ce->ce_uid = htonl(st->st_uid);
ce->ce_gid = htonl(st->st_gid);
ce->ce_size = htonl(st->st_size);
+
+ if (assume_unchanged)
+ ce->ce_flags |= htons(CE_VALID);
}
static int ce_compare_data(struct cache_entry *ce, struct stat *st)
return 0;
}
-int ce_match_stat(struct cache_entry *ce, struct stat *st)
+static int ce_match_stat_basic(struct cache_entry *ce, struct stat *st)
{
unsigned int changed = 0;
if (ce->ce_size != htonl(st->st_size))
changed |= DATA_CHANGED;
+ return changed;
+}
+
+int ce_match_stat(struct cache_entry *ce, struct stat *st, int ignore_valid)
+{
+ unsigned int changed;
+
+ /*
+ * If it's marked as always valid in the index, it's
+ * valid whatever the checked-out copy says.
+ */
+ if (!ignore_valid && (ce->ce_flags & htons(CE_VALID)))
+ return 0;
+
+ changed = ce_match_stat_basic(ce, st);
+
/*
* Within 1 second of this sequence:
* echo xyzzy >file && git-update-index --add file
* effectively mean we can make at most one commit per second,
* which is not acceptable. Instead, we check cache entries
* whose mtime are the same as the index file timestamp more
- * careful than others.
+ * carefully than others.
*/
if (!changed &&
index_file_timestamp &&
return changed;
}
-int ce_modified(struct cache_entry *ce, struct stat *st)
+int ce_modified(struct cache_entry *ce, struct stat *st, int really)
{
int changed, changed_fs;
- changed = ce_match_stat(ce, st);
+ changed = ce_match_stat(ce, st, really);
if (!changed)
return 0;
/*
return -1;
if (len1 > len2)
return 1;
+
+ /* Compare stages */
+ flags1 &= CE_STAGEMASK;
+ flags2 &= CE_STAGEMASK;
+
if (flags1 < flags2)
return -1;
if (flags1 > flags2)
int ok_to_add = option & ADD_CACHE_OK_TO_ADD;
int ok_to_replace = option & ADD_CACHE_OK_TO_REPLACE;
int skip_df_check = option & ADD_CACHE_SKIP_DFCHECK;
+
pos = cache_name_pos(ce->name, ntohs(ce->ce_flags));
/* existing match? Just replace it. */
return 0;
}
+static void ce_smudge_racily_clean_entry(struct cache_entry *ce)
+{
+ /*
+ * The only thing we care about in this function is to smudge the
+ * falsely clean entry due to touch-update-touch race, so we leave
+ * everything else as they are. We are called for entries whose
+ * ce_mtime match the index file mtime.
+ */
+ struct stat st;
+
+ if (lstat(ce->name, &st) < 0)
+ return;
+ if (ce_match_stat_basic(ce, &st))
+ return;
+ if (ce_modified_check_fs(ce, &st)) {
+ /* This is "racily clean"; smudge it. Note that this
+ * is a tricky code. At first glance, it may appear
+ * that it can break with this sequence:
+ *
+ * $ echo xyzzy >frotz
+ * $ git-update-index --add frotz
+ * $ : >frotz
+ * $ sleep 3
+ * $ echo filfre >nitfol
+ * $ git-update-index --add nitfol
+ *
+ * but it does not. Whe the second update-index runs,
+ * it notices that the entry "frotz" has the same timestamp
+ * as index, and if we were to smudge it by resetting its
+ * size to zero here, then the object name recorded
+ * in index is the 6-byte file but the cached stat information
+ * becomes zero --- which would then match what we would
+ * obtain from the filesystem next time we stat("frotz").
+ *
+ * However, the second update-index, before calling
+ * this function, notices that the cached size is 6
+ * bytes and what is on the filesystem is an empty
+ * file, and never calls us, so the cached size information
+ * for "frotz" stays 6 which does not match the filesystem.
+ */
+ ce->ce_size = htonl(0);
+ }
+}
+
int write_cache(int newfd, struct cache_entry **cache, int entries)
{
SHA_CTX c;
struct cache_entry *ce = cache[i];
if (!ce->ce_mode)
continue;
+ if (index_file_timestamp &&
+ index_file_timestamp <= ntohl(ce->ce_mtime.sec))
+ ce_smudge_racily_clean_entry(ce);
if (ce_write(&c, newfd, ce, ce_size(ce)) < 0)
return -1;
}