04a1903fb065179b93bf03755a91ea026bb3925f
   1\documentclass[a4paper]{article}
   2\usepackage[a4paper,margin=2cm]{geometry}
   3\usepackage{amsmath}
   4\usepackage{amssymb}
   5\usepackage{tcolorbox}
   6\usepackage{fancyhdr}
   7\usepackage{pgfplots}
   8\usepackage{tabularx}
   9
  10\pagestyle{fancy}
  11\fancyhead[LO,LE]{Unit 3 Methods Statistics}
  12\fancyhead[CO,CE]{Andrew Lorimer}
  13
  14\setlength\parindent{0pt}
  15
  16\begin{document}
  17
  18  \title{Statistics}
  19  \author{}
  20  \date{}
  21  \maketitle
  22
  23  \section{Probability}
  24
  25  \[ \Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B) \]
  26  \[ \Pr(A \cup B) = 0 \tag{mutually exclusive} \]
  27
  28  \section{Conditional probability}
  29
  30  \[ \Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)} \quad \text{where } \Pr(B) \ne 0 \]
  31  
  32  \[ \Pr(A) = \Pr(A|B) \cdot \Pr(B) + \Pr(A|B^{\prime}) \cdot \Pr(B^{\prime}) \tag{law of total probability} \]
  33  
  34  \[ \Pr(A \cap B) = \Pr(A|B) \times \Pr(B) \tag{multiplication theorem} \]
  35
  36  For independent events:
  37  
  38  \begin{itemize}
  39    \item \(\Pr(A \cap B) = \Pr(A) \times \Pr(B)\)
  40    \item \(\Pr(A|B) = \Pr(A)\)
  41    \item \(\Pr(B|A) = \Pr(B)\)
  42  \end{itemize}
  43
  44  \subsection{Discrete random distributions}
  45
  46  Any experiment or activity involving chance will have a probability associated with each result or \textit{outcome}. If the outcomes have a reference to \textbf{discrete numeric values} (outcomes that can be counted), and the result is unknown, then the activity is a \textit{discrete random probability distribution}.
  47
  48  \subsubsection{Discrete probability distributions}
  49  
  50  If an activity has outcomes whose probability values are all positive and less than one ($\implies 0 \le p(x) \le 1$), and for which the sum of all outcome probabilities is unity ($\implies \sum p(x) = 1$), then it is called a \textit{probability distribution} or \textit{probability mass} function.
  51
  52  \begin{itemize}
  53    \item \textbf{Probability distribution graph} - a series of points on a cartesian axis representing results of outcomes. $\Pr(X=x)$ is on $y$-axis, $x$ is on $x$ axis.
  54    \item \textbf{Mean $\mu$} - measure of central tendency. \textit{Balance point} or \textit{expected value} of a distribution. Centre of a symmetrical distribution.
  55    \item \textbf{Variance $\sigma^2$} - measure of spread of data around the mean. Not the same magnitude as the original data. Represented by $\sigma^2=\operatorname{Var}(x) = \sum (x=\mu)^2 \times p(x) = \sum (x-\mu)^2 \times \Pr(X=x)$. Alternatively: $\sigma^2 = \operatorname{Var}(X) = \sum x^2 \times p(x) - \mu^2$
  56    \item \textbf{Standard deviation $\sigma$} - measure of spread in the original magnitude of the data. Found by taking square root of the variance: $\sigma =\operatorname{sd}(X)=\sqrt{\operatorname{Var}(X)}$
  57  \end{itemize}
  58
  59\end{document}