git submodule status: Add --recursive to recurse into nested submodules
[gitweb.git] / block-sha1 / sha1.c
index 886bcf25e2f52dff239f1c744c11774af12da48a..464cb258aaa11786d3615a55c0ae8dff95150667 100644 (file)
@@ -9,97 +9,96 @@
 
 #include "sha1.h"
 
-/* Hash one 64-byte block of data */
-static void blk_SHA1Block(blk_SHA_CTX *ctx, const unsigned int *data);
-
-void blk_SHA1_Init(blk_SHA_CTX *ctx)
-{
-       ctx->size = 0;
-
-       /* Initialize H with the magic constants (see FIPS180 for constants)
-        */
-       ctx->H[0] = 0x67452301;
-       ctx->H[1] = 0xefcdab89;
-       ctx->H[2] = 0x98badcfe;
-       ctx->H[3] = 0x10325476;
-       ctx->H[4] = 0xc3d2e1f0;
-}
-
+#if defined(__i386__) || defined(__x86_64__)
 
-void blk_SHA1_Update(blk_SHA_CTX *ctx, const void *data, unsigned long len)
-{
-       int lenW = ctx->size & 63;
+/*
+ * Force usage of rol or ror by selecting the one with the smaller constant.
+ * It _can_ generate slightly smaller code (a constant of 1 is special), but
+ * perhaps more importantly it's possibly faster on any uarch that does a
+ * rotate with a loop.
+ */
 
-       ctx->size += len;
+#define SHA_ASM(op, x, n) ({ unsigned int __res; __asm__(op " %1,%0":"=r" (__res):"i" (n), "0" (x)); __res; })
+#define SHA_ROL(x,n)   SHA_ASM("rol", x, n)
+#define SHA_ROR(x,n)   SHA_ASM("ror", x, n)
 
-       /* Read the data into W and process blocks as they get full
-        */
-       if (lenW) {
-               int left = 64 - lenW;
-               if (len < left)
-                       left = len;
-               memcpy(lenW + (char *)ctx->W, data, left);
-               lenW = (lenW + left) & 63;
-               len -= left;
-               data += left;
-               if (lenW)
-                       return;
-               blk_SHA1Block(ctx, ctx->W);
-       }
-       while (len >= 64) {
-               blk_SHA1Block(ctx, data);
-               data += 64;
-               len -= 64;
-       }
-       if (len)
-               memcpy(ctx->W, data, len);
-}
+#else
 
+#define SHA_ROT(X,l,r) (((X) << (l)) | ((X) >> (r)))
+#define SHA_ROL(X,n)   SHA_ROT(X,n,32-(n))
+#define SHA_ROR(X,n)   SHA_ROT(X,32-(n),n)
 
-void blk_SHA1_Final(unsigned char hashout[20], blk_SHA_CTX *ctx)
-{
-       static const unsigned char pad[64] = { 0x80 };
-       unsigned int padlen[2];
-       int i;
+#endif
 
-       /* Pad with a binary 1 (ie 0x80), then zeroes, then length
-        */
-       padlen[0] = htonl(ctx->size >> 29);
-       padlen[1] = htonl(ctx->size << 3);
+/*
+ * If you have 32 registers or more, the compiler can (and should)
+ * try to change the array[] accesses into registers. However, on
+ * machines with less than ~25 registers, that won't really work,
+ * and at least gcc will make an unholy mess of it.
+ *
+ * So to avoid that mess which just slows things down, we force
+ * the stores to memory to actually happen (we might be better off
+ * with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as
+ * suggested by Artur Skawina - that will also make gcc unable to
+ * try to do the silly "optimize away loads" part because it won't
+ * see what the value will be).
+ *
+ * Ben Herrenschmidt reports that on PPC, the C version comes close
+ * to the optimized asm with this (ie on PPC you don't want that
+ * 'volatile', since there are lots of registers).
+ *
+ * On ARM we get the best code generation by forcing a full memory barrier
+ * between each SHA_ROUND, otherwise gcc happily get wild with spilling and
+ * the stack frame size simply explode and performance goes down the drain.
+ */
 
-       i = ctx->size & 63;
-       blk_SHA1_Update(ctx, pad, 1+ (63 & (55 - i)));
-       blk_SHA1_Update(ctx, padlen, 8);
+#if defined(__i386__) || defined(__x86_64__)
+  #define setW(x, val) (*(volatile unsigned int *)&W(x) = (val))
+#elif defined(__arm__)
+  #define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0)
+#else
+  #define setW(x, val) (W(x) = (val))
+#endif
 
-       /* Output hash
-        */
-       for (i = 0; i < 5; i++)
-               ((unsigned int *)hashout)[i] = htonl(ctx->H[i]);
-}
+/*
+ * Performance might be improved if the CPU architecture is OK with
+ * unaligned 32-bit loads and a fast ntohl() is available.
+ * Otherwise fall back to byte loads and shifts which is portable,
+ * and is faster on architectures with memory alignment issues.
+ */
 
