if (ignore_submodules && S_ISGITLINK(ce->ce_mode))
continue;
- if (pathspec && !ce_path_match(ce, pathspec, seen))
+ if (pathspec && !ce_path_match(&the_index, ce, pathspec, seen))
filtered = 1;
if (ce_stage(ce)) {
return 0;
}
-int index_has_changes(const struct index_state *istate,
+int index_has_changes(struct index_state *istate,
struct tree *tree,
struct strbuf *sb)
{
/*
* Read the index file that is potentially unmerged into given
- * index_state, dropping any unmerged entries. Returns true if
- * the index is unmerged. Callers who want to refuse to work
- * from an unmerged state can call this and check its return value,
- * instead of calling read_cache().
+ * index_state, dropping any unmerged entries to stage #0 (potentially
+ * resulting in a path appearing as both a file and a directory in the
+ * index; the caller is responsible to clear out the extra entries
+ * before writing the index to a tree). Returns true if the index is
+ * unmerged. Callers who want to refuse to work from an unmerged
+ * state can call this and check its return value, instead of calling
+ * read_cache().
*/
int read_index_unmerged(struct index_state *istate)
{
new_ce->ce_flags = create_ce_flags(0) | CE_CONFLICTED;
new_ce->ce_namelen = len;
new_ce->ce_mode = ce->ce_mode;
- if (add_index_entry(istate, new_ce, 0))
+ if (add_index_entry(istate, new_ce, ADD_CACHE_SKIP_DFCHECK))
return error("%s: cannot drop to stage #0",
new_ce->name);
}