0525085edb4a24ea2b82239d61b478374fc9ce3b
   1\documentclass[a4paper]{article}
   2\usepackage[a4paper,margin=2cm]{geometry}
   3\usepackage{multicol}
   4\usepackage{dblfloatfix}
   5\usepackage{multirow}
   6\usepackage{amsmath}
   7\usepackage{amssymb}
   8\usepackage{harpoon}
   9\usepackage{tabularx}
  10\usepackage{makecell}
  11\usepackage{enumitem}
  12\usepackage[obeyspaces]{url}
  13\usepackage[dvipsnames, table]{xcolor}
  14\usepackage{blindtext}
  15\usepackage{graphicx}
  16\usepackage{wrapfig}
  17\usepackage{tikz}
  18\usepackage{tkz-fct}
  19\usepackage{tikz-3dplot}
  20\usepackage{pgfplots}
  21\usetikzlibrary{arrows,
  22    decorations,
  23    decorations.markings,
  24    decorations.text,
  25    scopes
  26}
  27\usetikzlibrary{datavisualization.formats.functions}
  28\usetikzlibrary{decorations.markings}
  29\usepgflibrary{arrows.meta}
  30\usetikzlibrary{decorations.markings}
  31\usepgflibrary{arrows.meta}
  32\usepackage{pst-plot}
  33\psset{dimen=monkey,fillstyle=solid,opacity=.5}
  34\def\object{%
  35    \psframe[linestyle=none,fillcolor=blue](-2,-1)(2,1)
  36    \psaxes[linecolor=gray,labels=none,ticks=none]{->}(0,0)(-3,-3)(3,2)[$x$,0][$y$,90]
  37    \rput{*0}{%
  38        \psline{->}(0,-2)%
  39        \uput[-90]{*0}(0,-2){$\vec{w}$}}
  40}
  41
  42\usetikzlibrary{calc}
  43\usetikzlibrary{angles}
  44\usetikzlibrary{datavisualization.formats.functions}
  45\usetikzlibrary{decorations.markings}
  46\usepgflibrary{arrows.meta}
  47\usepackage{fancyhdr}
  48\pagestyle{fancy}
  49\fancyhead[LO,LE]{Year 12 Specialist}
  50\fancyhead[CO,CE]{Andrew Lorimer}
  51\usepackage{mathtools}
  52\usepackage{xcolor} % used only to show the phantomed stuff
  53\renewcommand\hphantom[1]{{\color[gray]{.6}#1}} % comment out!
  54\setlength\fboxsep{0pt} \setlength\fboxrule{.2pt} % for the \fboxes
  55\newcommand*\leftlap[3][\,]{#1\hphantom{#2}\mathllap{#3}}
  56\newcommand*\rightlap[2]{\mathrlap{#2}\hphantom{#1}}
  57\newcolumntype{L}[1]{>{\hsize=#1\hsize\raggedright\arraybackslash}X}%
  58\newcolumntype{R}[1]{>{\hsize=#1\hsize\raggedleft\arraybackslash}X}%
  59\definecolor{cas}{HTML}{e6f0fe}
  60\definecolor{important}{HTML}{fc9871}
  61\definecolor{dark-gray}{gray}{0.2}
  62\linespread{1.5}
  63\newcommand{\midarrow}{\tikz \draw[-triangle 90] (0,0) -- +(.1,0);}
  64\newcommand{\tg}{\mathop{\mathrm{tg}}}
  65\newcommand{\cotg}{\mathop{\mathrm{cotg}}}
  66\newcommand{\arctg}{\mathop{\mathrm{arctg}}}
  67\newcommand{\arccotg}{\mathop{\mathrm{arccotg}}}
  68\pgfplotsset{every axis/.append style={
  69  axis x line=middle,    % put the x axis in the middle
  70  axis y line=middle,    % put the y axis in the middle
  71  axis line style={->}, % arrows on the axis
  72  xlabel={$x$},          % default put x on x-axis
  73  ylabel={$y$},          % default put y on y-axis
  74}}
  75\usepackage{tcolorbox}
  76\newtcolorbox{warning}{colback=white!90!black, leftrule=3mm, colframe=important, coltext=important, fontupper=\sffamily\bfseries}
  77\newtcolorbox{cas}{colframe=cas!75!black, title=On CAS, left*=3mm}
  78\usepackage{keystroke}
  79\usepackage{listings}
  80\usepackage{mathtools}
  81\pgfplotsset{compat=1.16}
  82\usepackage{subfiles}
  83\usepackage{import}
  84\setlength{\parindent}{0pt}
  85\begin{document}
  86
  87\begin{multicols}{2}
  88
  89  \section{Complex numbers}
  90
  91  \[\mathbb{C}=\{a+bi:a,b\in\mathbb{R}\}\]
  92
  93  \begin{align*}
  94    \text{Cartesian form: } & a+bi\\
  95    \text{Polar form: } & r\operatorname{cis}\theta
  96  \end{align*}
  97
  98  \subsection*{Operations}
  99
 100  \definecolor{shade1}{HTML}{ffffff}
 101  \definecolor{shade2}{HTML}{e6f2ff}
 102  \definecolor{shade3}{HTML}{cce2ff}
 103  \begin{tabularx}{\columnwidth}{r|X|X}
 104    & \textbf{Cartesian} & \textbf{Polar} \\
 105    \hline
 106    \(z_1 \pm z_2\) & \((a \pm c)(b \pm d)i\) & convert to \(a+bi\)\\
 107    \hline
 108    \(+k \times z\) & \multirow{2}{*}{\(ka \pm kbi\)} & \(kr\operatorname{cis} \theta\)\\
 109    \cline{1-1}\cline{3-3}
 110    \(-k \times z\) & & \(kr \operatorname{cis}(\theta\pm \pi)\)\\
 111    \hline
 112    \(z_1 \cdot z_2\) & \(ac-bd+(ad+bc)i\) & \(r_1r_2 \operatorname{cis}(\theta_1 + \theta_2)\)\\
 113    \hline
 114    \(z_1 \div z_2\) & \((z_1 \overline{z_2}) \div |z_2|^2\) & \(\left(\frac{r_1}{r_2}\right) \operatorname{cis}(\theta_1 - \theta_2)\)
 115  \end{tabularx}
 116
 117  \subsubsection*{Scalar multiplication in polar form}
 118
 119  For \(k \in \mathbb{R}^+\):
 120  \[k\left(r \operatorname{cis}\theta\right)=kr \operatorname{cis}\theta\]
 121
 122  \noindent For \(k \in \mathbb{R}^-\):
 123  \[k\left(r \operatorname{cis}\theta\right)=kr \operatorname{cis}\left(\begin{cases}\theta - \pi & |0<\operatorname{Arg}(z)\le \pi \\ \theta + \pi & |-\pi<\operatorname{Arg}(z)\le 0\end{cases}\right)\]
 124
 125    \subsection*{Conjugate}
 126
 127    \begin{align*}
 128      \overline{z} &= a \mp bi\\
 129      &= r \operatorname{cis}(-\theta)
 130    \end{align*}
 131
 132    \noindent \colorbox{cas}{On CAS: \texttt{conjg(a+bi)}}
 133
 134    \subsubsection*{Properties}
 135
 136    \begin{align*}
 137      \overline{z_1 \pm z_2} &= \overline{z_1}\pm\overline{z_2}\\
 138      \overline{z_1 \cdot z_2} &= \overline{z_1}\cdot\overline{z_2}\\
 139      \overline{kz} &= k\overline{z} \quad | \quad k \in \mathbb{R}\\
 140      z\overline{z} &= (a+bi)(a-bi)\\
 141      &= a^2 + b^2\\
 142      &= |z|^2
 143    \end{align*}
 144
 145    \subsection*{Modulus}
 146
 147    \[|z|=|\vec{Oz}|=\sqrt{a^2 + b^2}\]
 148
 149    \subsubsection*{Properties}
 150
 151    \begin{align*}
 152      |z_1z_2|&=|z_1||z_2|\\
 153      \left|\frac{z_1}{z_2}\right|&=\frac{|z_1|}{|z_2|}\\
 154      |z_1+z_2|&\le|z_1|+|z_2|
 155    \end{align*}
 156
 157    \subsection*{Multiplicative inverse}
 158
 159    \begin{align*}
 160      z^{-1}&=\frac{a-bi}{a^2+b^2}\\
 161      &=\frac{\overline{z}}{|z|^2}a\\
 162      &=r \operatorname{cis}(-\theta)
 163    \end{align*}
 164
 165    \subsection*{Dividing over \(\mathbb{C}\)}
 166
 167    \begin{align*}
 168      \frac{z_1}{z_2}&=z_1z_2^{-1}\\
 169      &=\frac{z_1\overline{z_2}}{|z_2|^2}\\
 170      &=\frac{(a+bi)(c-di)}{c^2+d^2}\\
 171      & \qquad \text{(rationalise denominator)}
 172    \end{align*}
 173
 174    \subsection*{Polar form}
 175
 176    \begin{align*}
 177      z&=r\operatorname{cis}\theta\\
 178      &=r(\cos \theta + i \sin \theta)
 179    \end{align*}
 180
 181    \begin{itemize}
 182      \item{\(r=|z|=\sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}\)}
 183      \item{\(\theta = \operatorname{arg}(z)\) \quad \colorbox{cas}{On CAS: \texttt{arg(a+bi)}}}
 184      \item{\(\operatorname{Arg}(z) \in (-\pi,\pi)\) \quad \bf{(principal argument)}}
 185      \item{\colorbox{cas}{Convert on CAS:}\\ \verb|compToTrig(a+bi)| \(\iff\) \verb|cExpand{r·cisX}|}
 186      \item{Multiple representations:\\\(r\operatorname{cis}\theta=r\operatorname{cis}(\theta+2n\pi)\) with \(n \in \mathbb{Z}\) revolutions}
 187      \item{\(\operatorname{cis}\pi=-1,\qquad \operatorname{cis}0=1\)}
 188    \end{itemize}
