return hdrlen + datalen;
}
-static int write_one(struct sha1file *f,
- struct object_entry *e,
- off_t *offset)
+enum write_one_status {
+ WRITE_ONE_SKIP = -1, /* already written */
+ WRITE_ONE_BREAK = 0, /* writing this will bust the limit; not written */
+ WRITE_ONE_WRITTEN = 1, /* normal */
+ WRITE_ONE_RECURSIVE = 2 /* already scheduled to be written */
+};
+
+static enum write_one_status write_one(struct sha1file *f,
+ struct object_entry *e,
+ off_t *offset)
{
unsigned long size;
+ int recursing;
- /* offset is non zero if object is written already. */
- if (e->idx.offset || e->preferred_base)
- return -1;
+ /*
+ * we set offset to 1 (which is an impossible value) to mark
+ * the fact that this object is involved in "write its base
+ * first before writing a deltified object" recursion.
+ */
+ recursing = (e->idx.offset == 1);
+ if (recursing) {
+ warning("recursive delta detected for object %s",
+ sha1_to_hex(e->idx.sha1));
+ return WRITE_ONE_RECURSIVE;
+ } else if (e->idx.offset || e->preferred_base) {
+ /* offset is non zero if object is written already. */
+ return WRITE_ONE_SKIP;
+ }
/* if we are deltified, write out base object first. */
- if (e->delta && !write_one(f, e->delta, offset))
- return 0;
+ if (e->delta) {
+ e->idx.offset = 1; /* now recurse */
+ switch (write_one(f, e->delta, offset)) {
+ case WRITE_ONE_RECURSIVE:
+ /* we cannot depend on this one */
+ e->delta = NULL;
+ break;
+ default:
+ break;
+ case WRITE_ONE_BREAK:
+ e->idx.offset = recursing;
+ return WRITE_ONE_BREAK;
+ }
+ }
e->idx.offset = *offset;
size = write_object(f, e, *offset);
if (!size) {
- e->idx.offset = 0;
- return 0;
+ e->idx.offset = recursing;
+ return WRITE_ONE_BREAK;
}
written_list[nr_written++] = &e->idx;
if (signed_add_overflows(*offset, size))
die("pack too large for current definition of off_t");
*offset += size;
- return 1;
+ return WRITE_ONE_WRITTEN;
}
static int mark_tagged(const char *path, const unsigned char *sha1, int flag,
return 0;
}
-static void add_to_write_order(struct object_entry **wo,
- int *endp,
+static inline void add_to_write_order(struct object_entry **wo,
+ unsigned int *endp,
struct object_entry *e)
{
if (e->filled)
}
static void add_descendants_to_write_order(struct object_entry **wo,
- int *endp,
+ unsigned int *endp,
struct object_entry *e)
{
- struct object_entry *child;
-
- for (child = e->delta_child; child; child = child->delta_sibling)
- add_to_write_order(wo, endp, child);
- for (child = e->delta_child; child; child = child->delta_sibling)
- add_descendants_to_write_order(wo, endp, child);
+ int add_to_order = 1;
+ while (e) {
+ if (add_to_order) {
+ struct object_entry *s;
+ /* add this node... */
+ add_to_write_order(wo, endp, e);
+ /* all its siblings... */
+ for (s = e->delta_sibling; s; s = s->delta_sibling) {
+ add_to_write_order(wo, endp, s);
+ }
+ }
+ /* drop down a level to add left subtree nodes if possible */
+ if (e->delta_child) {
+ add_to_order = 1;
+ e = e->delta_child;
+ } else {
+ add_to_order = 0;
+ /* our sibling might have some children, it is next */
+ if (e->delta_sibling) {
+ e = e->delta_sibling;
+ continue;
+ }
+ /* go back to our parent node */
+ e = e->delta;
+ while (e && !e->delta_sibling) {
+ /* we're on the right side of a subtree, keep
+ * going up until we can go right again */
+ e = e->delta;
+ }
+ if (!e) {
+ /* done- we hit our original root node */
+ return;
+ }
+ /* pass it off to sibling at this level */
+ e = e->delta_sibling;
+ }
+ };
}
static void add_family_to_write_order(struct object_entry **wo,
- int *endp,
+ unsigned int *endp,
struct object_entry *e)
{
struct object_entry *root;
for (root = e; root->delta; root = root->delta)
; /* nothing */
- add_to_write_order(wo, endp, root);
add_descendants_to_write_order(wo, endp, root);
}
static struct object_entry **compute_write_order(void)
{
- int i, wo_end;
+ unsigned int i, wo_end, last_untagged;
struct object_entry **wo = xmalloc(nr_objects * sizeof(*wo));
* Make sure delta_sibling is sorted in the original
* recency order.
*/
- for (i = nr_objects - 1; 0 <= i; i--) {
- struct object_entry *e = &objects[i];
+ for (i = nr_objects; i > 0;) {
+ struct object_entry *e = &objects[--i];
if (!e->delta)
continue;
/* Mark me as the first child */
for_each_tag_ref(mark_tagged, NULL);
/*
- * Give the commits in the original recency order until
+ * Give the objects in the original recency order until
* we see a tagged tip.
*/
for (i = wo_end = 0; i < nr_objects; i++) {
break;
add_to_write_order(wo, &wo_end, &objects[i]);
}
+ last_untagged = i;
/*
* Then fill all the tagged tips.
/*
* And then all remaining commits and tags.
*/
- for (i = 0; i < nr_objects; i++) {
+ for (i = last_untagged; i < nr_objects; i++) {
if (objects[i].type != OBJ_COMMIT &&
objects[i].type != OBJ_TAG)
continue;
/*
* And then all the trees.
*/
- for (i = 0; i < nr_objects; i++) {
+ for (i = last_untagged; i < nr_objects; i++) {
if (objects[i].type != OBJ_TREE)
continue;
add_to_write_order(wo, &wo_end, &objects[i]);
/*
* Finally all the rest in really tight order
*/
- for (i = 0; i < nr_objects; i++)
- add_family_to_write_order(wo, &wo_end, &objects[i]);
+ for (i = last_untagged; i < nr_objects; i++) {
+ if (!objects[i].filled)
+ add_family_to_write_order(wo, &wo_end, &objects[i]);
+ }
+
+ if (wo_end != nr_objects)
+ die("ordered %u objects, expected %"PRIu32, wo_end, nr_objects);
return wo;
}
nr_written = 0;
for (; i < nr_objects; i++) {
struct object_entry *e = write_order[i];
- if (!write_one(f, e, &offset))
+ if (write_one(f, e, &offset) == WRITE_ONE_BREAK)
break;
display_progress(progress_state, written);
}