+////////////////////////////////////////////////////////////////
GIT - the stupid content tracker
+////////////////////////////////////////////////////////////////
"git" can mean anything, depending on your mood.
- random three-letter combination that is pronounceable, and not
actually used by any common UNIX command. The fact that it is a
- mispronounciation of "get" may or may not be relevant.
+ mispronunciation of "get" may or may not be relevant.
- stupid. contemptible and despicable. simple. Take your pick from the
dictionary of slang.
- "global information tracker": you're in a good mood, and it actually
contents efficiently.
There are two object abstractions: the "object database", and the
-"current directory cache".
-
- The Object Database (SHA1_FILE_DIRECTORY)
+"current directory cache" aka "index".
+The Object Database
+~~~~~~~~~~~~~~~~~~~
The object database is literally just a content-addressable collection
of objects. All objects are named by their content, which is
approximated by the SHA1 hash of the object itself. Objects may refer
-to other objects (by referencing their SHA1 hash), and so you can build
-up a hierarchy of objects.
-
-There are several kinds of objects in the content-addressable collection
-database. They are all in deflated with zlib, and start off with a tag
-of their type, and size information about the data. The SHA1 hash is
-always the hash of the _compressed_ object, not the original one.
-
-In particular, the consistency of an object can always be tested
+to other objects (by referencing their SHA1 hash), and so you can
+build up a hierarchy of objects.
+
+All objects have a statically determined "type" aka "tag", which is
+determined at object creation time, and which identifies the format of
+the object (i.e. how it is used, and how it can refer to other
+objects). There are currently four different object types: "blob",
+"tree", "commit" and "tag".
+
+A "blob" object cannot refer to any other object, and is, like the tag
+implies, a pure storage object containing some user data. It is used to
+actually store the file data, i.e. a blob object is associated with some
+particular version of some file.
+
+A "tree" object is an object that ties one or more "blob" objects into a
+directory structure. In addition, a tree object can refer to other tree
+objects, thus creating a directory hierarchy.
+
+A "commit" object ties such directory hierarchies together into
+a DAG of revisions - each "commit" is associated with exactly one tree
+(the directory hierarchy at the time of the commit). In addition, a
+"commit" refers to one or more "parent" commit objects that describe the
+history of how we arrived at that directory hierarchy.
+
+As a special case, a commit object with no parents is called the "root"
+object, and is the point of an initial project commit. Each project
+must have at least one root, and while you can tie several different
+root objects together into one project by creating a commit object which
+has two or more separate roots as its ultimate parents, that's probably
+just going to confuse people. So aim for the notion of "one root object
+per project", even if git itself does not enforce that.
+
+A "tag" object symbolically identifies and can be used to sign other
+objects. It contains the identifier and type of another object, a
+symbolic name (of course!) and, optionally, a signature.
+
+Regardless of object type, all objects share the following
+characteristics: they are all deflated with zlib, and have a header
+that not only specifies their tag, but also provides size information
+about the data in the object. It's worth noting that the SHA1 hash
+that is used to name the object is the hash of the original data.
+(Historical note: in the dawn of the age of git the hash
+was the sha1 of the _compressed_ object)
+
+As a result, the general consistency of an object can always be tested
independently of the contents or the type of the object: all objects can
be validated by verifying that (a) their hashes match the content of the
file and (b) the object successfully inflates to a stream of bytes that
forms a sequence of <ascii tag without space> + <space> + <ascii decimal
size> + <byte\0> + <binary object data>.
-BLOB: A "blob" object is nothing but a binary blob of data, and doesn't
-refer to anything else. There is no signature or any other verification
-of the data, so while the object is consistent (it _is_ indexed by its
-sha1 hash, so the data itself is certainly correct), it has absolutely
-no other attributes. No name associations, no permissions. It is
-purely a blob of data (ie normally "file contents").
-
-TREE: The next hierarchical object type is the "tree" object. A tree
-object is a list of permission/name/blob data, sorted by name. In other
-words the tree object is uniquely determined by the set contents, and so
-two separate but identical trees will always share the exact same
-object.
-
-Again, a "tree" object is just a pure data abstraction: it has no
-history, no signatures, no verification of validity, except that the
-contents are again protected by the hash itself. So you can trust the
-contents of a tree, the same way you can trust the contents of a blob,
-but you don't know where those contents _came_ from.
+The structured objects can further have their structure and
+connectivity to other objects verified. This is generally done with
+the "git-fsck-cache" program, which generates a full dependency graph
+of all objects, and verifies their internal consistency (in addition
+to just verifying their superficial consistency through the hash).