 189
 190    \subsection*{de Moivres' theorem}
 191
 192    \[(r \operatorname{cis} \theta)^n = r^n \operatorname{cis}(n\theta) \text{ where } n \in \mathbb{Z}\]
 193
 194    \subsection*{Complex polynomials}
 195
 196    Include \(\pm\) for all solutions, incl. imaginary
 197
 198    \begin{tabularx}{\columnwidth}{ R{0.55} X  }
 199      \hline
 200      Sum of squares & \(\begin{aligned} 
 201        z^2 + a^2 &= z^2-(ai)^2\\
 202      &= (z+ai)(z-ai) \end{aligned}\) \\
 203      \hline
 204      Sum of cubes & \(a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)\)\\
 205      \hline
 206      Division & \(P(z)=D(z)Q(z)+R(z)\) \\
 207      \hline
 208      Remainder theorem & Let \(\alpha \in \mathbb{C}\). Remainder of \(P(z) \div (z-\alpha)\) is \(P(\alpha)\)\\
 209      \hline
 210      Factor theorem & \(z-\alpha\) is a factor of \(P(z) \iff P(\alpha)=0\) for \(\alpha \in \mathbb{C}\)\\
 211      \hline
 212      Conjugate root theorem & \(P(z)=0 \text{ at } z=a\pm bi\) (\(\implies\) both \(z_1\) and \(\overline{z_1}\) are solutions)\\
 213      \hline
 214    \end{tabularx}
 215
 216    \subsection*{\(n\)th roots}
 217
 218    \(n\)th roots of \(z=r\operatorname{cis}\theta\) are:
 219
 220    \[z = r^{\frac{1}{n}} \operatorname{cis}\left(\frac{\theta+2k\pi}{n}\right)\]
 221
 222    \begin{itemize}
 223
 224      \item{Same modulus for all solutions}
 225      \item{Arguments separated by \(\frac{2\pi}{n} \therefore\) there are \(n\) roots}
 226      \item{If one square root is \(a+bi\), the other is \(-a-bi\)}
 227      \item{Give one implicit \(n\)th root \(z_1\), function is \(z=z_1^n\)}
 228      \item{Solutions of \(z^n=a\) where \(a \in \mathbb{C}\) lie on the circle \(x^2+y^2=\left(|a|^{\frac{1}{n}}\right)^2\) \quad (intervals of \(\frac{2\pi}{n}\))}
 229    \end{itemize}
 230
 231    \noindent For \(0=az^2+bz+c\), use quadratic formula:
 232
 233    \[z=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\]
 234
 235    \subsection*{Fundamental theorem of algebra}
 236
 237    A polynomial of degree \(n\) can be factorised into \(n\) linear factors in \(\mathbb{C}\):
 238
 239    \[\implies P(z)=a_n(z-\alpha_1)(z-\alpha_2)(z-\alpha_3)\dots(z-\alpha_n)\]
 240    \[\text{ where } \alpha_1,\alpha_2,\alpha_3,\dots,\alpha_n \in \mathbb{C}\]
 241
 242    \subsection*{Argand planes}
 243
 244    \begin{center}\begin{tikzpicture}[scale=2]
 245      \draw [->] (-0.2,0) -- (1.5,0) node [right]  {$\operatorname{Re}(z)$};
 246      \draw [->] (0,-0.2) -- (0,1.5) node [above] {$\operatorname{Im}(z)$};
 247      \coordinate (P) at (1,1);
 248      \coordinate (a) at (1,0);
 249      \coordinate (b) at (0,1);
 250      \coordinate (O) at (0,0);
 251      \draw (0,0) -- (P) node[pos=0.5, above left]{\(r\)} node[pos=1, right]{\(\begin{aligned}z&=a+bi\\&=r\operatorname{cis}\theta\end{aligned}\)};
 252        \draw [gray, dashed] (1,1) -- (1,0) node[black, pos=1, below]{\(a\)};
 253        \draw [gray, dashed] (1,1) -- (0,1) node[black, pos=1, left]{\(b\)};
 254        \begin{scope}
 255          \path[clip] (O) -- (P) -- (a);
 256          \fill[red, opacity=0.5, draw=black] (O) circle (2mm);
 257          \node at ($(O)+(20:3mm)$) {$\theta$};
 258        \end{scope}
 259        \filldraw (P) circle (0.5pt);
 260    \end{tikzpicture}\end{center}
 261
 262    \begin{itemize}
 263      \item{Multiplication by \(i \implies\) CCW rotation of \(\frac{\pi}{2}\)}
 264      \item{Addition: \(z_1 + z_2 \equiv\) \overrightharp{\(Oz_1\)} + \overrightharp{\(Oz_2\)}}
 265    \end{itemize}
 266
 267    \subsection*{Sketching complex graphs}
 268
 269    \subsubsection*{Linear}
 270
 271    \begin{itemize}
 272      \item{\(\operatorname{Re}(z)=c\) or \(\operatorname{Im}(z)=c\) (perpendicular bisector)}
 273      \item{\(\operatorname{Im}(z)=m\operatorname{Re}(z)\)}
 274      \item{\(|z+a|=|z+b| \implies 2(a-b)x=b^2-a^2\)\\Geometric: equidistant from \(a,b\)}
 275    \end{itemize}
 276
 277    \subsubsection*{Circles}
 278
 279    \begin{itemize}
 280      \item \(|z-z_1|^2=c^2|z_2+2|^2\)
 281      \item \(|z-(a+bi)|=c \implies (x-a)^2+_(y-b)^2=c^2\)
 282    \end{itemize}
 283
 284    \noindent \textbf{Loci} \qquad \(\operatorname{Arg}(z)<\theta\)
 285
 286    \begin{center}\begin{tikzpicture}[scale=2,mydot/.style={circle, fill=white, draw, outer sep=0pt, inner sep=1.5pt}]
 287      \draw [->] (0,0) -- (1,0) node [right]  {$\operatorname{Re}(z)$};
 288      \draw [->] (0,-0.5) -- (0,1) node [above] {$\operatorname{Im}(z)$};
 289      \draw [<-, dashed, thick, blue] (-1,0) -- (0,0);
 290      \draw [->, thick, blue] (0,0) -- (1,1);
 291      \fill [gray, opacity=0.2, domain=-1:1, variable=\x] (-1,-0.5) -- (-1,0) -- (0, 0) -- (1,1) -- (1,-0.5) -- cycle;
 292      \begin{scope}
 293        \path[clip] (0,0) -- (1,1) -- (1,0);
 294        \fill[red, opacity=0.5, draw=black] (0,0) circle (2mm);
 295        \node at ($(0,0)+(20:3mm)$) {$\frac{\pi}{4}$};
 296      \end{scope}
 297      \node [font=\footnotesize] at (0.5,-0.25) {\(\operatorname{Arg}(z)\le\frac{\pi}{4}\)};
 298      \node [blue, mydot] {};
 299    \end{tikzpicture}\end{center}
 300
 301    \noindent \textbf{Rays} \qquad \(\operatorname{Arg}(z-b)=\theta\)
 302
 303    \begin{center}\begin{tikzpicture}[scale=2,mydot/.style={circle, fill=white, draw, outer sep=0pt, inner sep=1.5pt}]
 304      \draw [->] (-0.75,0) -- (1.5,0) node [right]  {$\operatorname{Re}(z)$};
 305      \draw [->] (0,-1) -- (0,1) node [above] {$\operatorname{Im}(z)$};
 306      \draw [->, thick, brown] (-0.25,0) -- (-0.75,-1);
 307      \node [above, font=\footnotesize] at (-0.25,0) {\(\frac{1}{4}\)};
 308      \begin{scope}
 309        \path[clip] (-0.25,0) -- (-0.75,-1) -- (0,0);
 310        \fill[orange, opacity=0.5, draw=black] (-0.25,0) circle (2mm);
 311      \end{scope}
 312      \node at (-0.08,-0.3) {\(\frac{\pi}{8}\)};
 313      \node [font=\footnotesize, left] at (-0.75,-1) {\(\operatorname{Arg}(z+\frac{1}{4})=\frac{\pi}{8}\)};
 314      \node [brown, mydot] at (-0.25,0) {};
 315      \draw [<->, thick, green] (0,-1) -- (1.5,0.5) node [pos=0.25, black, font=\footnotesize, right] {\(|z-2|=|z-(1+i)|\)};
 316      \node [left, font=\footnotesize] at (0,-1) {\(-1\)};
 317      \node [below, font=\footnotesize] at (1,0) {\(1\)};
 318    \end{tikzpicture}\end{center}
 319
 320    \section{Vectors}
 321    \begin{center}\begin{tikzpicture}
 322      \draw [->] (-0.5,0) -- (3,0) node [right]  {\(x\)};
 323      \draw [->] (0,-0.5) -- (0,3) node [above] {\(y\)};
 324      \draw [orange, ->, thick] (0.5,0.5) -- (2.5,2.5) node [pos=0.5, above] {\(\vec{u}\)};
 325      \begin{scope}[very thick, every node/.style={sloped,allow upside down}]
 326        \draw [gray, dashed, thick] (0.5,0.5) -- (2.5,0.5) node [pos=0.5] {\midarrow} node[black, pos=0.5, below]{\(x\vec{i}\)};
 327        \draw [gray, dashed, thick] (2.5,0.5) -- (2.5,2.5) node [pos=0.5] {\midarrow};
 328      \end{scope}
 329      \node[black, right] at (2.5,1.5) {\(y\vec{j}\)};
 330    \end{tikzpicture}\end{center}
 331    \subsection*{Column notation}
 332
