/* The length in bytes and in hex digits of an object name (SHA-1 value). */
#define GIT_SHA1_RAWSZ 20
#define GIT_SHA1_HEXSZ (2 * GIT_SHA1_RAWSZ)
+/* The block size of SHA-1. */
+#define GIT_SHA1_BLKSZ 64
+
+/* The length in bytes and in hex digits of an object name (SHA-256 value). */
+#define GIT_SHA256_RAWSZ 32
+#define GIT_SHA256_HEXSZ (2 * GIT_SHA256_RAWSZ)
+/* The block size of SHA-256. */
+#define GIT_SHA256_BLKSZ 64
/* The length in byte and in hex digits of the largest possible hash value. */
-#define GIT_MAX_RAWSZ GIT_SHA1_RAWSZ
-#define GIT_MAX_HEXSZ GIT_SHA1_HEXSZ
+#define GIT_MAX_RAWSZ GIT_SHA256_RAWSZ
+#define GIT_MAX_HEXSZ GIT_SHA256_HEXSZ
+/* The largest possible block size for any supported hash. */
+#define GIT_MAX_BLKSZ GIT_SHA256_BLKSZ
struct object_id {
unsigned char hash[GIT_MAX_RAWSZ];
static inline int hashcmp(const unsigned char *sha1, const unsigned char *sha2)
{
/*
- * This is a temporary optimization hack. By asserting the size here,
- * we let the compiler know that it's always going to be 20, which lets
- * it turn this fixed-size memcmp into a few inline instructions.
- *
- * This will need to be extended or ripped out when we learn about
- * hashes of different sizes.
+ * Teach the compiler that there are only two possibilities of hash size
+ * here, so that it can optimize for this case as much as possible.
*/
- if (the_hash_algo->rawsz != 20)
- BUG("hash size not yet supported by hashcmp");
- return memcmp(sha1, sha2, the_hash_algo->rawsz);
+ if (the_hash_algo->rawsz == GIT_MAX_RAWSZ)
+ return memcmp(sha1, sha2, GIT_MAX_RAWSZ);
+ return memcmp(sha1, sha2, GIT_SHA1_RAWSZ);
}
static inline int oidcmp(const struct object_id *oid1, const struct object_id *oid2)
static inline int hasheq(const unsigned char *sha1, const unsigned char *sha2)
{
- return !hashcmp(sha1, sha2);
+ /*
+ * We write this here instead of deferring to hashcmp so that the
+ * compiler can properly inline it and avoid calling memcmp.
+ */
+ if (the_hash_algo->rawsz == GIT_MAX_RAWSZ)
+ return !memcmp(sha1, sha2, GIT_MAX_RAWSZ);
+ return !memcmp(sha1, sha2, GIT_SHA1_RAWSZ);
}
static inline int oideq(const struct object_id *oid1, const struct object_id *oid2)
static inline void oidcpy(struct object_id *dst, const struct object_id *src)
{
- hashcpy(dst->hash, src->hash);
+ memcpy(dst->hash, src->hash, GIT_MAX_RAWSZ);
}
static inline struct object_id *oiddup(const struct object_id *src)
extern int hex_to_bytes(unsigned char *binary, const char *hex, size_t len);
/*
- * Convert a binary sha1 to its hex equivalent. The `_r` variant is reentrant,
+ * Convert a binary hash to its hex equivalent. The `_r` variant is reentrant,
* and writes the NUL-terminated output to the buffer `out`, which must be at
- * least `GIT_SHA1_HEXSZ + 1` bytes, and returns a pointer to out for
+ * least `GIT_MAX_HEXSZ + 1` bytes, and returns a pointer to out for
* convenience.
*
* The non-`_r` variant returns a static buffer, but uses a ring of 4
*
* printf("%s -> %s", sha1_to_hex(one), sha1_to_hex(two));
*/
-extern char *sha1_to_hex_r(char *out, const unsigned char *sha1);
-extern char *oid_to_hex_r(char *out, const struct object_id *oid);
-extern char *sha1_to_hex(const unsigned char *sha1); /* static buffer result! */
-extern char *oid_to_hex(const struct object_id *oid); /* same static buffer as sha1_to_hex */
+char *hash_to_hex_algop_r(char *buffer, const unsigned char *hash, const struct git_hash_algo *);
+char *sha1_to_hex_r(char *out, const unsigned char *sha1);
+char *oid_to_hex_r(char *out, const struct object_id *oid);
+char *hash_to_hex_algop(const unsigned char *hash, const struct git_hash_algo *); /* static buffer result! */
+char *sha1_to_hex(const unsigned char *sha1); /* same static buffer */
+char *hash_to_hex(const unsigned char *hash); /* same static buffer */
+char *oid_to_hex(const struct object_id *oid); /* same static buffer */
/*
* Parse a 40-character hexadecimal object ID starting from hex, updating the