+
+The object types in some more detail:
+
+Blob Object
+~~~~~~~~~~~
+A "blob" object is nothing but a binary blob of data, and doesn't
+refer to anything else. There is no signature or any other
+verification of the data, so while the object is consistent (it _is_
+indexed by its sha1 hash, so the data itself is certainly correct), it
+has absolutely no other attributes. No name associations, no
+permissions. It is purely a blob of data (i.e. normally "file
+contents").
+
+In particular, since the blob is entirely defined by its data, if two
+files in a directory tree (or in multiple different versions of the
+repository) have the same contents, they will share the same blob
+object. The object is totally independent of it's location in the
+directory tree, and renaming a file does not change the object that
+file is associated with in any way.
+
+A blob is created with link:git-write-blob.html[git-write-blob] and
+it's data can be accessed by link:git-cat-file.html[git-cat-file]
+
+Tree Object
+~~~~~~~~~~~
+The next hierarchical object type is the "tree" object. A tree object
+is a list of mode/name/blob data, sorted by name. Alternatively, the
+mode data may specify a directory mode, in which case instead of
+naming a blob, that name is associated with another TREE object.
+
+Like the "blob" object, a tree object is uniquely determined by the
+set contents, and so two separate but identical trees will always
+share the exact same object. This is true at all levels, i.e. it's
+true for a "leaf" tree (which does not refer to any other trees, only
+blobs) as well as for a whole subdirectory.
+
+For that reason a "tree" object is just a pure data abstraction: it
+has no history, no signatures, no verification of validity, except
+that since the contents are again protected by the hash itself, we can
+trust that the tree is immutable and its contents never change.
+
+So you can trust the contents of a tree to be valid, the same way you
+can trust the contents of a blob, but you don't know where those
+contents _came_ from.
Side note on trees: since a "tree" object is a sorted list of
"filename+content", you can create a diff between two trees without
-actually having to unpack two trees. Just ignore all common parts, and
-your diff will look right. In other words, you can effectively (and
-efficiently) tell the difference between any two random trees by O(n)
-where "n" is the size of the difference, rather than the size of the
-tree.
+actually having to unpack two trees. Just ignore all common parts,
+and your diff will look right. In other words, you can effectively
+(and efficiently) tell the difference between any two random trees by
+O(n) where "n" is the size of the difference, rather than the size of
+the tree.
Side note 2 on trees: since the name of a "blob" depends entirely and
-exclusively on its contents (ie there are no names or permissions
-involved), you can see trivial renames or permission changes by noticing
-that the blob stayed the same. However, renames with data changes need
-a smarter "diff" implementation.
-
-CHANGESET: The "changeset" object is an object that introduces the
-notion of history into the picture. In contrast to the other objects,
-it doesn't just describe the physical state of a tree, it describes how
-we got there, and why.
-
-A "changeset" is defined by the tree-object that it results in, the
-parent changesets (zero, one or more) that led up to that point, and a
-comment on what happened. Again, a changeset is not trusted per se:
+exclusively on its contents (i.e. there are no names or permissions
+involved), you can see trivial renames or permission changes by
+noticing that the blob stayed the same. However, renames with data
+changes need a smarter "diff" implementation.
+
+A tree is created with link:git-write-tree.html[git-write-tree] and
+it's data can be accessed by link:git-ls-tree.html[git-ls-tree]
+
+Commit Object
+~~~~~~~~~~~~~
+The "commit" object is an object that introduces the notion of
+history into the picture. In contrast to the other objects, it
+doesn't just describe the physical state of a tree, it describes how
+we got there, and why.
+
+A "commit" is defined by the tree-object that it results in, the
+parent commits (zero, one or more) that led up to that point, and a
+comment on what happened. Again, a commit is not trusted per se:
the contents are well-defined and "safe" due to the cryptographically
-strong signatures at all levels, but there is no reason to believe that
-the tree is "good" or that the merge information makes sense. The
-parents do not have to actually have any relationship with the result,
-for example.
-
-Note on changesets: unlike real SCM's, changesets do not contain rename
-information or file mode chane information. All of that is implicit in
-the trees involved (the result tree, and the result trees of the
-parents), and describing that makes no sense in this idiotic file
-manager.
-
-TRUST: The notion of "trust" is really outside the scope of "git", but
-it's worth noting a few things. First off, since everything is hashed
-with SHA1, you _can_ trust that an object is intact and has not been
-messed with by external sources. So the name of an object uniquely
-identifies a known state - just not a state that you may want to trust.
-
-Furthermore, since the SHA1 signature of a changeset refers to the
+strong signatures at all levels, but there is no reason to believe
+that the tree is "good" or that the merge information makes sense.