 333    \[\begin{bmatrix}x\\ y \end{bmatrix} \iff x\boldsymbol{i} + y\boldsymbol{j}\]
 334      \(\begin{bmatrix}x_2-x_1\\ y_2-y_1 \end{bmatrix}\) \quad between \(A(x_1,y_1), \> B(x_2,y_2)\)
 335
 336        \subsection*{Scalar multiplication}
 337
 338        \[k\cdot (x\boldsymbol{i}+y\boldsymbol{j})=kx\boldsymbol{i}+ky\boldsymbol{j}\]
 339
 340        \noindent For \(k \in \mathbb{R}^-\), direction is reversed
 341
 342        \subsection*{Vector addition}
 343        \begin{center}\begin{tikzpicture}[scale=1]
 344          \coordinate (A) at (0,0);
 345          \coordinate (B) at (2,2);
 346          \draw [->, thick, red] (0,0) -- (2,2) node [pos=0.5, below right] {\(\vec{u}=2\vec{i}+2\vec{j}\)};
 347          \draw [->, thick, blue] (2,2) -- (1,4) node [pos=0.5, above right] {\(\vec{v}=-\vec{i}+2\vec{j}\)};
 348          \draw [->, thick, orange] (0,0) -- (1,4) node [pos=0.5, left] {\(\vec{u}+\vec{v}=\vec{i}+4\vec{j}\)};
 349        \end{tikzpicture}\end{center}
 350
 351        \[(x\boldsymbol{i}+y\boldsymbol{j}) \pm (a\boldsymbol{i}+b\boldsymbol{j})=(x \pm a)\boldsymbol{i}+(y \pm b)\boldsymbol{j}\]
 352
 353        \begin{itemize}
 354          \item Draw each vector head to tail then join lines
 355          \item Addition is commutative (parallelogram)
 356          \item \(\boldsymbol{u}-\boldsymbol{v}=\boldsymbol{u}+(-\boldsymbol{v}) \implies \overrightharp{AB}=\boldsymbol{b}-\boldsymbol{a}\)
 357        \end{itemize}
 358
 359        \subsection*{Magnitude}
 360
 361        \[|(x\boldsymbol{i} + y\boldsymbol{j})|=\sqrt{x^2+y^2}\]
 362
 363        \subsection*{Parallel vectors}
 364
 365        \[\boldsymbol{u} || \boldsymbol{v} \iff \boldsymbol{u} = k \boldsymbol{v} \text{ where } k \in \mathbb{R} \setminus \{0\}\]
 366
 367        For parallel vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\):\\
 368        \[\boldsymbol{a \cdot b}=\begin{cases}
 369          |\boldsymbol{a}||\boldsymbol{b}| \hspace{2.8em} \text{if same direction}\\
 370          -|\boldsymbol{a}||\boldsymbol{b}| \hspace{2em} \text{if opposite directions}
 371        \end{cases}\]
 372        %\includegraphics[width=0.2,height=\textheight]{graphics/parallelogram-vectors.jpg}
 373        %\includegraphics[width=1]{graphics/vector-subtraction.jpg}
 374
 375        \subsection*{Perpendicular vectors}
 376
 377        \[\boldsymbol{a} \perp \boldsymbol{b} \iff \boldsymbol{a} \cdot \boldsymbol{b} = 0\ \quad \text{(since \(\cos 90 = 0\))}\]
 378
 379        \subsection*{Unit vector \(|\hat{\boldsymbol{a}}|=1\)}
 380        \[\begin{split}\hat{\boldsymbol{a}} & = {\frac{1}{|\boldsymbol{a}|}}\boldsymbol{a} \\ & = \boldsymbol{a} \cdot {|\boldsymbol{a}|}\end{split}\]
 381
 382          \subsection*{Scalar product \(\boldsymbol{a} \cdot \boldsymbol{b}\)}
 383
 384
 385          \begin{center}\begin{tikzpicture}[scale=2]
 386            \draw [->] (0,0) -- (1,0.5) node [pos=0.5, above left] {\(\boldsymbol{b}\)};
 387            \draw [->] (0,0) -- (1,0) node [pos=0.5, below] {\(\boldsymbol{a}\)};
 388            \begin{scope}
 389              \path[clip] (1,0.5) -- (1,0) -- (0,0);
 390              \fill[orange, opacity=0.5, draw=black] (0,0) circle (2mm);
 391              \node at ($(0,0)+(15:4mm)$) {\(\theta\)};
 392            \end{scope}
 393          \end{tikzpicture}\end{center}
 394          \begin{align*}\boldsymbol{a} \cdot \boldsymbol{b} &= a_1 b_1 + a_2 b_2 \\  &= |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta \\ &\quad (\> 0 \le \theta \le \pi) \text{ - from cosine rule}\end{align*}
 395            \noindent\colorbox{cas}{On CAS: \texttt{dotP({[}a\ b\ c{]},\ {[}d\ e\ f{]})}}
 396
 397            \subsubsection*{Properties}
 398
 399            \begin{enumerate}
 400              \item
 401                \(k(\boldsymbol{a\cdot b})=(k\boldsymbol{a})\cdot \boldsymbol{b}=\boldsymbol{a}\cdot (k\boldsymbol{b})\)
 402              \item
 403                \(\boldsymbol{a \cdot 0}=0\)
 404              \item
 405                \(\boldsymbol{a} \cdot (\boldsymbol{b} + \boldsymbol{c})=\boldsymbol{a} \cdot \boldsymbol{b} + \boldsymbol{a} \cdot \boldsymbol{c}\)
 406              \item
 407                \(\boldsymbol{i \cdot i} = \boldsymbol{j \cdot j} = \boldsymbol{k \cdot k}= 1\)
 408              \item
 409                \(\boldsymbol{a} \cdot \boldsymbol{b} = 0 \quad \implies \quad \boldsymbol{a} \perp \boldsymbol{b}\)
 410              \item
 411                \(\boldsymbol{a \cdot a} = |\boldsymbol{a}|^2 = a^2\)
 412            \end{enumerate}
 413
 414            \subsection*{Angle between vectors}
 415
 416            \[\cos \theta = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}| |\boldsymbol{b}|} = \frac{a_1 b_1 + a_2 b_2}{|\boldsymbol{a}| |\boldsymbol{b}|}\]
 417
 418            \noindent \colorbox{cas}{On CAS:} \texttt{angle([a b c], [a b c])}
 419
 420            (Action \(\rightarrow\) Vector \(\rightarrow\)Angle)
 421
 422            \subsection*{Angle between vector and axis}
 423
 424            \noindent For\(\boldsymbol{a} = a_1 \boldsymbol{i} + a_2 \boldsymbol{j} + a_3 \boldsymbol{k}\)
 425            which makes angles \(\alpha, \beta, \gamma\) with positive side of
 426            \(x, y, z\) axes:
 427            \[\cos \alpha = \frac{a_1}{|\boldsymbol{a}|}, \quad \cos \beta = \frac{a_2}{|\boldsymbol{a}|}, \quad \cos \gamma = \frac{a_3}{|\boldsymbol{a}|}\]
 428
 429            \noindent \colorbox{cas}{On CAS:} \texttt{angle({[}a\ b\ c{]},\ {[}1\ 0\ 0{]})}\\for angle
 430            between \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) and
 431            \(x\)-axis
 432
 433            \subsection*{Projections \& resolutes}
 434
 435            \begin{tikzpicture}[scale=3]
 436              \draw [->, purple] (0,0) -- (1,0.5) node [pos=0.5, above left] {\(\boldsymbol{a}\)};
 437              \draw [->, orange] (0,0) -- (1,0) node [pos=0.5, below] {\(\boldsymbol{u}\)};
 438              \draw [->, blue] (1,0) -- (2,0) node [pos=0.5, below] {\(\boldsymbol{b}\)};
 439              \begin{scope}
 440                \path[clip] (1,0.5) -- (1,0) -- (0,0);
 441                \fill[orange, opacity=0.5, draw=black] (0,0) circle (2mm);
 442                \node at ($(0,0)+(15:4mm)$) {\(\theta\)};
 443              \end{scope}
 444              \begin{scope}[very thick, every node/.style={sloped,allow upside down}]
 445                \draw [gray, dashed, thick] (1,0) -- (1,0.5) node [pos=0.5] {\midarrow} node[black, pos=0.5, right, rotate=-90]{\(\boldsymbol{w}\)};
 446              \end{scope}
 447              \draw (0,0) coordinate (O)
 448              (1,0) coordinate (A)
 449              (1,0.5) coordinate (B)
 450              pic [draw,red,angle radius=2mm] {right angle = O--A--B};
 451            \end{tikzpicture}
 452
 453            \subsubsection*{\(\parallel\boldsymbol{b}\) (vector projection/resolute)}
 454
 455            \begin{align*}
 456              \boldsymbol{u} & = \frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|^2}\boldsymbol{b} \\
 457              & = \left(\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|}\right)\left(\frac{\boldsymbol{b}}{|\boldsymbol{b}|}\right) \\