-#if defined(__i386__) || defined(__x86_64__)
+#if defined(__i386__) || defined(__x86_64__) || \
+    defined(__ppc__) || defined(__ppc64__) || \
+    defined(__powerpc__) || defined(__powerpc64__) || \
+    defined(__s390__) || defined(__s390x__)
 
-#define SHA_ASM(op, x, n) ({ unsigned int __res; __asm__(op " %1,%0":"=r" (__res):"i" (n), "0" (x)); __res; })
-#define SHA_ROL(x,n)   SHA_ASM("rol", x, n)
-#define SHA_ROR(x,n)   SHA_ASM("ror", x, n)
+#define get_be32(p)    ntohl(*(unsigned int *)(p))
+#define put_be32(p, v) do { *(unsigned int *)(p) = htonl(v); } while (0)
 
 #else
 
-#define SHA_ROT(X,l,r) (((X) << (l)) | ((X) >> (r)))
-#define SHA_ROL(X,n)   SHA_ROT(X,n,32-(n))
-#define SHA_ROR(X,n)   SHA_ROT(X,32-(n),n)
+#define get_be32(p)    ( \
+       (*((unsigned char *)(p) + 0) << 24) | \
+       (*((unsigned char *)(p) + 1) << 16) | \
+       (*((unsigned char *)(p) + 2) <<  8) | \
+       (*((unsigned char *)(p) + 3) <<  0) )
+#define put_be32(p, v) do { \
+       unsigned int __v = (v); \
+       *((unsigned char *)(p) + 0) = __v >> 24; \
+       *((unsigned char *)(p) + 1) = __v >> 16; \
+       *((unsigned char *)(p) + 2) = __v >>  8; \
+       *((unsigned char *)(p) + 3) = __v >>  0; } while (0)
 
 #endif
 
 /* This "rolls" over the 512-bit array */
 #define W(x) (array[(x)&15])
-#define setW(x, val) (*(volatile unsigned int *)&W(x) = (val))
 
 /*
  * Where do we get the source from? The first 16 iterations get it from
  * the input data, the next mix it from the 512-bit array.
  */
-#define SHA_SRC(t) htonl(data[t])
+#define SHA_SRC(t) get_be32(data + t)
 #define SHA_MIX(t) SHA_ROL(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1)
 
 #define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \
@@ -113,7 +112,7 @@ void blk_SHA1_Final(unsigned char hashout[20], blk_SHA_CTX *ctx)
 #define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E )
 #define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) ,  0xca62c1d6, A, B, C, D, E )
 
-static void blk_SHA1Block(blk_SHA_CTX *ctx, const unsigned int *data)
+static void blk_SHA1_Block(blk_SHA_CTX *ctx, const unsigned int *data)
 {
        unsigned int A,B,C,D,E;
        unsigned int array[16];
@@ -220,3 +219,62 @@ static void blk_SHA1Block(blk_SHA_CTX *ctx, const unsigned int *data)
        ctx->H[3] += D;
        ctx->H[4] += E;
 }
+
+void blk_SHA1_Init(blk_SHA_CTX *ctx)
+{
+       ctx->size = 0;
+
+       /* Initialize H with the magic constants (see FIPS180 for constants) */
+       ctx->H[0] = 0x67452301;
+       ctx->H[1] = 0xefcdab89;
+       ctx->H[2] = 0x98badcfe;
+       ctx->H[3] = 0x10325476;
+       ctx->H[4] = 0xc3d2e1f0;
+}
+
+void blk_SHA1_Update(blk_SHA_CTX *ctx, const void *data, unsigned long len)
+{
+       int lenW = ctx->size & 63;
+
+       ctx->size += len;
+
+       /* Read the data into W and process blocks as they get full */
+       if (lenW) {
+               int left = 64 - lenW;
+               if (len < left)
+                       left = len;
+               memcpy(lenW + (char *)ctx->W, data, left);
+               lenW = (lenW + left) & 63;
+               len -= left;
+               data = ((const char *)data + left);
+               if (lenW)
+                       return;
+               blk_SHA1_Block(ctx, ctx->W);
+       }
+       while (len >= 64) {
+               blk_SHA1_Block(ctx, data);
+               data = ((const char *)data + 64);
+               len -= 64;
+       }
+       if (len)
+               memcpy(ctx->W, data, len);
+}
+
+void blk_SHA1_Final(unsigned char hashout[20], blk_SHA_CTX *ctx)
+{
+       static const unsigned char pad[64] = { 0x80 };
+       unsigned int padlen[2];
+       int i;
+
+       /* Pad with a binary 1 (ie 0x80), then zeroes, then length */
+       padlen[0] = htonl(ctx->size >> 29);
+       padlen[1] = htonl(ctx->size << 3);
+
+       i = ctx->size & 63;
+       blk_SHA1_Update(ctx, pad, 1+ (63 & (55 - i)));
+       blk_SHA1_Update(ctx, padlen, 8);
+
+       /* Output hash */
+       for (i = 0; i < 5; i++)
+               put_be32(hashout + i*4, ctx->H[i]);
+}