+The parents do not have to actually have any relationship with the
+result, for example.
+
+Note on commits: unlike real SCM's, commits do not contain
+rename information or file mode chane information. All of that is
+implicit in the trees involved (the result tree, and the result trees
+of the parents), and describing that makes no sense in this idiotic
+file manager.
+
+A commit is created with link:git-commit-tree.html[git-commit-tree] and
+it's data can be accessed by link:git-cat-file.html[git-cat-file]
+
+Trust
+~~~~~
+An aside on the notion of "trust". Trust is really outside the scope
+of "git", but it's worth noting a few things. First off, since
+everything is hashed with SHA1, you _can_ trust that an object is
+intact and has not been messed with by external sources. So the name
+of an object uniquely identifies a known state - just not a state that
+you may want to trust.
+
+Furthermore, since the SHA1 signature of a commit refers to the
SHA1 signatures of the tree it is associated with and the signatures
-of the parent, a single named changeset specifies uniquely a whole
-set of history, with full contents. You can't later fake any step of
-the way once you have the name of a changeset.
+of the parent, a single named commit specifies uniquely a whole set
+of history, with full contents. You can't later fake any step of the
+way once you have the name of a commit.
So to introduce some real trust in the system, the only thing you need
to do is to digitally sign just _one_ special note, which includes the
-name of a top-level changeset. Your digital signature shows others that
-you trust that changeset, and the immutability of the history of
-changesets tells others that they can trust the whole history.
-
-In other words, you can easily validate a whole archive by just sending
-out a single email that tells the people the name (SHA1 hash) of the top
-changeset, and digitally sign that email using something like GPG/PGP.
-
-In particular, you can also have a separate archive of "trust points" or
-tags, which document your (and other peoples) trust. You may, of
-course, archive these "certificates of trust" using "git" itself, but
-it's not something "git" does for you.
-
-Another way of saying the same thing: "git" itself only handles content
-integrity, the trust has to come from outside.
-
- Current Directory Cache (".dircache/index")
-
-The "current directory cache" is a simple binary file, which contains an
-efficient representation of a virtual directory content at some random
-time. It does so by a simple array that associates a set of names,
-dates, permissions and content (aka "blob") objects together. The cache
-is always kept ordered by name, and names are unique at any point in
-time, but the cache has no long-term meaning, and can be partially
-updated at any time.
-
-In particular, the "current directory cache" certainly does not need to
-be consistent with the current directory contents, but it has two very
-important attributes:
-
- (a) it can re-generate the full state it caches (not just the directory
- structure: through the "blob" object it can regenerate the data too)
-
- As a special case, there is a clear and unambiguous one-way mapping
- from a current directory cache to a "tree object", which can be
- efficiently created from just the current directory cache without
- actually looking at any other data. So a directory cache at any
- one time uniquely specifies one and only one "tree" object (but
- has additional data to make it easy to match up that tree object
- with what has happened in the directory)
-
-
-and
-
- (b) it has efficient methods for finding inconsistencies between that
- cached state ("tree object waiting to be instantiated") and the
- current state.
-
-Those are the two ONLY things that the directory cache does. It's a
+name of a top-level commit. Your digital signature shows others
+that you trust that commit, and the immutability of the history of
+commits tells others that they can trust the whole history.
+
+In other words, you can easily validate a whole archive by just
+sending out a single email that tells the people the name (SHA1 hash)
+of the top commit, and digitally sign that email using something
+like GPG/PGP.
+
+To assist in this, git also provides the tag object...
+
+Tag Object
+~~~~~~~~~~
+Git provides the "tag" object to simplify creating, managing and
+exchanging symbolic and signed tokens. The "tag" object at its
+simplest simply symbolically identifies another object by containing
+the sha1, type and symbolic name.
+
+However it can optionally contain additional signature information
+(which git doesn't care about as long as there's less than 8k of
+it). This can then be verified externally to git.
+
+Note that despite the tag features, "git" itself only handles content
+integrity; the trust framework (and signature provision and
+verification) has to come from outside.
+
+A tag is created with link:git-mktag.html[git-mktag] and
+it's data can be accessed by link:git-cat-file.html[git-cat-file]
+
+
+The "index" aka "Current Directory Cache"
+-----------------------------------------
+The index is a simple binary file, which contains an efficient
+representation of a virtual directory content at some random time. It
+does so by a simple array that associates a set of names, dates,
+permissions and content (aka "blob") objects together. The cache is
+always kept ordered by name, and names are unique (with a few very
+specific rules) at any point in time, but the cache has no long-term
+meaning, and can be partially updated at any time.