 458              & = (\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}
 459            \end{align*}
 460
 461            \subsubsection*{\(\perp\boldsymbol{b}\) (perpendicular projection)}
 462            \[\boldsymbol{w} = \boldsymbol{a} - \boldsymbol{u}\]
 463
 464            \subsubsection*{\(|\boldsymbol{u}|\) (scalar projection/resolute)}
 465            \begin{align*}
 466              s &= |\boldsymbol{u}|\\
 467              &= \boldsymbol{a} \cdot \hat{\boldsymbol{b}}\\
 468              &=\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|}\\
 469              &= |\boldsymbol{a}| \cos \theta
 470            \end{align*}
 471
 472            \subsubsection*{Rectangular (\(\parallel,\perp\)) components}
 473
 474            \[\boldsymbol{a}=\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{\boldsymbol{b}\cdot\boldsymbol{b}}\boldsymbol{b}+\left(\boldsymbol{a}-\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{\boldsymbol{b}\cdot\boldsymbol{b}}\boldsymbol{b}\right)\]
 475
 476
 477            \subsection*{Vector proofs}
 478
 479            \textbf{Concurrent:} intersection of \(\ge\) 3 lines
 480
 481            \begin{tikzpicture}
 482              \draw [blue] (0,0) -- (1,1);
 483              \draw [red] (1,0) -- (0,1);
 484              \draw [brown] (0.4,0) -- (0.6,1);
 485              \filldraw (0.5,0.5) circle (2pt);
 486            \end{tikzpicture}
 487
 488            \subsubsection*{Collinear points}
 489
 490            \(\ge\) 3 points lie on the same line
 491
 492            \begin{tikzpicture}
 493              \draw [purple] (0,0) -- (4,1);
 494              \filldraw (2,0.5) circle (2pt) node [above] {\(C\)};
 495              \filldraw (1,0.25) circle (2pt) node [above] {\(A\)};
 496              \filldraw (3,0.75) circle (2pt) node [above] {\(B\)};
 497              \coordinate (O) at (2.8,-0.2);
 498              \node at (O) [below] {\(O\)}; 
 499              \begin{scope}[->, orange, thick] 
 500                \draw (O) -- (2,0.5) node [pos=0.5, above, font=\footnotesize, black] {\(\boldsymbol{c}\)};
 501                \draw (O) -- (1,0.25) node [pos=0.5, below, font=\footnotesize, black] {\(\boldsymbol{a}\)};
 502                \draw (O) -- (3,0.75) node [pos=0.5, right, font=\footnotesize, black] {\(\boldsymbol{b}\)};
 503              \end{scope}
 504            \end{tikzpicture}
 505
 506            \begin{align*}
 507              \text{e.g. Prove that}\\
 508              \overrightharp{AC}=m\overrightharp{AB} \iff \boldsymbol{c}&=(1-m)\boldsymbol{a}+m\boldsymbol{b}\\
 509              \implies \boldsymbol{c} &= \overrightharp{OA} + \overrightharp{AC}\\
 510              &= \overrightharp{OA} + m\overrightharp{AB}\\
 511              &=\boldsymbol{a}+m(\boldsymbol{b}-\boldsymbol{a})\\
 512              &=\boldsymbol{a}+m\boldsymbol{b}-m\boldsymbol{a}\\
 513              &=(1-m)\boldsymbol{a}+m{b}
 514            \end{align*}
 515            \begin{align*}
 516              \text{Also, } \implies \overrightharp{OC} &= \lambda \vec{OA} + \mu \overrightharp{OB} \\
 517              \text{where } \lambda + \mu &= 1\\
 518              \text{If } C \text{ lies along } \overrightharp{AB}, & \implies 0 < \mu < 1
 519            \end{align*}
 520
 521
 522            \subsubsection*{Parallelograms}
 523
 524            \begin{center}\begin{tikzpicture}
 525              \coordinate (O) at (0,0) node [below left] {\(O\)};
 526              \coordinate (A) at (4,0);
 527              \coordinate (B) at (6,2);
 528              \coordinate (C) at (2,2);
 529              \coordinate (D) at (6,0);
 530
 531              \draw[postaction={decorate}, decoration={markings, mark=at position 0.6 with {\arrow{>>}}}] (O)--(A) node [below left] {\(A\)};
 532              \draw[postaction={decorate}, decoration={markings,mark=at position 0.5 with {\arrow{>}}}] (A)--(B) node [above right] {\(B\)};
 533              \draw[postaction={decorate}, decoration={markings, mark=at position 0.6 with {\arrow{>>}}}] (B)--(C) node [above left] {\(C\)};
 534              \draw[postaction={decorate}, decoration={markings,mark=at position 0.5 with {\arrow{>}}}] (C)--(O);
 535
 536              \draw [gray, dashed] (O) -- (B) node [pos=0.75] {\(\diagdown\diagdown\)} node [pos=0.25] {\(\diagdown\diagdown\)};
 537              \draw [gray, dashed] (A) -- (C) node [pos=0.75] {\(\diagup\)} node [pos=0.25] {\(\diagup\)};
 538              \begin{scope}
 539                \path[clip] (C) -- (A) -- (O);
 540                \fill[orange, opacity=0.5, draw=black] (0,0) circle (4mm);
 541                \node at ($(0,0)+(20:8mm)$) {\(\theta\)};
 542              \end{scope}
 543              \draw [gray, thick, dotted] (B) -- (D) node [pos=0.5, right, black, font=\footnotesize] {\(|\boldsymbol{c}|\sin\theta\)} (A) -- (D) node [pos=0.5, below, black, font=\footnotesize] {\(|\boldsymbol{c}|\cos\theta\)};
 544              \draw pic [draw,thick,red,angle radius=2mm] {right angle=O--D--B};
 545            \end{tikzpicture}\end{center}
 546
 547            \begin{itemize}
 548              \item
 549                Diagonals \(\overrightharp{OB}, \overrightharp{AC}\) bisect each other
 550              \item
 551                If diagonals are equal length, it is a rectangle
 552              \item
 553                \(|\overrightharp{OB}|^2 + |\overrightharp{CA}|^2 = |\overrightharp{OA}|^2 + |\overrightharp{AB}|^2 + |\overrightharp{CB}|^2 + |\overrightharp{OC}|^2\)
 554              \item
 555                Area \(=\boldsymbol{c} \cdot \boldsymbol{a}\)
 556            \end{itemize}
 557
 558            \subsubsection*{Useful vector properties}
 559
 560            \begin{itemize}
 561              \item
 562                \(\boldsymbol{a} \parallel \boldsymbol{b} \implies \boldsymbol{b}=k\boldsymbol{a}\) for some
 563                \(k \in \mathbb{R} \setminus \{0\}\)
 564              \item
 565                If \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are parallel with at
 566                least one point in common, then they lie on the same straight line
 567              \item
 568                \(\boldsymbol{a} \perp \boldsymbol{b} \iff \boldsymbol{a} \cdot \boldsymbol{b}=0\)
 569              \item
 570                \(\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2\)
 571            \end{itemize}
 572
 573            \subsection*{Linear dependence}
 574
 575            \(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\) are linearly dependent if they are \(\nparallel\) and:
 576            \begin{align*}
 577              0&=k\boldsymbol{a}+l\boldsymbol{b}+m\boldsymbol{c}\\
 578              \therefore \boldsymbol{c} &= m\boldsymbol{a} + n\boldsymbol{b} \quad \text{(simultaneous)}
 579            \end{align*}
 580
 581            \noindent \(\boldsymbol{a}, \boldsymbol{b},\) and \(\boldsymbol{c}\) are linearly
 582            independent if no vector in the set is expressible as a linear
 583            combination of other vectors in set, or if they are parallel.
