02dc6299544a4a34c80e1cd128e089d3ba271bf3
1# Polynomials
2
3## Factorising
4
5#### Quadratics
6**Quadratics:** $x^2 + bx + c = (x+m)(x+n)$ where $mn=c$, $m+n=b$
7**Difference of squares:** $a^2 - b^2 = (a - b)(a + b)$
8**Perfect squares:** $a^2 \pm 2ab + b^2 = (a \pm b^2)$
9**Completing the square (monic):** $x^2+bx+c=(x+{b\over2})^2+c-{b^2\over4}$
10**Completing the square (non-monic):** $ax^2+bx+c=a(x-{b\over2a})^2+c-{b^2\over4a}$
11**Quadratic formula:** $x={{-b\pm\sqrt{b^2-4ac}}\over2a}$ where $\Delta=b^2-4ac$ (if $\Delta$ is a perfect square, rational roots)
12
13#### Cubics
14**Difference of cubes:** $a^3 - b^3 = (a-b)(a^2 + ab + b^2)$
15**Sum of cubes:** $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$
16**Perfect cubes:** $a^3 \pm 3a^2b + 3ab^2 \pm b^3 = (a \pm b)^3$
17
18## Linear and quadratic graphs
19
20$$y=mx+c, \quad {x \over a} + {y \over b}=1$$
21
22Parallel lines - $m_1 = m_2$
23Perpendicular lines - $m_1 \times m_2 = -1$
24
25
26## Cubic graphs
27
28$$y=a(x-b)^3 + c$$
29
30- $m=0$ at *stationary point of inflection*
31- in form $y=(x-a)^2(x-b)$, local max at $x=a$, local min at $x=b$
32- in form $y=a(x-b)(x-c)(x-d)$: $x$-intercepts at $b, c, d$
33
34
35## Quartic graphs
36
37$$y=ax^4$$
38
39$$=a(x-b)(x-c)(x-d)(x-e)$$
40
41$$=ax^4+cd^2 (c \ge 0)$$
42
43$$=ax^2(x-b)(x-c)$$
44
45$$=a(x-b)^2(x-c)^2$$
46
47$$=a(x-b)(x-c)^3$$
48
49where
50- $x$-intercepts at $x=b,c,d,e$
51
52## Literal equations
53
54Equations with multiple pronumerals. Solutions are expressed in terms of pronumerals (parameters))
55
56## Simultaneous equations (linear)
57
58- Unique solution - lines intersect at point
59- Infinitely many solutions - lines are equal
60- No solution - lines are parallel
61
62Solving in matrix form - use inverse $A^{-1}= {1 \over {ad-bc}}\begin{bmatrix}d & -b \\ -c & a\end{bmatrix}$. $A^{-1}$ exists for infinite solutions or no solutions ($ad-bc=0$), does not exist for unique solutions ($ad-bc \ne 0$).
63Or use `det` on CAS.