Physics Andrew Lorimer

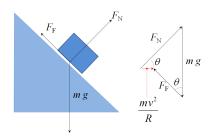
1 Motion

 $m/s \times 3.6 = km/h$

Inclined planes

 $F = mg\sin\theta - F_{\text{frict}} = ma$

Banked tracks



$$\theta = \tan^{-1} \frac{v^2}{ra}$$

 ΣF always acts towards centre (horizontally)

$$\Sigma F = F_{\text{norm}} + F_{\text{g}} = \frac{mv^2}{r} = mg \tan \theta$$
Design speed $v = \sqrt{gr \tan \theta}$

$$n \sin \theta = mv^2 \div r, \quad n \cos \theta = mg$$

Work and energy

 $W = Fx = \Delta \Sigma E \text{ (work)}$

 $E_K = \frac{1}{2}mv^2$ (kinetic)

 $E_G = mgh$ (potential)

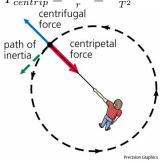
 $\Sigma E = \frac{1}{2}mv^2 + mgh$ (energy transfer)

Horizontal circular motion

$$\begin{split} v &= \frac{2\pi r}{T} \\ f &= \frac{1}{T}, \quad T = \frac{1}{f} \\ a_{centrip} &= \frac{v^2}{r} = \frac{4\pi^2 r}{T^2} \end{split}$$

 $\Sigma F, a$ towards centre, v tangential

$$F_{centrip} = \frac{mv^2}{r} = \frac{4\pi^2 rm}{T^2}$$
 centrifugal



Vertical circular motion

T = tension, e.g. circular pendulum $T + mg = \frac{mv^2}{r}$ at highest point $T - mg = \frac{mv^2}{r}$ at lowest point

Projectile motion

- horizontal component of velocity is constant if no air resistance
- vertical component affected by gravity: $a_y = -g$

$$v = \sqrt{v_x^2 + v_y^2} \qquad \text{(vectors)}$$

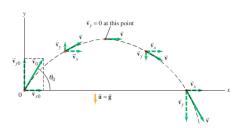
$$h = \frac{u^2 \sin \theta^2}{2g} \qquad \text{(max height)}$$

$$x = ut \cos \theta \qquad \text{(}\Delta x \text{ at } t\text{)}$$

$$y = ut \sin \theta - \frac{1}{2}gt^2 \qquad \text{(height at } t\text{)}$$

$$t = \frac{2u \sin \theta}{g} \qquad \text{(time of flight)}$$

$$d = \frac{v^2}{g} \sin \theta \qquad \text{(horiz. range)}$$



Pulley-mass system

 $a = \frac{m_2 g}{m_1 + m_2}$ where m_2 is suspended $\Sigma F = m_2 g - m_1 g = \Sigma ma$ (solve)

Graphs

• Force-time: $A = \Delta \rho$

• Force-disp: A = W

• Force-ext: m = k, $A = E_{spr}$

• Force-dist: $A = \Delta$ gpe

• Field-dist: $A = \Delta \operatorname{gpe} / \operatorname{kg}$

Hooke's law

$$F = -kx$$
elastic potential energy = $\frac{1}{2}kx^2$

$$x = \frac{2mg}{k}$$

Motion equations

$$v = u + at$$

$$x = \frac{1}{2}(v + u)t$$

$$a$$

$$x = ut + \frac{1}{2}at^{2}$$

$$v$$

$$x = vt - \frac{1}{2}at^{2}$$

$$u$$

$$v^{2} = u^{2} + 2ax$$

Momentum

 $\rho = mv$ impulse = $\Delta \rho$, $F\Delta t = m\Delta v$ $\Sigma m v_0 = \Sigma m v_1$ (conservation) $\Sigma E_{K \text{ before}} = \Sigma E_{K \text{ after}}$ if elastic n-body collisions: ρ of each body is independent

Relativity

Postulates

- 1. Laws of physics are constant in all intertial reference frames
- 2. Speed of light c is the same to all observers (Michelson-Morley)
- \therefore t must dilate as speed changes