 584
 585            \subsection*{Three-dimensional vectors}
 586
 587            Right-hand rule for axes: \(z\) is up or out of page.
 588
 589            \tdplotsetmaincoords{60}{120} 
 590            \begin{center}\begin{tikzpicture} [scale=3, tdplot_main_coords, axis/.style={->,thick}, 
 591              vector/.style={-stealth,red,very thick}, 
 592              vector guide/.style={dashed,gray,thick}]
 593
 594              %standard tikz coordinate definition using x, y, z coords
 595              \coordinate (O) at (0,0,0);
 596
 597              %tikz-3dplot coordinate definition using x, y, z coords
 598
 599              \pgfmathsetmacro{\ax}{1}
 600              \pgfmathsetmacro{\ay}{1}
 601              \pgfmathsetmacro{\az}{1}
 602
 603              \coordinate (P) at (\ax,\ay,\az);
 604
 605              %draw axes
 606              \draw[axis] (0,0,0) -- (1,0,0) node[anchor=north east]{$x$};
 607              \draw[axis] (0,0,0) -- (0,1,0) node[anchor=north west]{$y$};
 608              \draw[axis] (0,0,0) -- (0,0,1) node[anchor=south]{$z$};
 609
 610              %draw a vector from O to P
 611              \draw[vector] (O) -- (P);
 612
 613              %draw guide lines to components
 614              \draw[vector guide]         (O) -- (\ax,\ay,0);
 615              \draw[vector guide] (\ax,\ay,0) -- (P);
 616              \draw[vector guide]         (P) -- (0,0,\az);
 617              \draw[vector guide] (\ax,\ay,0) -- (0,\ay,0);
 618              \draw[vector guide] (\ax,\ay,0) -- (0,\ay,0);
 619              \draw[vector guide] (\ax,\ay,0) -- (\ax,0,0);
 620              \node[tdplot_main_coords,above right]
 621              at (\ax,\ay,\az){(\ax, \ay, \az)};
 622            \end{tikzpicture}\end{center}
 623
 624            \subsection*{Parametric vectors}
 625
 626            Parametric equation of line through point \((x_0, y_0, z_0)\) and
 627            parallel to \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) is:
 628
 629            \[\begin{cases}x = x_o + a \cdot t \\ y = y_0 + b \cdot t \\ z = z_0 + c \cdot t\end{cases}\]
 630
 631              \section{Circular functions}
 632
 633              \(\sin(bx)\) or \(\cos(bx)\): period \(=\frac{2\pi}{b}\)
 634
 635              \noindent \(\tan(nx)\): period \(=\frac{\pi}{n}\)\\
 636              \indent\indent\indent asymptotes at \(x=\frac{(2k+1)\pi}{2n} \> \vert \> k \in \mathbb{Z}\)
 637
 638              \subsection*{Reciprocal functions}
 639
 640              \subsubsection*{Cosecant}
 641
 642              \[\operatorname{cosec} \theta = \frac{1}{\sin \theta} \> \vert \> \sin \theta \ne 0\]
 643
 644              \begin{itemize}
 645                \item
 646                  \textbf{Domain} \(= \mathbb{R} \setminus {n\pi : n \in \mathbb{Z}}\)
 647                \item
 648                  \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\)
 649                \item
 650                  \textbf{Turning points} at
 651                  \(\theta = \frac{(2n + 1)\pi}{2} \> \vert \> n \in \mathbb{Z}\)
 652                \item
 653                  \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
 654              \end{itemize}
 655
 656              \subsubsection*{Secant}
 657
 658\begin{tikzpicture}
 659  \begin{axis}[ytick={-1,1}, yticklabels={\(-1\), \(1\)}, xmin=-7,xmax=7,ymin=-3,ymax=3,enlargelimits=true, xtick={-6.2830, -3.1415, 3.1415, 6.2830},xticklabels={\(-2\pi\), \(-\pi\), \(\pi\), \(2\pi\)}]
 660%    \addplot[blue, domain=-6.2830:6.2830,unbounded coords=jump,samples=80] {sec(deg(x))};
 661    \addplot[blue, restrict y to domain=-10:10, domain=-7:7,samples=100] {sec(deg(x))} node [pos=0.93, black, right] {\(\operatorname{sec} x\)};
 662    \addplot[red, dashed, domain=-7:7,samples=100] {cos(deg(x))};
 663    \draw [gray, dotted, thick] ({axis cs:1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:1.5708,0}|-{rel axis cs:0,1});
 664    \draw [gray, dotted, thick] ({axis cs:4.71239,0}|-{rel axis cs:0,0}) -- ({axis cs:4.71239,0}|-{rel axis cs:0,1});
 665    \draw [gray, dotted, thick] ({axis cs:-4.71239,0}|-{rel axis cs:0,0}) -- ({axis cs:-4.71239,0}|-{rel axis cs:0,1});
 666    \draw [gray, dotted, thick] ({axis cs:-1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:-1.5708,0}|-{rel axis cs:0,1});
 667\end{axis}
 668    \node [black] at (7,3.5) {\(\cos x\)};
 669\end{tikzpicture}
 670
 671                \[\operatorname{sec} \theta = \frac{1}{\cos \theta} \> \vert \> \cos \theta \ne 0\]
 672
 673                \begin{itemize}
 674
 675                  \item
 676                    \textbf{Domain}
 677                    \(= \mathbb{R} \setminus \frac{(2n + 1) \pi}{2} : n \in \mathbb{Z}\}\)
 678                  \item
 679                    \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\)
 680                  \item
 681                    \textbf{Turning points} at
 682                    \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
 683                  \item
 684                    \textbf{Asymptotes} at
 685                    \(\theta = \frac{(2n + 1) \pi}{2} \> \vert \> n \in \mathbb{Z}\)
 686                \end{itemize}
 687
 688                \subsubsection*{Cotangent}
 689
 690\begin{tikzpicture}
 691  \begin{axis}[xmin=-3,xmax=3,ymin=-1.5,ymax=1.5,enlargelimits=true, xtick={-3.1415, -1.5708, 1.5708, 3.1415},xticklabels={\(-\pi\), \(-\frac{\pi}{2}\), \(\frac{\pi}{2}\), \(\pi\)}]
 692    \addplot[blue, smooth, domain=-3:-0.1,unbounded coords=jump,samples=105] {cot(deg(x))} node [pos=0.3, left] {\(\operatorname{cot} x\)};
 693\addplot[blue, smooth, domain=0.1:3,unbounded coords=jump,samples=105] {cot(deg(x))};
 694\addplot[red, smooth, dashed] gnuplot [domain=-1.5:1.5,unbounded coords=jump,samples=105] {tan(x)};
 695\addplot[red, smooth, dashed] gnuplot [domain=-3.5:-1.8,unbounded coords=jump,samples=105] {tan(x)} node [pos=0.5, right] {\(\tan x\)};
 696\addplot[red, smooth, dashed] gnuplot [domain=1.8:3.5,unbounded coords=jump,samples=105] {tan(x)};
 697    \draw [thick, red, dotted] ({axis cs:-1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:-1.5708,0}|-{rel axis cs:0,1});
 698    \draw [thick, blue, dotted] ({axis cs:-3.1415,0}|-{rel axis cs:0,0}) -- ({axis cs:-3.1415,0}|-{rel axis cs:0,1});
 699    \draw [thick, blue, dotted] ({axis cs:0,0}|-{rel axis cs:0,0}) -- ({axis cs:0,0}|-{rel axis cs:0,1});
 700    \draw [thick, blue, dotted] ({axis cs:3.1415,0}|-{rel axis cs:0,0}) -- ({axis cs:3.1415,0}|-{rel axis cs:0,1});
 701    \draw [thick, red, dotted] ({axis cs:1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:1.5708,0}|-{rel axis cs:0,1});
 702\end{axis}
 703\end{tikzpicture}
 704
 705                  \[\operatorname{cot} \theta = {{\cos \theta} \over {\sin \theta}} \> \vert \> \sin \theta \ne 0\]
 706
 707                  \begin{itemize}
 708
 709                    \item
 710                      \textbf{Domain} \(= \mathbb{R} \setminus \{n \pi: n \in \mathbb{Z}\}\)
 711                    \item
 712                      \textbf{Range} \(= \mathbb{R}\)
 713                    \item
 714                      \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
 715                  \end{itemize}
 716
 717                  \subsubsection*{Symmetry properties}
 718
 719                  \[\begin{split}
 720                    \operatorname{sec} (\pi \pm x) & = -\operatorname{sec} x \\
 721                    \operatorname{sec} (-x) & = \operatorname{sec} x \\
 722                    \operatorname{cosec} (\pi \pm x) & = \mp \operatorname{cosec} x \\
 723                    \operatorname{cosec} (-x) & = - \operatorname{cosec} x \\
 724                    \operatorname{cot} (\pi \pm x) & = \pm \operatorname{cot} x \\
 725                    \operatorname{cot} (-x) & = - \operatorname{cot} x
 726                  \end{split}\]
 727
 728                  \subsubsection*{Complementary properties}
 729
 730                  \[\begin{split}
 731                    \operatorname{sec} \left({\pi \over 2} - x\right) & = \operatorname{cosec} x \\
 732                    \operatorname{cosec} \left({\pi \over 2} - x\right) & = \operatorname{sec} x \\
 733                    \operatorname{cot} \left({\pi \over 2} - x\right) & = \tan x \\
 734                    \tan \left({\pi \over 2} - x\right) & = \operatorname{cot} x
 735                  \end{split}\]
 736
 737                  \subsubsection*{Pythagorean identities}
 738
 739                  \[\begin{split}
 740                    1 + \operatorname{cot}^2 x & = \operatorname{cosec}^2 x, \quad \text{where } \sin x \ne 0 \\
