
4083                ret = TRANSACTION_GENERIC_ERROR;
4084                goto cleanup;
4085        }
4086
4087cleanup:
4088        transaction->state = REF_TRANSACTION_CLOSED;
4089        string_list_clear(&affected_refnames, 0);
4090        return ret;
4091}
4092
4093struct expire_reflog_cb {
4094        unsigned int flags;
4095        reflog_expiry_should_prune_fn *should_prune_fn;
4096        void *policy_cb;
4097        FILE *newlog;
4098        struct object_id last_kept_oid;
4099};
4100
4101static int expire_reflog_ent(struct object_id *ooid, struct object_id *noid,
4102                             const char *email, unsigned long timestamp, int tz,
4103                             const char *message, void *cb_data)
4104{
4105        struct expire_reflog_cb *cb = cb_data;
4106        struct expire_reflog_policy_cb *policy_cb = cb->policy_cb;
4107
4108        if (cb->flags & EXPIRE_REFLOGS_REWRITE)
4109                ooid = &cb->last_kept_oid;
4110
4111        if ((*cb->should_prune_fn)(ooid->hash, noid->hash, email, timestamp, tz,
4112                                   message, policy_cb)) {
4113                if (!cb->newlog)
4114                        printf("would prune %s", message);
4115                else if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4116                        printf("prune %s", message);
4117        } else {
4118                if (cb->newlog) {
4119                        fprintf(cb->newlog, "%s %s %s %lu %+05d\t%s",
4120                                oid_to_hex(ooid), oid_to_hex(noid),
4121                                email, timestamp, tz, message);
4122                        oidcpy(&cb->last_kept_oid, noid);
4123                }
4124                if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4125                        printf("keep %s", message);
4126        }
4127        return 0;
4128}
4129
4130static int files_reflog_expire(struct ref_store *ref_store,
4131                               const char *refname, const unsigned char *sha1,
4132                               unsigned int flags,
4133                               reflog_expiry_prepare_fn prepare_fn,
4134                               reflog_expiry_should_prune_fn should_prune_fn,
4135                               reflog_expiry_cleanup_fn cleanup_fn,
4136                               void *policy_cb_data)
4137{
4138        struct files_ref_store *refs =
4139                files_downcast(ref_store, REF_STORE_WRITE, "reflog_expire");
4140        static struct lock_file reflog_lock;
4141        struct expire_reflog_cb cb;
4142        struct ref_lock *lock;
4143        struct strbuf log_file_sb = STRBUF_INIT;
4144        char *log_file;
4145        int status = 0;
4146        int type;
4147        struct strbuf err = STRBUF_INIT;
4148
4149        memset(&cb, 0, sizeof(cb));
4150        cb.flags = flags;
4151        cb.policy_cb = policy_cb_data;
4152        cb.should_prune_fn = should_prune_fn;
4153
4154        /*
4155         * The reflog file is locked by holding the lock on the
4156         * reference itself, plus we might need to update the
4157         * reference if --updateref was specified:
4158         */
4159        lock = lock_ref_sha1_basic(refs, refname, sha1,
4160                                   NULL, NULL, REF_NODEREF,
4161                                   &type, &err);
4162        if (!lock) {
4163                error("cannot lock ref '%s': %s", refname, err.buf);
4164                strbuf_release(&err);
4165                return -1;
4166        }
4167        if (!reflog_exists(refname)) {
4168                unlock_ref(lock);
4169                return 0;
4170        }
4171
4172        files_reflog_path(refs, &log_file_sb, refname);
4173        log_file = strbuf_detach(&log_file_sb, NULL);
4174        if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4175                /*
4176                 * Even though holding $GIT_DIR/logs/$reflog.lock has
4177                 * no locking implications, we use the lock_file
4178                 * machinery here anyway because it does a lot of the
4179                 * work we need, including cleaning up if the program
4180                 * exits unexpectedly.