Inertial reference frame a = 0Proper time $t_0 \mid \text{length } l_0 \text{ measured}$ by observer in same frame as events

Lorentz factor

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

 $t = t_0 \gamma$ (t longer in moving frame) $l = \frac{l_0}{2}$ (l contracts || v: shorter in moving frame)

 $m = m_0 \gamma \text{ (mass dilation)}$

$$v = c\sqrt{1 - \frac{1}{\gamma^2}}$$

Energy and work

$$E_0 = mc^2 \text{ (rest)}$$

 $E_{total} = E_K + E_{rest} = \gamma mc^2$
 $E_K = (\gamma 1)mc^2$
 $W = \Delta E = \Delta mc^2$

Relativistic momentum

$$\rho = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}} = \gamma mv = \gamma \rho_0$$

 $\rho \to \infty \text{ as } v \to c$

v=c is impossible (requires $E=\infty$)

$$v = \frac{\rho}{m\sqrt{1 + \frac{p^2}{m^2c^2}}}$$

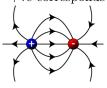
High-altitude muons

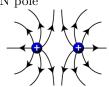
- t dilation more muons reach Earth than expected
- normal half-life $2.2 \,\mu s$ in stationary frame, $> 2.2 \,\mu s$ observed from Earth

3 Fields and power

Non-contact forces

- electric fields (dipoles & monopoles)
- magnetic fields (dipoles only)
- gravitational fields (monopoles only)
- monopoles: lines towards centre
- dipoles: field lines $+ \rightarrow -$ or $N \rightarrow S$ (or perpendicular to wire)
- closer field lines means larger force
- dot: out of page, cross: into page
- +ve corresponds to N pole





Gravity

$$F_g = G \frac{m_1 m_2}{r^2}$$
 (grav. force)

$$g = \frac{F_g}{m_2} = G \frac{m_1}{r^2} \qquad \text{(field of } m_1\text{)}$$

$$E_g = mg\Delta h$$
 (gpe)

$$W = \Delta E_q = Fx \qquad \text{(work)}$$

$$w = m(g - a)$$
 (app. weight)

Satellites

$$v = \sqrt{\frac{Gm_{\text{planet}}}{r}} = \sqrt{gr} = \frac{2\pi r}{T}$$

$$T = \frac{\sqrt{4\pi^2 r^3}}{GM}$$
 (period)

$$\sqrt[3]{\frac{GMT^2}{4\pi^2}}$$
 (radius)

Magnetic fields

- \bullet field strength B measured in tesla
- magnetic flux Φ measured in weber
- \bullet charge q measured in coulombs
- emf \mathcal{E} measured in volts

$$F = qvB$$
 $(F \text{ on moving } q)$

$$B = \frac{mv}{qr} \qquad \text{(field strength on e-)}$$

$$r = \frac{mv}{qB} \qquad \text{(radius of } q \text{ in } B\text{)}$$

if $B \not\perp A, \Phi \to 0$, if $B \parallel A, \Phi = 0$

Electric fields

$$F = qE$$
 (E = strength) • Series V shared within branch

$$F = k \frac{q_1 q_2}{r^2}$$
 (force between $q_{1,2}$)

$$E = k \frac{q}{r^2}$$
 (field on point charge)

$$E = \frac{V}{d}$$
 (field between plates)

$$F = BInl$$
 (force on a coil)

$$\Phi = B_{\perp}A \qquad \text{(magnetic flux)}$$

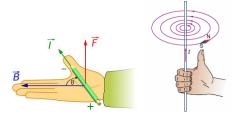
$$\mathcal{E} = -N \frac{\Delta \Phi}{\Delta t} \qquad \text{(induced emf)}$$

$$\frac{V_p}{V_s} = \frac{N_p}{N_s} = \frac{I_s}{I_n} \quad \text{(xfmr coil ratios)}$$

Lenz's law: $I_{\rm emf}$ opposes $\Delta\Phi$

Eddy currents: counter movement within a field

Right hand grip: thumb points to I (single wire) or N (solenoid / coil)