 741                    1 + \tan^2 x & = \operatorname{sec}^2 x, \quad \text{where } \cos x \ne 0
 742                  \end{split}\]
 743
 744                  \subsection*{Compound angle formulas}
 745
 746                  \[\cos(x \pm y) = \cos x + \cos y \mp \sin x \sin y\]
 747                  \[\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y\]
 748                  \[\tan(x \pm y) = {{\tan x \pm \tan y} \over {1 \mp \tan x \tan y}}\]
 749
 750                  \subsection*{Double angle formulas}
 751
 752                  \[\begin{split}
 753                    \cos 2x &= \cos^2 x - \sin^2 x \\
 754                    & = 1 - 2\sin^2 x \\
 755                    & = 2 \cos^2 x -1
 756                  \end{split}\]
 757
 758                  \[\sin 2x = 2 \sin x \cos x\]
 759
 760                  \[\tan 2x = {{2 \tan x} \over {1 - \tan^2 x}}\]
 761
 762                  \subsection*{Inverse circular functions}
 763
 764                  \begin{tikzpicture}
 765                    \begin{axis}[ymin=-2, ymax=4, xmin=-1.1, xmax=1.1, ytick={-1.5708, 1.5708, 3.14159},yticklabels={$-\frac{\pi}{2}$, $\frac{\pi}{2}$, $\pi$}]
 766                      \addplot[color=red, smooth] gnuplot [domain=-2:2,unbounded coords=jump,samples=500] {asin(x)} node [pos=0.25, below right] {\(\sin^{-1}x\)};
 767                      \addplot[color=blue, smooth] gnuplot [domain=-2:2,unbounded coords=jump,samples=500] {acos(x)} node [pos=0.25, below left] {\(\cos^{-1}x\)};
 768                      \addplot[mark=*, red] coordinates {(-1,-1.5708)} node[right, font=\footnotesize]{\((-1,-\frac{\pi}{2})\)} ;
 769                      \addplot[mark=*, red] coordinates {(1,1.5708)} node[left, font=\footnotesize]{\((1,\frac{\pi}{2})\)} ;
 770                      \addplot[mark=*, blue] coordinates {(1,0)};
 771                      \addplot[mark=*, blue] coordinates {(-1,3.1415)} node[right, font=\footnotesize]{\((-1,\pi)\)} ;
 772                    \end{axis}
 773                  \end{tikzpicture}\\
 774
 775                  Inverse functions: \(f(f^{-1}(x)) = x\) (restrict domain)
 776
 777                  \[\sin^{-1}: [-1, 1] \rightarrow \mathbb{R}, \quad \sin^{-1} x = y\]
 778                  \hfill where \(\sin y = x, \> y \in [{-\pi \over 2}, {\pi \over 2}]\)
 779
 780                  \[\cos^{-1}: [-1,1] \rightarrow \mathbb{R}, \quad \cos^{-1} x = y\]
 781                  \hfill where \(\cos y = x, \> y \in [0, \pi]\)
 782
 783                  \[\tan^{-1}: \mathbb{R} \rightarrow \mathbb{R}, \quad \tan^{-1} x = y\]
 784                  \hfill where \(\tan y = x, \> y \in \left(-{\pi \over 2}, {\pi \over 2}\right)\)
 785
 786                  \begin{tikzpicture}
 787                    \begin{axis}[yticklabel style={yshift=1.0pt, anchor=north east},x=0.1cm, y=1cm, ymax=2, ymin=-2, xticklabels={}, ytick={-1.5708,1.5708},yticklabels={\(-\frac{\pi}{2}\),\(\frac{\pi}{2}\)}]
 788                      \addplot[color=orange, smooth] gnuplot [domain=-35:35, unbounded coords=jump,samples=350] {atan(x)} node [pos=0.5, above left] {\(\tan^{-1}x\)};
 789                      \addplot[gray, dotted, thick, domain=-35:35] {1.5708} node [black, font=\footnotesize, below right, pos=0] {\(y=\frac{\pi}{2}\)};
 790                      \addplot[gray, dotted, thick, domain=-35:35] {-1.5708} node [black, font=\footnotesize, above left, pos=1] {\(y=-\frac{\pi}{2}\)};
 791                    \end{axis}
 792                  \end{tikzpicture}
 793\columnbreak
 794                  \section{Differential calculus}
 795
 796                  \subsection*{Limits}
 797
 798                  \[\lim_{x \rightarrow a}f(x)\]
 799                  \(L^-,\quad L^+\) \qquad limit from below/above\\
 800                  \(\lim_{x \to a} f(x)\) \quad limit of a point\\
 801
 802                  \noindent For solving \(x\rightarrow\infty\), put all \(x\) terms in denominators\\
 803                  e.g. \[\lim_{x \rightarrow \infty}{{2x+3} \over {x-2}}={{2+{3 \over x}} \over {1-{2 \over x}}}={2 \over 1} = 2\]
 804
 805                  \subsubsection*{Limit theorems}
 806
 807                  \begin{enumerate}
 808                    \item
 809                      For constant function \(f(x)=k\), \(\lim_{x \rightarrow a} f(x) = k\)
 810                    \item
 811                      \(\lim_{x \rightarrow a} (f(x) \pm g(x)) = F \pm G\)
 812                    \item
 813                      \(\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G\)
 814                    \item
 815                      \(\therefore \lim_{x \rightarrow a} c \times f(x)=cF\) where \(c=\) constant
 816                    \item
 817                      \({\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0\)
 818                    \item
 819                      \(f(x)\) is continuous \(\iff L^-=L^+=f(x) \> \forall x\)
 820                  \end{enumerate}
 821
 822                  \subsection*{Gradients of secants and tangents}
 823
 824                  \textbf{Secant (chord)} - line joining two points on curve\\
 825                  \textbf{Tangent} - line that intersects curve at one point
 826
 827                  \subsection*{First principles derivative}
 828
 829                  \[f^\prime(x) = \lim_{\delta x \rightarrow 0}{\delta y \over \delta x}={\frac{dy}{dx}}\]
 830
 831                  \subsubsection*{Logarithmic identities}
 832
 833                  \(\log_b (xy)=\log_b x + \log_b y\)\\
 834                  \(\log_b x^n = n \log_b x\)\\
 835                  \(\log_b y^{x^n} = x^n \log_b y\)
 836
 837                  \subsubsection*{Index identities}
 838
 839                  \(b^{m+n}=b^m \cdot b^n\)\\
 840                  \((b^m)^n=b^{m \cdot n}\)\\
 841                  \((b \cdot c)^n = b^n \cdot c^n\)\\
 842                  \({a^m \div a^n} = {a^{m-n}}\)
 843
 844                  \subsection*{Derivative rules}
 845
 846                  \renewcommand{\arraystretch}{1.4}
 847                  \begin{tabularx}{\columnwidth}{rX}
 848                    \hline
 849                    \(f(x)\) & \(f^\prime(x)\)\\
 850                    \hline
 851                    \(\sin x\) & \(\cos x\)\\
 852                    \(\sin ax\) & \(a\cos ax\)\\
 853                    \(\cos x\) & \(-\sin x\)\\
 854                    \(\cos ax\) & \(-a \sin ax\)\\
 855                    \(\tan f(x)\) & \(f^2(x) \sec^2f(x)\)\\
 856                    \(e^x\) & \(e^x\)\\
 857                    \(e^{ax}\) & \(ae^{ax}\)\\
 858                    \(ax^{nx}\) & \(an \cdot e^{nx}\)\\
 859                    \(\log_e x\) & \(\dfrac{1}{x}\)\\
 860                    \(\log_e {ax}\) & \(\dfrac{1}{x}\)\\
 861                    \(\log_e f(x)\) & \(\dfrac{f^\prime (x)}{f(x)}\)\\
 862                    \(\sin(f(x))\) & \(f^\prime(x) \cdot \cos(f(x))\)\\
 863                    \(\sin^{-1} x\) & \(\dfrac{1}{\sqrt{1-x^2}}\)\\
 864                    \(\cos^{-1} x\) & \(\dfrac{-1}{sqrt{1-x^2}}\)\\
 865                    \(\tan^{-1} x\) & \(\dfrac{1}{1 + x^2}\)\\
 866                    \(\frac{d}{dy}f(y)\) & \(\dfrac{1}{\frac{dx}{dy}}\) (reciprocal)\\
 867                    \(uv\) & \(u \frac{dv}{dx}+v\frac{du}{dx} (product rule)\)\\
 868                    \(\dfrac{u}{v}\) & \(\dfrac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}\) (quotient rule)\\
 869                    \(f(g(x))\) & \(f^\prime(g(x))\cdot g^\prime(x)\)\\
 870                    \hline
 871                  \end{tabularx}
 872
 873                  \subsection*{Reciprocal derivatives}
 874
 875                  \[\frac{1}{\frac{dy}{dx}} = \frac{dx}{dy}\]
 876
 877                  \subsection*{Differentiating \(x=f(y)\)}
 878                  \begin{align*}
 879                    \text{Find }& \frac{dx}{dy}\\
 880                    \text{Then, }\frac{dx}{dy} &= \frac{1}{\frac{dy}{dx}} \\
 881                    \implies {\frac{dy}{dx}} &= \frac{1}{\frac{dx}{dy}}\\
 882                    \therefore {\frac{dy}{dx}} &= \frac{1}{\frac{dx}{dy}}
 883                  \end{align*}
 884
 885                  \subsection*{Second derivative}
 886                  \begin{align*}f(x) \longrightarrow &f^\prime (x) \longrightarrow f^{\prime\prime}(x)\\
 887                  \implies y \longrightarrow &\frac{dy}{dx} \longrightarrow \frac{d^2 y}{dx^2}\end{align*}
 888
 889                  \noindent Order of polynomial \(n\)th derivative decrements each time the derivative is taken
 890
 891                  \subsubsection*{Points of Inflection}
 892
 893                  \emph{Stationary point} - i.e.