+
+In particular, the index certainly does not need to be consistent with
+the current directory contents (in fact, most operations will depend on
+different ways to make the index _not_ be consistent with the directory
+hierarchy), but it has three very important attributes:
+
+'(a) it can re-generate the full state it caches (not just the
+directory structure: it contains pointers to the "blob" objects so
+that it can regenerate the data too)'
+
+As a special case, there is a clear and unambiguous one-way mapping
+from a current directory cache to a "tree object", which can be
+efficiently created from just the current directory cache without
+actually looking at any other data. So a directory cache at any one
+time uniquely specifies one and only one "tree" object (but has
+additional data to make it easy to match up that tree object with what
+has happened in the directory)
+
+'(b) it has efficient methods for finding inconsistencies between that
+cached state ("tree object waiting to be instantiated") and the
+current state.'
+
+'(c) it can additionally efficiently represent information about merge
+conflicts between different tree objects, allowing each pathname to be
+associated with sufficient information about the trees involved that
+you can create a three-way merge between them.'
+
+Those are the three ONLY things that the directory cache does. It's a
cache, and the normal operation is to re-generate it completely from a
known tree object, or update/compare it with a live tree that is being
-developed. If you blow the directory cache away entirely, you haven't
-lost any information as long as you have the name of the tree that it
-described.
-
-(But directory caches can also have real information in them: in
-particular, they can have the representation of an intermediate tree
-that has not yet been instantiated. So they do have meaning and usage
-outside of caching - in one sense you can think of the current directory
-cache as being the "work in progress" towards a tree commit).
+developed. If you blow the directory cache away entirely, you generally
+haven't lost any information as long as you have the name of the tree
+that it described.
+
+At the same time, the directory index is at the same time also the
+staging area for creating new trees, and creating a new tree always
+involves a controlled modification of the index file. In particular,
+the index file can have the representation of an intermediate tree that
+has not yet been instantiated. So the index can be thought of as a
+write-back cache, which can contain dirty information that has not yet
+been written back to the backing store.
+
+
+
+The Workflow
+------------
+Generally, all "git" operations work on the index file. Some operations
+work *purely* on the index file (showing the current state of the
+index), but most operations move data to and from the index file. Either
+from the database or from the working directory. Thus there are four
+main combinations:
+
+1) working directory -> index
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+You update the index with information from the working directory with
+the link:git-update-cache.html[git-update-cache] command. You
+generally update the index information by just specifying the filename
+you want to update, like so:
+
+ git-update-cache filename
+
+but to avoid common mistakes with filename globbing etc, the command
+will not normally add totally new entries or remove old entries,
+i.e. it will normally just update existing cache entries.
+
+To tell git that yes, you really do realize that certain files no
+longer exist in the archive, or that new files should be added, you
+should use the "--remove" and "--add" flags respectively.
+
+NOTE! A "--remove" flag does _not_ mean that subsequent filenames will
+necessarily be removed: if the files still exist in your directory
+structure, the index will be updated with their new status, not
+removed. The only thing "--remove" means is that update-cache will be
+considering a removed file to be a valid thing, and if the file really
+does not exist any more, it will update the index accordingly.
+
+As a special case, you can also do "git-update-cache --refresh", which
+will refresh the "stat" information of each index to match the current
+stat information. It will _not_ update the object status itself, and
+it will only update the fields that are used to quickly test whether
+an object still matches its old backing store object.
+
+2) index -> object database
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+You write your current index file to a "tree" object with the program
+
+ git-write-tree
+
+that doesn't come with any options - it will just write out the
+current index into the set of tree objects that describe that state,
+and it will return the name of the resulting top-level tree. You can
+use that tree to re-generate the index at any time by going in the
+other direction:
+
+3) object database -> index
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+You read a "tree" file from the object database, and use that to
+populate (and overwrite - don't do this if your index contains any
+unsaved state that you might want to restore later!) your current
+index. Normal operation is just
+
+ git-read-tree <sha1 of tree>
+
+and your index file will now be equivalent to the tree that you saved
+earlier. However, that is only your _index_ file: your working
+directory contents have not been modified.
+
+4) index -> working directory
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+You update your working directory from the index by "checking out"
+files. This is not a very common operation, since normally you'd just
+keep your files updated, and rather than write to your working
+directory, you'd tell the index files about the changes in your
+working directory (i.e. "git-update-cache").
+
+However, if you decide to jump to a new version, or check out somebody
+else's version, or just restore a previous tree, you'd populate your
+index file with read-tree, and then you need to check out the result
+with
+ git-checkout-cache filename
+
+or, if you want to check out all of the index, use "-a".