Flux-time graphs: $m \times n = \text{emf}$

Transformers: core strengthens & focuses Φ

Particle acceleration

 $1 \, \mathrm{eV} = 1.6 \times 10^{-19} \, \mathrm{J}$

e- accelerated with $x ext{ V}$ is given $x ext{ eV}$

$$W = \frac{1}{2}mv^2 = qV$$
 (field or points)

$$v = \sqrt{\frac{2qV}{m}}$$
 (velocity of particle)

Power transmission

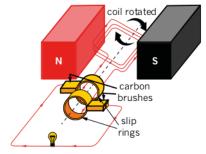
$$V_{\rm rms} = \frac{V_{\rm p \to p}}{\sqrt{2}}$$

$$P_{\rm loss} = \Delta V I = I^2 R = \frac{\Delta V^2}{R}$$

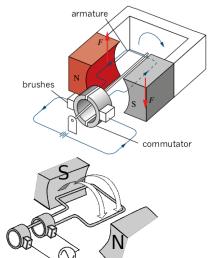
$$V_{\rm loss} = IR$$

Use high-V side for correct $|V_{dron}|$

- Parallel V is constant



Motors



F = 0 for front back of coil (parallel) **Polarisation** Any angle > 0 will produce force

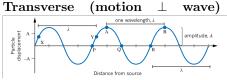
DC: split ring (two halves)

AC: slip ring (separate rings with constant contact)

\mathbf{Waves} 4

nodes: fixed on graph **amplitude:** max disp. from y = 0 ${f rarefactions}$ and ${f compressions}$ mechanical: transfer of energy without net transfer of matter

Longitudinal (motion || wave)



(period: time for one cycle) (speed: displacement / sec)

Doppler effect

When P_1 approaches P_2 , each wave w_n has slightly less distance to travel than w_{n-1} . w_n reaches observer sooner than w_{n-1} ("apparent" λ).

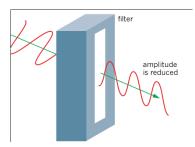
Interference

Standing waves - constructive int. at resonant freq

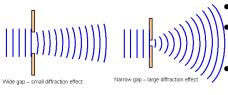
Harmonics

(λ for n^{th} harmonic) $\lambda = al \div n$ $f = nv \div al$ (f for n_{th} harmonic at length l and speed v)

where a = 2 for antinodes at both ends, a = 4 for antinodes at one end

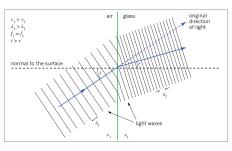


Diffraction



- Constructive: $pd = n\lambda, n \in \mathbb{Z}$
- Destructive: $pd = (n \frac{1}{2})\lambda, n \in \mathbb{Z}$
- Path difference: $\Delta x = \frac{\lambda l}{d}$ where l = distance from source to observer d = separation between each wavesource (e.g. slit) = $S_1 - S_2$
- significant diffraction when $\frac{\lambda}{\Delta x} \ge 1$

Refraction



When a medium changes character, energy is reflected, absorbed, and transmitted

angle of incidence θ_i = angle of reflec-

Critical angle $\theta_c = \sin^- \frac{1}{n_1}$

Snell's law $n_1 \sin \theta_1 = n_2 \sin \theta_2$

Light and Matter

Planck's equation

$$f = \frac{c}{\lambda}, \quad E = hf = \frac{hc}{\lambda} = \rho c$$

 $h = 6.63 \times 10^{-34} \text{ Js} = 4.14 \times 10^{-15} \text{ eVs}$
 $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$

Force of electrons

$$\begin{split} F &= \frac{2P_{\rm in}}{c} \\ \text{photons} \ / \ \text{sec} &= \frac{\text{total energy}}{\text{energy}} \ / \ \text{photon} \\ &= \frac{P_{\rm in} \lambda}{hc} = \frac{P_{\rm in}}{hf} \end{split}$$

Photoelectric effect

- V_{supply} does not affect photocurrent $V_{\text{sup}} > 0$: e- attracted to collector
- $V_{\text{sup}} < 0$: attracted to illuminated cathode, $I \to 0$
- \bullet v of depends on ionisation energy (shell)
- max current depends on intensity

Threshold frequency f_0

Minimum f for photoelectrons to be ejected. x-intercept of frequency vs E_K graph. if $f < f_0$, no photoelectrons are detected.