 894                  \(f^\prime(x)=0\)\\
 895                  \emph{Point of inflection} - max \(|\)gradient\(|\) (i.e.
 896                  \(f^{\prime\prime} = 0\))
 897
 898
 899                  \begin{table*}[ht]
 900                    \centering
 901                    \begin{tabularx}{\textwidth}{rXXX}
 902                      \hline
 903                      \rowcolor{shade2}
 904                      & \centering\(\dfrac{d^2 y}{dx^2} > 0\)  & \centering \(\dfrac{d^2y}{dx^2}<0\) & \(\dfrac{d^2y}{dx^2}=0\) (inflection) \\
 905                      \hline
 906                      \(\dfrac{dy}{dx}>0\) &
 907                      \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-3,  xmax=0.8, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(e^(x))};  \addplot[red] {x/2.5+0.75}; \end{axis}\end{tikzpicture} \\Rising (concave up)}&
 908                        \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=0.1, xmax=4,   scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(ln(x))};  \addplot[red] {x/1.5-0.56}; \end{axis}\end{tikzpicture} \\Rising (concave down)}&
 909                          \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1.5,  xmax=1.5,   scale=0.2, samples=100] \addplot[blue] {(sin((deg x)))}; \addplot[red] {x}; \end{axis}\end{tikzpicture} \\Rising inflection point}\\
 910                            \hline
 911                            \(\dfrac{dy}{dx}<0\) &
 912                            \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-.5, xmax=1, ymin=-.5, ymax=.5, scale=0.2, samples=100] \addplot[blue] {(1/(x+1)-1}; \addplot[red] {-x}; \end{axis}\end{tikzpicture} \\Falling (concave up)}&
 913                              \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=0,  xmax=1.5, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(2-x*x)^(1/2)};  \addplot[red] {-x+2}; \end{axis}\end{tikzpicture} \\Falling (concave down)}&
 914                                \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=1.5,  xmax=4.5,   scale=0.2, samples=100] \addplot[blue] {(sin((deg x)))}; \addplot[red] {-x+3.1415}; \end{axis}\end{tikzpicture} \\Falling inflection point}\\
 915                                  \hline
 916                                  \(\dfrac{dy}{dx}=0\)&
 917                                  \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1,  xmax=1,   scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(x*x))}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \\Local minimum}&                       \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1,  xmax=1,   scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(-x*x))}; \addplot[red, very thick] {0}; \end{axis}\end{tikzpicture} \\Local maximum}&
 918                                    \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1,  xmax=1,   scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(x*x*x))}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \(\>\) \begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1,  xmax=1,   scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(-x*x*x))}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture}  \\Stationary inflection point}\\
 919                                      \hline
 920                    \end{tabularx}
 921                  \end{table*}
 922                  \begin{itemize}
 923                    \item
 924                      if \(f^\prime (a) = 0\) and \(f^{\prime\prime}(a) > 0\), then point
 925                      \((a, f(a))\) is a local min (curve is concave up)
 926                    \item
 927                      if \(f^\prime (a) = 0\) and \(f^{\prime\prime} (a) < 0\), then point
 928                      \((a, f(a))\) is local max (curve is concave down)
 929                    \item
 930                      if \(f^{\prime\prime}(a) = 0\), then point \((a, f(a))\) is a point of
 931                      inflection
 932                    \item
 933                      if also \(f^\prime(a)=0\), then it is a stationary point of inflection
 934                  \end{itemize}
 935
 936                  \subsection*{Implicit Differentiation}
 937
 938                  \noindent Used for differentiating circles etc.
 939
 940                  If \(p\) and \(q\) are expressions in \(x\) and \(y\) such that \(p=q\),
 941                  for all \(x\) and \(y\), then:
 942
 943                  \[{\frac{dp}{dx}} = {\frac{dq}{dx}} \quad \text{and} \quad {\frac{dp}{dy}} = {\frac{dq}{dy}}\]
 944
 945                  \noindent \colorbox{cas}{\textbf{On CAS:}}\\
 946                  Action \(\rightarrow\) Calculation \(\rightarrow\) \texttt{impDiff(y\^{}2+ax=5,\ x,\ y)}\\
 947                  Returns \(y^\prime= \dots\).
 948
 949                  \subsection*{Integration}
 950
 951                  \[\int f(x) \cdot dx = F(x) + c \quad \text{where } F^\prime(x) = f(x)\]
 952
 953                  \subsection*{Integral laws}
 954
 955                  \renewcommand{\arraystretch}{1.4}
 956                  \begin{tabularx}{\columnwidth}{rX}
 957                    \hline
 958                    \(f(x)\) & \(\int f(x) \cdot dx\) \\
 959                    \hline
 960                    \(k\) (constant) & \(kx + c\)\\
 961                    \(x^n\) & \(\dfrac{1}{n+1} x^{n+1}\) \\
 962                    \(a x^{-n}\) &\(a \cdot \log_e |x| + c\)\\
 963                    \(\dfrac{1}{ax+b}\) &\(\dfrac{1}{a} \log_e (ax+b) + c\)\\
 964                    \((ax+b)^n\) & \(\dfrac{1}{a(n+1)}(ax+b)^{n-1} + c\>|\>n\ne 1\)\\
 965                    \((ax+b)^{-1}\) & \(\dfrac{1}{a}\log_e |ax+b|+c\)\\
 966                    \(e^{kx}\) & \(\dfrac{1}{k} e^{kx} + c\)\\
 967                    \(e^k\) & \(e^kx + c\)\\
 968                    \(\sin kx\) & \(\dfrac{-1}{k} \cos (kx) + c\)\\
 969                    \(\cos kx\) & \(\dfrac{1}{k} \sin (kx) + c\)\\
 970                    \(\sec^2 kx\) & \(\dfrac{1}{k} \tan(kx) + c\)\\
 971                    \(\dfrac{1}{\sqrt{a^2-x^2}}\) & \(\sin^{-1} \dfrac{x}{a} + c \>\vert\> a>0\)\\
 972                    \(\dfrac{-1}{\sqrt{a^2-x^2}}\) & \(\cos^{-1} \dfrac{x}{a} + c \>\vert\> a>0\)\\
 973                    \(\frac{a}{a^2-x^2}\) & \(\tan^{-1} \frac{x}{a} + c\)\\
 974                    \(\frac{f^\prime (x)}{f(x)}\) & \(\log_e f(x) + c\)\\
 975                    \(\int f(u) \cdot \frac{du}{dx} \cdot dx\) & \(\int f(u) \cdot du\) (substitution)\\
 976                    \(f(x) \cdot g(x)\) & \(\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx\)\\
 977                    \hline
 978                  \end{tabularx}
 979
 980                  Note \(\sin^{-1} {x \over a} + \cos^{-1} {x \over a}\) is constant \(\forall x \in (-a, a)\)
 981
 982                  \subsection*{Definite integrals}
 983
 984                  \[\int_a^b f(x) \cdot dx = [F(x)]_a^b=F(b)-F(a)\]
 985
 986                  \begin{itemize}
 987
 988                    \item
 989                      Signed area enclosed by\\
 990                      \(\> y=f(x), \quad y=0, \quad x=a, \quad x=b\).
 991                    \item
 992                      \emph{Integrand} is \(f\).
 993                  \end{itemize}
 994
 995                  \subsubsection*{Properties}
 996
 997                  \[\int^b_a f(x) \> dx = \int^c_a f(x) \> dx + \int^b_c f(x) \> dx\]
 998
 999                  \[\int^a_a f(x) \> dx = 0\]
1000
1001                  \[\int^b_a k \cdot f(x) \> dx = k \int^b_a f(x) \> dx\]
1002
1003                  \[\int^b_a f(x) \pm g(x) \> dx = \int^b_a f(x) \> dx \pm \int^b_a g(x) \> dx\]
1004
1005                  \[\int^b_a f(x) \> dx = - \int^a_b f(x) \> dx\]
1006
1007                  \subsection*{Integration by substitution}
1008
1009                  \[\int f(u) {\frac{du}{dx}} \cdot dx = \int f(u) \cdot du\]
1010
1011                  \noindent Note \(f(u)\) must be 1:1 \(\implies\) one \(x\) for each \(y\)
1012                  \begin{align*}\text{e.g. for } y&=\int(2x+1)\sqrt{x+4} \cdot dx\\
1013                    \text{let } u&=x+4\\
1014                    \implies& {\frac{du}{dx}} = 1\\
1015                    \implies& x = u - 4\\
1016                    \text{then } &y=\int (2(u-4)+1)u^{\frac{1}{2}} \cdot du\\
1017                    &\text{(solve as  normal integral)}
1018                  \end{align*}
1019
1020                  \subsubsection*{Definite integrals by substitution}
1021
1022                  For \(\int^b_a f(x) {\frac{du}{dx}} \cdot dx\), evaluate new \(a\) and
1023                  \(b\) for \(f(u) \cdot du\).