+
+NOTE! git-checkout-cache normally refuses to overwrite old files, so
+if you have an old version of the tree already checked out, you will
+need to use the "-f" flag (_before_ the "-a" flag or the filename) to
+_force_ the checkout.
+
+
+Finally, there are a few odds and ends which are not purely moving
+from one representation to the other:
+
+5) Tying it all together
+~~~~~~~~~~~~~~~~~~~~~~~~
+To commit a tree you have instantiated with "git-write-tree", you'd
+create a "commit" object that refers to that tree and the history
+behind it - most notably the "parent" commits that preceded it in
+history.
+
+Normally a "commit" has one parent: the previous state of the tree
+before a certain change was made. However, sometimes it can have two
+or more parent commits, in which case we call it a "merge", due to the
+fact that such a commit brings together ("merges") two or more
+previous states represented by other commits.
+
+In other words, while a "tree" represents a particular directory state
+of a working directory, a "commit" represents that state in "time",
+and explains how we got there.
+
+You create a commit object by giving it the tree that describes the
+state at the time of the commit, and a list of parents:
+
+ git-commit-tree <tree> -p <parent> [-p <parent2> ..]
+
+and then giving the reason for the commit on stdin (either through
+redirection from a pipe or file, or by just typing it at the tty).
+
+git-commit-tree will return the name of the object that represents
+that commit, and you should save it away for later use. Normally,
+you'd commit a new "HEAD" state, and while git doesn't care where you
+save the note about that state, in practice we tend to just write the
+result to the file ".git/HEAD", so that we can always see what the
+last committed state was.
+
+6) Examining the data
+~~~~~~~~~~~~~~~~~~~~~
+
+You can examine the data represented in the object database and the
+index with various helper tools. For every object, you can use
+link:git-cat-file.html[git-cat-file] to examine details about the
+object:
+
+ git-cat-file -t <objectname>
+
+shows the type of the object, and once you have the type (which is
+usually implicit in where you find the object), you can use
+
+ git-cat-file blob|tree|commit <objectname>
+
+to show its contents. NOTE! Trees have binary content, and as a result
+there is a special helper for showing that content, called
+"git-ls-tree", which turns the binary content into a more easily
+readable form.
+
+It's especially instructive to look at "commit" objects, since those
+tend to be small and fairly self-explanatory. In particular, if you
+follow the convention of having the top commit name in ".git/HEAD",
+you can do
+
+ git-cat-file commit $(cat .git/HEAD)
+
+to see what the top commit was.
+
+7) Merging multiple trees
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Git helps you do a three-way merge, which you can expand to n-way by
+repeating the merge procedure arbitrary times until you finally
+"commit" the state. The normal situation is that you'd only do one
+three-way merge (two parents), and commit it, but if you like to, you
+can do multiple parents in one go.
+
+To do a three-way merge, you need the two sets of "commit" objects
+that you want to merge, use those to find the closest common parent (a
+third "commit" object), and then use those commit objects to find the
+state of the directory ("tree" object) at these points.
+
+To get the "base" for the merge, you first look up the common parent
+of two commits with
+
+ git-merge-base <commit1> <commit2>
+
+which will return you the commit they are both based on. You should
+now look up the "tree" objects of those commits, which you can easily
+do with (for example)
+
+ git-cat-file commit <commitname> | head -1
+
+since the tree object information is always the first line in a commit
+object.
+
+Once you know the three trees you are going to merge (the one
+"original" tree, aka the common case, and the two "result" trees, aka
+the branches you want to merge), you do a "merge" read into the
+index. This will throw away your old index contents, so you should
+make sure that you've committed those - in fact you would normally
+always do a merge against your last commit (which should thus match
+what you have in your current index anyway).
+
+To do the merge, do
+
+ git-read-tree -m <origtree> <target1tree> <target2tree>
+
+which will do all trivial merge operations for you directly in the
+index file, and you can just write the result out with
+"git-write-tree".
+
+NOTE! Because the merge is done in the index file, and not in your
+working directory, your working directory will no longer match your
+index. You can use "git-checkout-cache -f -a" to make the effect of
+the merge be seen in your working directory.
+
+NOTE2! Sadly, many merges aren't trivial. If there are files that have
+been added.moved or removed, or if both branches have modified the
+same file, you will be left with an index tree that contains "merge
+entries" in it. Such an index tree can _NOT_ be written out to a tree
+object, and you will have to resolve any such merge clashes using
+other tools before you can write out the result.
+
+
+[ fixme: talk about resolving merges here ]