Work function ϕ

Minimum E required to release photoelectrons. Magnitude of y-intercept of frequency vs E_K graph. ϕ is determined by strength of bonding.

$$\phi = hf_0$$

Kinetic energy

 $E_{k-max} = hf - \phi$

voltage in circuit or stopping voltage $= \max E_K$ in eV equal to x-intercept of volts vs current graph (in eV)

Stopping potential V for min I

$$V = h_{\rm eV}(f - f_0)$$

De Broglie's theory

$$\lambda = \frac{h}{\rho} = \frac{h}{mv}$$

$$\rho = \frac{hf}{c} = \frac{h}{\lambda} = mv, \quad E = \rho c$$

- cannot confirm with double-slit (slit $< r_{\text{proton}})$
- confirmed by similar e- and x-ray diff patterns

X-ray electron interaction

- e- is only stable if $mvr = n\frac{h}{2\pi}$ where $n \in \mathbb{Z}$
- rearranging this, $2\pi r = n \frac{h}{mv} = n\lambda$ (circumference)
- if $2\pi r \neq n \frac{h}{mv}$, no standing wave
- if e- = x-ray diff patterns, $E_{\text{e-}} = \frac{\rho^2}{2m} = (\frac{h}{\lambda})^2 \div 2m$
- calculating h: $\lambda = \frac{h}{\rho}$

Spectral analysis

- $\Delta E = hf = \frac{hc}{\lambda}$ between ground / excited state
- E and f of photon: $E_2 E_1 = hf = \frac{hc}{\lambda}$
- Ionisation energy min E required to remove e-
- EMR is absorbed/emitted when $E_{\text{K-in}} = \Delta E_{\text{shells}}$ (i.e. $\lambda = \frac{hc}{\Delta E_{\text{shells}}}$)
- No. of lines include all possible states

Uncertainty principle

measuring location of an e- requires hitting it with a photon, but this causes ρ to be transferred to electron, moving it.

Wave-particle duaity

wave model

- cannot explain photoelectric effect
- f is irrelevant to photocurrent
- predicts delay between incidence and ejection
- speed depends on medium

particle model

- explains photoelectric effect
- rate of photoelectron release \propto intensity
- no time delay one photon releases one electron
- double slit: photons interact. interference pattern still appears when a dim light source is used so that only one photon can pass at a time
- light exerts force
- light bent by gravity
- quantised energy

6 Experimental design

Absolute uncertainty Δ

(same units as quantity)

$$\Delta(m) = \frac{\mathcal{E}(m)}{100} \cdot m$$

$$(A \pm \Delta A) + (B \pm \Delta A) = (A + B) \pm (\Delta A + \Delta B)$$

$$(A \pm \Delta A) - (B \pm \Delta A) = (A - B) \pm (\Delta A + \Delta B)$$

$$c(A \pm \Delta A) = cA \pm c\Delta A$$

Relative uncertainty \mathcal{E} (unitless)

$$\mathcal{E}(m) = \frac{\Delta(m)}{m} \cdot 100$$

$$(A \pm \mathcal{E}A) \cdot (B \pm \mathcal{E}B) = (A \cdot B) \pm (\mathcal{E}A + \mathcal{E}B)$$

$$(A \pm \mathcal{E}A) \div (B \pm \mathcal{E}B) = (A \div B) \pm (\mathcal{E}A + \mathcal{E}B)$$

$$(A \pm \mathcal{E}A)^n = (A^n \pm n\mathcal{E}A)$$

$$c(A \pm \mathcal{E}A) = cA \pm \mathcal{E}A$$

Uncertainty of a measurement is $\frac{1}{2}$ the smallest division

Precision - concordance of values

Accuracy - closeness to actual value

Random errors - unpredictable, re-

duced by more tests

Systematic errors - not reduced by more tests