/* * GIT - The information manager from hell * * Copyright (C) Linus Torvalds, 2005 */ #define DBRT_DEBUG 1 #include "cache.h" #include "object.h" #include "tree.h" static int merge = 0; static int update = 0; static int index_only = 0; static int head_idx = -1; static int merge_size = 0; static struct object_list *trees = NULL; static struct cache_entry df_conflict_entry = { }; static struct tree_entry_list df_conflict_list = { .name = NULL, .next = &df_conflict_list }; typedef int (*merge_fn_t)(struct cache_entry **src); static int entcmp(char *name1, int dir1, char *name2, int dir2) { int len1 = strlen(name1); int len2 = strlen(name2); int len = len1 < len2 ? len1 : len2; int ret = memcmp(name1, name2, len); unsigned char c1, c2; if (ret) return ret; c1 = name1[len]; c2 = name2[len]; if (!c1 && dir1) c1 = '/'; if (!c2 && dir2) c2 = '/'; ret = (c1 < c2) ? -1 : (c1 > c2) ? 1 : 0; if (c1 && c2 && !ret) ret = len1 - len2; return ret; } static int unpack_trees_rec(struct tree_entry_list **posns, int len, const char *base, merge_fn_t fn, int *indpos) { int baselen = strlen(base); int src_size = len + 1; do { int i; char *first; int firstdir = 0; int pathlen; unsigned ce_size; struct tree_entry_list **subposns; struct cache_entry **src; int any_files = 0; int any_dirs = 0; char *cache_name; int ce_stage; /* Find the first name in the input. */ first = NULL; cache_name = NULL; /* Check the cache */ if (merge && *indpos < active_nr) { /* This is a bit tricky: */ /* If the index has a subdirectory (with * contents) as the first name, it'll get a * filename like "foo/bar". But that's after * "foo", so the entry in trees will get * handled first, at which point we'll go into * "foo", and deal with "bar" from the index, * because the base will be "foo/". The only * way we can actually have "foo/bar" first of * all the things is if the trees don't * contain "foo" at all, in which case we'll * handle "foo/bar" without going into the * directory, but that's fine (and will return * an error anyway, with the added unknown * file case. */ cache_name = active_cache[*indpos]->name; if (strlen(cache_name) > baselen && !memcmp(cache_name, base, baselen)) { cache_name += baselen; first = cache_name; } else { cache_name = NULL; } } #if DBRT_DEBUG > 1 if (first) printf("index %s\n", first); #endif for (i = 0; i < len; i++) { if (!posns[i] || posns[i] == &df_conflict_list) continue; #if DBRT_DEBUG > 1 printf("%d %s\n", i + 1, posns[i]->name); #endif if (!first || entcmp(first, firstdir, posns[i]->name, posns[i]->directory) > 0) { first = posns[i]->name; firstdir = posns[i]->directory; } } /* No name means we're done */ if (!first) return 0; pathlen = strlen(first); ce_size = cache_entry_size(baselen + pathlen); src = xmalloc(sizeof(struct cache_entry *) * src_size); memset(src, 0, sizeof(struct cache_entry *) * src_size); subposns = xmalloc(sizeof(struct tree_list_entry *) * len); memset(subposns, 0, sizeof(struct tree_list_entry *) * len); if (cache_name && !strcmp(cache_name, first)) { any_files = 1; src[0] = active_cache[*indpos]; remove_cache_entry_at(*indpos); } for (i = 0; i < len; i++) { struct cache_entry *ce; if (!posns[i] || (posns[i] != &df_conflict_list && strcmp(first, posns[i]->name))) { continue; } if (posns[i] == &df_conflict_list) { src[i + merge] = &df_conflict_entry; continue; } if (posns[i]->directory) { any_dirs = 1; parse_tree(posns[i]->item.tree); subposns[i] = posns[i]->item.tree->entries; posns[i] = posns[i]->next; src[i + merge] = &df_conflict_entry; continue; } if (!merge) ce_stage = 0; else if (i + 1 < head_idx) ce_stage = 1; else if (i + 1 > head_idx) ce_stage = 3; else ce_stage = 2; ce = xmalloc(ce_size); memset(ce, 0, ce_size); ce->ce_mode = create_ce_mode(posns[i]->mode); ce->ce_flags = create_ce_flags(baselen + pathlen, ce_stage); memcpy(ce->name, base, baselen); memcpy(ce->name + baselen, first, pathlen + 1); any_files = 1; memcpy(ce->sha1, posns[i]->item.any->sha1, 20); src[i + merge] = ce; subposns[i] = &df_conflict_list; posns[i] = posns[i]->next; } if (any_files) { if (merge) { int ret; #if DBRT_DEBUG > 1 printf("%s:\n", first); for (i = 0; i < src_size; i++) { printf(" %d ", i); if (src[i]) printf("%s\n", sha1_to_hex(src[i]->sha1)); else printf("\n"); } #endif ret = fn(src); #if DBRT_DEBUG > 1 printf("Added %d entries\n", ret); #endif *indpos += ret; } else { for (i = 0; i < src_size; i++) { if (src[i]) { add_cache_entry(src[i], ADD_CACHE_OK_TO_ADD|ADD_CACHE_SKIP_DFCHECK); } } } } if (any_dirs) { char *newbase = xmalloc(baselen + 2 + pathlen); memcpy(newbase, base, baselen); memcpy(newbase + baselen, first, pathlen); newbase[baselen + pathlen] = '/'; newbase[baselen + pathlen + 1] = '\0'; if (unpack_trees_rec(subposns, len, newbase, fn, indpos)) return -1; free(newbase); } free(subposns); free(src); } while (1); } static void reject_merge(struct cache_entry *ce) { die("Entry '%s' would be overwritten by merge. Cannot merge.", ce->name); } static void check_updates(struct cache_entry **src, int nr) { static struct checkout state = { .base_dir = "", .force = 1, .quiet = 1, .refresh_cache = 1, }; unsigned short mask = htons(CE_UPDATE); while (nr--) { struct cache_entry *ce = *src++; if (!ce->ce_mode) { if (update) unlink(ce->name); continue; } if (ce->ce_flags & mask) { ce->ce_flags &= ~mask; if (update) checkout_entry(ce, &state); } } } static int unpack_trees(merge_fn_t fn) { int indpos = 0; unsigned len = object_list_length(trees); struct tree_entry_list **posns = xmalloc(len * sizeof(struct tree_entry_list *)); int i; struct object_list *posn = trees; merge_size = len; for (i = 0; i < len; i++) { posns[i] = ((struct tree *) posn->item)->entries; posn = posn->next; } if (unpack_trees_rec(posns, len, "", fn, &indpos)) return -1; check_updates(active_cache, active_nr); return 0; } static int list_tree(unsigned char *sha1) { struct tree *tree = parse_tree_indirect(sha1); if (!tree) return -1; object_list_append(&tree->object, &trees); return 0; } static int same(struct cache_entry *a, struct cache_entry *b) { if (!!a != !!b) return 0; if (!a && !b) return 1; return a->ce_mode == b->ce_mode && !memcmp(a->sha1, b->sha1, 20); } /* * When a CE gets turned into an unmerged entry, we * want it to be up-to-date */ static void verify_uptodate(struct cache_entry *ce) { struct stat st; if (index_only) return; if (!lstat(ce->name, &st)) { unsigned changed = ce_match_stat(ce, &st); if (!changed) return; errno = 0; } if (errno == ENOENT) return; die("Entry '%s' not uptodate. Cannot merge.", ce->name); } static int merged_entry(struct cache_entry *merge, struct cache_entry *old) { merge->ce_flags |= htons(CE_UPDATE); if (old) { /* * See if we can re-use the old CE directly? * That way we get the uptodate stat info. * * This also removes the UPDATE flag on * a match. */ if (same(old, merge)) { *merge = *old; } else { verify_uptodate(old); } } merge->ce_flags &= ~htons(CE_STAGEMASK); add_cache_entry(merge, ADD_CACHE_OK_TO_ADD); return 1; } static int deleted_entry(struct cache_entry *ce, struct cache_entry *old) { if (old) verify_uptodate(old); ce->ce_mode = 0; add_cache_entry(ce, ADD_CACHE_OK_TO_ADD); return 1; } static int keep_entry(struct cache_entry *ce) { add_cache_entry(ce, ADD_CACHE_OK_TO_ADD); return 1; } #if DBRT_DEBUG static void show_stage_entry(FILE *o, const char *label, const struct cache_entry *ce) { if (!ce) fprintf(o, "%s (missing)\n", label); else fprintf(o, "%s%06o %s %d\t%s\n", label, ntohl(ce->ce_mode), sha1_to_hex(ce->sha1), ce_stage(ce), ce->name); } #endif static int threeway_merge(struct cache_entry **stages) { struct cache_entry *index; struct cache_entry *head; struct cache_entry *remote = stages[head_idx + 1]; int count; int head_match = 0; int remote_match = 0; int df_conflict_head = 0; int df_conflict_remote = 0; int any_anc_missing = 0; int i; for (i = 1; i < head_idx; i++) { if (!stages[i]) any_anc_missing = 1; } index = stages[0]; head = stages[head_idx]; if (head == &df_conflict_entry) { df_conflict_head = 1; head = NULL; } if (remote == &df_conflict_entry) { df_conflict_remote = 1; remote = NULL; } /* First, if there's a #16 situation, note that to prevent #13 * and #14. */ if (!same(remote, head)) { for (i = 1; i < head_idx; i++) { if (same(stages[i], head)) { head_match = i; } if (same(stages[i], remote)) { remote_match = i; } } } /* We start with cases where the index is allowed to match * something other than the head: #14(ALT) and #2ALT, where it * is permitted to match the result instead. */ /* #14, #14ALT, #2ALT */ if (remote && !df_conflict_head && head_match && !remote_match) { if (index && !same(index, remote) && !same(index, head)) reject_merge(index); return merged_entry(remote, index); } /* * If we have an entry in the index cache, then we want to * make sure that it matches head. */ if (index && !same(index, head)) { reject_merge(index); } if (head) { /* #5ALT, #15 */ if (same(head, remote)) return merged_entry(head, index); /* #13, #3ALT */ if (!df_conflict_remote && remote_match && !head_match) return merged_entry(head, index); } /* #1 */ if (!head && !remote && any_anc_missing) return 0; /* Below are "no merge" cases, which require that the index be * up-to-date to avoid the files getting overwritten with * conflict resolution files. */ if (index) { verify_uptodate(index); } /* #2, #3, #4, #6, #7, #9, #11. */ count = 0; if (!head_match || !remote_match) { for (i = 1; i < head_idx; i++) { if (stages[i]) { keep_entry(stages[i]); count++; break; } } } #if DBRT_DEBUG else { fprintf(stderr, "read-tree: warning #16 detected\n"); show_stage_entry(stderr, "head ", stages[head_match]); show_stage_entry(stderr, "remote ", stages[remote_match]); } #endif if (head) { count += keep_entry(head); } if (remote) { count += keep_entry(remote); } return count; } /* * Two-way merge. * * The rule is to "carry forward" what is in the index without losing * information across a "fast forward", favoring a successful merge * over a merge failure when it makes sense. For details of the * "carry forward" rule, please see . * */ static int twoway_merge(struct cache_entry **src) { struct cache_entry *current = src[0]; struct cache_entry *oldtree = src[1], *newtree = src[2]; if (merge_size != 2) return error("Cannot do a twoway merge of %d trees\n", merge_size); if (current) { if ((!oldtree && !newtree) || /* 4 and 5 */ (!oldtree && newtree && same(current, newtree)) || /* 6 and 7 */ (oldtree && newtree && same(oldtree, newtree)) || /* 14 and 15 */ (oldtree && newtree && !same(oldtree, newtree) && /* 18 and 19*/ same(current, newtree))) { return keep_entry(current); } else if (oldtree && !newtree && same(current, oldtree)) { /* 10 or 11 */ return deleted_entry(oldtree, current); } else if (oldtree && newtree && same(current, oldtree) && !same(current, newtree)) { /* 20 or 21 */ return merged_entry(newtree, current); } else { /* all other failures */ if (oldtree) reject_merge(oldtree); if (current) reject_merge(current); if (newtree) reject_merge(newtree); return -1; } } else if (newtree) return merged_entry(newtree, current); else return deleted_entry(oldtree, current); } /* * One-way merge. * * The rule is: * - take the stat information from stage0, take the data from stage1 */ static int oneway_merge(struct cache_entry **src) { struct cache_entry *old = src[0]; struct cache_entry *a = src[1]; if (merge_size != 1) return error("Cannot do a oneway merge of %d trees\n", merge_size); if (!a) return 0; if (old && same(old, a)) { return keep_entry(old); } return merged_entry(a, NULL); } static int read_cache_unmerged(void) { int i, deleted; struct cache_entry **dst; read_cache(); dst = active_cache; deleted = 0; for (i = 0; i < active_nr; i++) { struct cache_entry *ce = active_cache[i]; if (ce_stage(ce)) { deleted++; continue; } if (deleted) *dst = ce; dst++; } active_nr -= deleted; return deleted; } static const char read_tree_usage[] = "git-read-tree ( | -m [-u | -i] [ []])"; static struct cache_file cache_file; int main(int argc, char **argv) { int i, newfd, reset, stage = 0; unsigned char sha1[20]; merge_fn_t fn = NULL; newfd = hold_index_file_for_update(&cache_file, get_index_file()); if (newfd < 0) die("unable to create new cachefile"); merge = 0; reset = 0; for (i = 1; i < argc; i++) { const char *arg = argv[i]; /* "-u" means "update", meaning that a merge will update * the working tree. */ if (!strcmp(arg, "-u")) { update = 1; continue; } /* "-i" means "index only", meaning that a merge will * not even look at the working tree. */ if (!strcmp(arg, "-i")) { index_only = 1; continue; } /* This differs from "-m" in that we'll silently ignore unmerged entries */ if (!strcmp(arg, "--reset")) { if (stage || merge) usage(read_tree_usage); reset = 1; merge = 1; stage = 1; read_cache_unmerged(); continue; } /* "-m" stands for "merge", meaning we start in stage 1 */ if (!strcmp(arg, "-m")) { if (stage || merge) usage(read_tree_usage); if (read_cache_unmerged()) die("you need to resolve your current index first"); stage = 1; merge = 1; continue; } /* using -u and -i at the same time makes no sense */ if (1 < index_only + update) usage(read_tree_usage); if (get_sha1(arg, sha1) < 0) usage(read_tree_usage); if (list_tree(sha1) < 0) die("failed to unpack tree object %s", arg); stage++; } if ((update||index_only) && !merge) usage(read_tree_usage); if (merge) { if (stage < 2) die("just how do you expect me to merge %d trees?", stage-1); switch (stage - 1) { case 1: fn = oneway_merge; break; case 2: fn = twoway_merge; break; case 3: fn = threeway_merge; break; default: fn = threeway_merge; break; } if (stage - 1 >= 3) head_idx = stage - 2; else head_idx = 1; } unpack_trees(fn); if (write_cache(newfd, active_cache, active_nr) || commit_index_file(&cache_file)) die("unable to write new index file"); return 0; }