#include "cache.h" #include "cache-tree.h" #include "tree.h" #include "blob.h" #include "commit.h" #include "tag.h" #include "tree-walk.h" const char *tree_type = "tree"; static int read_one_entry_opt(const unsigned char *sha1, const char *base, int baselen, const char *pathname, unsigned mode, int stage, int opt) { int len; unsigned int size; struct cache_entry *ce; if (S_ISDIR(mode)) return READ_TREE_RECURSIVE; len = strlen(pathname); size = cache_entry_size(baselen + len); ce = xcalloc(1, size); ce->ce_mode = create_ce_mode(mode); ce->ce_flags = create_ce_flags(stage); ce->ce_namelen = baselen + len; memcpy(ce->name, base, baselen); memcpy(ce->name + baselen, pathname, len+1); hashcpy(ce->sha1, sha1); return add_cache_entry(ce, opt); } static int read_one_entry(const unsigned char *sha1, const char *base, int baselen, const char *pathname, unsigned mode, int stage, void *context) { return read_one_entry_opt(sha1, base, baselen, pathname, mode, stage, ADD_CACHE_OK_TO_ADD|ADD_CACHE_SKIP_DFCHECK); } /* * This is used when the caller knows there is no existing entries at * the stage that will conflict with the entry being added. */ static int read_one_entry_quick(const unsigned char *sha1, const char *base, int baselen, const char *pathname, unsigned mode, int stage, void *context) { return read_one_entry_opt(sha1, base, baselen, pathname, mode, stage, ADD_CACHE_JUST_APPEND); } static int read_tree_1(struct tree *tree, struct strbuf *base, int stage, struct pathspec *pathspec, read_tree_fn_t fn, void *context) { struct tree_desc desc; struct name_entry entry; unsigned char sha1[20]; int len, oldlen = base->len; enum interesting retval = entry_not_interesting; if (parse_tree(tree)) return -1; init_tree_desc(&desc, tree->buffer, tree->size); while (tree_entry(&desc, &entry)) { if (retval != all_entries_interesting) { retval = tree_entry_interesting(&entry, base, 0, pathspec); if (retval == all_entries_not_interesting) break; if (retval == entry_not_interesting) continue; } switch (fn(entry.sha1, base->buf, base->len, entry.path, entry.mode, stage, context)) { case 0: continue; case READ_TREE_RECURSIVE: break; default: return -1; } if (S_ISDIR(entry.mode)) hashcpy(sha1, entry.sha1); else if (S_ISGITLINK(entry.mode)) { struct commit *commit; commit = lookup_commit(entry.sha1); if (!commit) die("Commit %s in submodule path %s%s not found", sha1_to_hex(entry.sha1), base->buf, entry.path); if (parse_commit(commit)) die("Invalid commit %s in submodule path %s%s", sha1_to_hex(entry.sha1), base->buf, entry.path); hashcpy(sha1, commit->tree->object.sha1); } else continue; len = tree_entry_len(&entry); strbuf_add(base, entry.path, len); strbuf_addch(base, '/'); retval = read_tree_1(lookup_tree(sha1), base, stage, pathspec, fn, context); strbuf_setlen(base, oldlen); if (retval) return -1; } return 0; } int read_tree_recursive(struct tree *tree, const char *base, int baselen, int stage, struct pathspec *pathspec, read_tree_fn_t fn, void *context) { struct strbuf sb = STRBUF_INIT; int ret; strbuf_add(&sb, base, baselen); ret = read_tree_1(tree, &sb, stage, pathspec, fn, context); strbuf_release(&sb); return ret; } static int cmp_cache_name_compare(const void *a_, const void *b_) { const struct cache_entry *ce1, *ce2; ce1 = *((const struct cache_entry **)a_); ce2 = *((const struct cache_entry **)b_); return cache_name_stage_compare(ce1->name, ce1->ce_namelen, ce_stage(ce1), ce2->name, ce2->ce_namelen, ce_stage(ce2)); } int read_tree(struct tree *tree, int stage, struct pathspec *match) { read_tree_fn_t fn = NULL; int i, err; /* * Currently the only existing callers of this function all * call it with stage=1 and after making sure there is nothing * at that stage; we could always use read_one_entry_quick(). * * But when we decide to straighten out git-read-tree not to * use unpack_trees() in some cases, this will probably start * to matter. */ /* * See if we have cache entry at the stage. If so, * do it the original slow way, otherwise, append and then * sort at the end. */ for (i = 0; !fn && i < active_nr; i++) { struct cache_entry *ce = active_cache[i]; if (ce_stage(ce) == stage) fn = read_one_entry; } if (!fn) fn = read_one_entry_quick; err = read_tree_recursive(tree, "", 0, stage, match, fn, NULL); if (fn == read_one_entry || err) return err; /* * Sort the cache entry -- we need to nuke the cache tree, though. */ cache_tree_free(&active_cache_tree); qsort(active_cache, active_nr, sizeof(active_cache[0]), cmp_cache_name_compare); return 0; } struct tree *lookup_tree(const unsigned char *sha1) { struct object *obj = lookup_object(sha1); if (!obj) return create_object(sha1, OBJ_TREE, alloc_tree_node()); if (!obj->type) obj->type = OBJ_TREE; if (obj->type != OBJ_TREE) { error("Object %s is a %s, not a tree", sha1_to_hex(sha1), typename(obj->type)); return NULL; } return (struct tree *) obj; } int parse_tree_buffer(struct tree *item, void *buffer, unsigned long size) { if (item->object.parsed) return 0; item->object.parsed = 1; item->buffer = buffer; item->size = size; return 0; } int parse_tree(struct tree *item) { enum object_type type; void *buffer; unsigned long size; if (item->object.parsed) return 0; buffer = read_sha1_file(item->object.sha1, &type, &size); if (!buffer) return error("Could not read %s", sha1_to_hex(item->object.sha1)); if (type != OBJ_TREE) { free(buffer); return error("Object %s not a tree", sha1_to_hex(item->object.sha1)); } return parse_tree_buffer(item, buffer, size); } void free_tree_buffer(struct tree *tree) { free(tree->buffer); tree->buffer = NULL; tree->size = 0; tree->object.parsed = 0; } struct tree *parse_tree_indirect(const unsigned char *sha1) { struct object *obj = parse_object(sha1); do { if (!obj) return NULL; if (obj->type == OBJ_TREE) return (struct tree *) obj; else if (obj->type == OBJ_COMMIT) obj = &(((struct commit *) obj)->tree->object); else if (obj->type == OBJ_TAG) obj = ((struct tag *) obj)->tagged; else return NULL; if (!obj->parsed) parse_object(obj->sha1); } while (1); }