4181                 */
4182                if (hold_lock_file_for_update(&reflog_lock, log_file, 0) < 0) {
4183                        struct strbuf err = STRBUF_INIT;
4184                        unable_to_lock_message(log_file, errno, &err);
4185                        error("%s", err.buf);
4186                        strbuf_release(&err);
4187                        goto failure;
4188                }
4189                cb.newlog = fdopen_lock_file(&reflog_lock, "w");
4190                if (!cb.newlog) {
4191                        error("cannot fdopen %s (%s)",
4192                              get_lock_file_path(&reflog_lock), strerror(errno));
4193                        goto failure;
4194                }
4195        }
4196
4197        (*prepare_fn)(refname, sha1, cb.policy_cb);
4198        for_each_reflog_ent(refname, expire_reflog_ent, &cb);
4199        (*cleanup_fn)(cb.policy_cb);
4200
4201        if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4202                /*
4203                 * It doesn't make sense to adjust a reference pointed
4204                 * to by a symbolic ref based on expiring entries in
4205                 * the symbolic reference's reflog. Nor can we update
4206                 * a reference if there are no remaining reflog
4207                 * entries.
4208                 */
4209                int update = (flags & EXPIRE_REFLOGS_UPDATE_REF) &&
4210                        !(type & REF_ISSYMREF) &&
4211                        !is_null_oid(&cb.last_kept_oid);
4212
4213                if (close_lock_file(&reflog_lock)) {
4214                        status |= error("couldn't write %s: %s", log_file,
4215                                        strerror(errno));
4216                } else if (update &&
4217                           (write_in_full(get_lock_file_fd(lock->lk),
4218                                oid_to_hex(&cb.last_kept_oid), GIT_SHA1_HEXSZ) != GIT_SHA1_HEXSZ ||
4219                            write_str_in_full(get_lock_file_fd(lock->lk), "\n") != 1 ||
4220                            close_ref(lock) < 0)) {
4221                        status |= error("couldn't write %s",
4222                                        get_lock_file_path(lock->lk));
4223                        rollback_lock_file(&reflog_lock);
4224                } else if (commit_lock_file(&reflog_lock)) {
4225                        status |= error("unable to write reflog '%s' (%s)",
4226                                        log_file, strerror(errno));
4227                } else if (update && commit_ref(lock)) {
4228                        status |= error("couldn't set %s", lock->ref_name);
4229                }
4230        }
4231        free(log_file);
4232        unlock_ref(lock);
4233        return status;
4234
4235 failure:
4236        rollback_lock_file(&reflog_lock);
4237        free(log_file);
4238        unlock_ref(lock);
4239        return -1;
4240}
4241
4242static int files_init_db(struct ref_store *ref_store, struct strbuf *err)
4243{
4244        struct files_ref_store *refs =
4245                files_downcast(ref_store, REF_STORE_WRITE, "init_db");
4246        struct strbuf sb = STRBUF_INIT;
4247
4248        /*
4249         * Create .git/refs/{heads,tags}
4250         */
4251        files_ref_path(refs, &sb, "refs/heads");
4252        safe_create_dir(sb.buf, 1);
4253
4254        strbuf_reset(&sb);
4255        files_ref_path(refs, &sb, "refs/tags");
4256        safe_create_dir(sb.buf, 1);
4257
4258        strbuf_release(&sb);
4259        return 0;
4260}
4261
4262struct ref_storage_be refs_be_files = {
4263        NULL,
4264        "files",
4265        files_ref_store_create,
4266        files_init_db,
4267        files_transaction_commit,
4268        files_initial_transaction_commit,
4269
4270        files_pack_refs,
4271        files_peel_ref,
4272        files_create_symref,
4273        files_delete_refs,
4274        files_rename_ref,
4275
4276        files_ref_iterator_begin,
4277        files_read_raw_ref,
4278        files_verify_refname_available,
4279
4280        files_reflog_iterator_begin,
4281        files_for_each_reflog_ent,
4282        files_for_each_reflog_ent_reverse,
4283        files_reflog_exists,
4284        files_create_reflog,
4285        files_delete_reflog,
4286        files_reflog_expire
4287};