1024
1025                  \subsubsection*{Trigonometric integration}
1026
1027                  \[\sin^m x \cos^n x \cdot dx\]
1028
1029                  \paragraph{\textbf{\(m\) is odd:}}
1030                  \(m=2k+1\) where \(k \in \mathbb{Z}\)\\
1031                  \(\implies \sin^{2k+1} x = (\sin^2 z)^k \sin x = (1 - \cos^2 x)^k \sin x\)\\
1032                  Substitute \(u=\cos x\)
1033
1034                  \paragraph{\textbf{\(n\) is odd:}}
1035                  \(n=2k+1\) where \(k \in \mathbb{Z}\)\\
1036                  \(\implies \cos^{2k+1} x = (\cos^2 x)^k \cos x = (1-\sin^2 x)^k \cos x\)\\
1037                  Substitute \(u=\sin x\)
1038
1039                  \paragraph{\textbf{\(m\) and \(n\) are even:}}
1040                  use identities...
1041
1042                  \begin{itemize}
1043
1044                    \item
1045                      \(\sin^2x={1 \over 2}(1-\cos 2x)\)
1046                    \item
1047                      \(\cos^2x={1 \over 2}(1+\cos 2x)\)
1048                    \item
1049                      \(\sin 2x = 2 \sin x \cos x\)
1050                  \end{itemize}
1051
1052                  \subsection*{Partial fractions}
1053
1054                  \colorbox{cas}{On CAS:}\\
1055                  \indent Action \(\rightarrow\) Transformation \(\rightarrow\)
1056                  \texttt{expand/combine}\\
1057                  \indent Interactive \(\rightarrow\) Transformation \(\rightarrow\)
1058                  Expand \(\rightarrow\) Partial
1059
1060                  \subsection*{Graphing integrals on CAS}
1061
1062                  \colorbox{cas}{In main:} Interactive \(\rightarrow\) Calculation \(\rightarrow\)
1063                  \(\int\) (\(\rightarrow\) Definite)\\
1064                  Restrictions: \texttt{Define\ f(x)=..} then \texttt{f(x)\textbar{}x\textgreater{}..}
1065
1066                  \subsection*{Applications of antidifferentiation}
1067
1068                  \begin{itemize}
1069
1070                    \item
1071                      \(x\)-intercepts of \(y=f(x)\) identify \(x\)-coordinates of
1072                      stationary points on \(y=F(x)\)
1073                    \item
1074                      nature of stationary points is determined by sign of \(y=f(x)\) on
1075                      either side of its \(x\)-intercepts
1076                    \item
1077                      if \(f(x)\) is a polynomial of degree \(n\), then \(F(x)\) has degree
1078                      \(n+1\)
1079                  \end{itemize}
1080
1081                  To find stationary points of a function, substitute \(x\) value of given
1082                  point into derivative. Solve for \({\frac{dy}{dx}}=0\). Integrate to find
1083                  original function.
1084
1085                  \subsection*{Solids of revolution}
1086
1087                  Approximate as sum of infinitesimally-thick cylinders
1088
1089                  \subsubsection*{Rotation about \(x\)-axis}
1090
1091                  \begin{align*}
1092                    V &= \int^{x=b}_{x-a} \pi y^2 \> dx \\
1093                    &= \pi \int^b_a (f(x))^2 \> dx
1094                  \end{align*}
1095
1096                  \subsubsection*{Rotation about \(y\)-axis}
1097
1098                  \begin{align*}
1099                    V &= \int^{y=b}_{y=a} \pi x^2 \> dy \\
1100                    &= \pi \int^b_a (f(y))^2 \> dy
1101                  \end{align*}
1102
1103                  \subsubsection*{Regions not bound by \(y=0\)}
1104
1105                  \[V = \pi \int^b_a f(x)^2 - g(x)^2 \> dx\]
1106                  \hfill where \(f(x) > g(x)\)
1107
1108                  \subsection*{Length of a curve}
1109
1110                  \[L = \int^b_a \sqrt{1 + ({\frac{dy}{dx}})^2} \> dx \quad \text{(Cartesian)}\]
1111
1112                  \[L = \int^b_a \sqrt{{\frac{dx}{dt}} + ({\frac{dy}{dt}})^2} \> dt \quad \text{(parametric)}\]
1113
1114                  \noindent \colorbox{cas}{On CAS:}\\
1115                  \indent Evaluate formula,\\
1116                  \indent or Interactive \(\rightarrow\) Calculation
1117                  \(\rightarrow\) Line \(\rightarrow\) \texttt{arcLen}
1118
1119                  \subsection*{Rates}
1120
1121                  \subsubsection*{Gradient at a point on parametric curve}
1122
1123                  \[{\frac{dy}{dx}} = {{\frac{dy}{dt}} \div {\frac{dx}{dt}}} \> \vert \> {\frac{dx}{dt}} \ne 0 \text{ (chain rule)}\]
1124
1125                  \[\frac{d^2}{dx^2} = \frac{d(y^\prime)}{dx} = {\frac{dy^\prime}{dt} \div {\frac{dx}{dt}}} \> \vert \> y^\prime = {\frac{dy}{dx}}\]
1126
1127                  \subsection*{Rational functions}
1128
1129                  \[f(x) = \frac{P(x)}{Q(x)} \quad \text{where } P, Q \text{ are polynomial functions}\]
1130
1131                  \subsubsection*{Addition of ordinates}
1132
1133                  \begin{itemize}
1134
1135                    \item
1136                      when two graphs have the same ordinate, \(y\)-coordinate is double the
1137                      ordinate
1138                    \item
1139                      when two graphs have opposite ordinates, \(y\)-coordinate is 0 i.e.
1140                      (\(x\)-intercept)
1141                    \item
1142                      when one of the ordinates is 0, the resulting ordinate is equal to the
1143                      other ordinate
1144                  \end{itemize}
1145
1146                  \subsection*{Fundamental theorem of calculus}
1147
1148                  If \(f\) is continuous on \([a, b]\), then
1149
1150                  \[\int^b_a f(x) \> dx = F(b) - F(a)\]
1151                  \hfill where \(F = \int f \> dx\)
1152                  
1153                  \subsection*{Differential equations}
1154
1155                  \noindent\textbf{Order} - highest power inside derivative\\
1156                  \textbf{Degree} - highest power of highest derivative\\
1157                  e.g. \({\left(\dfrac{dy^2}{d^2} x\right)}^3\) \qquad order 2, degree 3
1158
1159                  \subsubsection*{Verifying solutions}
1160
1161                  Start with \(y=\dots\), and differentiate. Substitute into original
1162                  equation.
1163
1164                  \subsubsection*{Function of the dependent
1165                  variable}
1166
1167                  If \({\frac{dy}{dx}}=g(y)\), then
1168                  \(\frac{dx}{dy} = 1 \div \frac{dy}{dx} = \frac{1}{g(y)}\). Integrate both sides to solve equation. Only add \(c\) on one side. Express
1169                  \(e^c\) as \(A\).
1170
1171
1172
1173                  \subsubsection*{Mixing problems}
1174
1175                  \[\left(\frac{dm}{dt}\right)_\Sigma = \left(\frac{dm}{dt}\right)_{\text{in}} - \left(\frac{dm}{dt}_{\text{out}}\right)\]
1176
1177                  \subsubsection*{Separation of variables}
1178
1179                  If \({\frac{dy}{dx}}=f(x)g(y)\), then:
1180
1181                  \[\int f(x) \> dx = \int \frac{1}{g(y)} \> dy\]
1182
1183                  \subsubsection*{Euler's method for solving DEs}
1184
1185                  \[\frac{f(x+h) - f(x)}{h} \approx f^\prime (x) \quad \text{for small } h\]
1186
1187                  \[\implies f(x+h) \approx f(x) + hf^\prime(x)\]
1188
1189              
1190    \section{Kinematics \& Mechanics}
1191
1192      \subsection*{Constant acceleration}
1193
1194      \begin{itemize}
1195        \item \textbf{Position} - relative to origin
1196        \item \textbf{Displacement} - relative to starting point
1197      \end{itemize}
1198
1199      \subsubsection*{Velocity-time graphs}
1200
1201      \begin{itemize}
1202        \item Displacement: \textit{signed} area between graph and \(t\) axis
1203        \item Distance travelled: \textit{total} area between graph and \(t\) axis
1204      \end{itemize}
1205
1206      \[ \text{acceleration} = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right) \]
1207
1208        \begin{center}
1209          \renewcommand{\arraystretch}{1}
1210          \begin{tabular}{ l r }
1211              \hline & no \\ \hline
1212              \(v=u+at\) & \(x\) \\
1213              \(v^2 = u^2+2as\) & \(t\) \\
1214              \(s = \frac{1}{2} (v+u)t\) & \(a\) \\
1215              \(s = ut + \frac{1}{2} at^2\) & \(v\) \\
1216              \(s = vt- \frac{1}{2} at^2\) & \(u\) \\ \hline
1217            \end{tabular}
1218        \end{center}
1219
1220        \[ v_{\text{avg}} = \frac{\Delta\text{position}}{\Delta t} \]
1221        \begin{align*}
1222          \text{speed} &= |{\text{velocity}}| \\
1223          &= \sqrt{v_x^2 + v_y^2 + v_z^2}
1224        \end{align*}
1225
1226        \noindent \textbf{Distance travelled between \(t=a \rightarrow t=b\):}
1227        \[= \int^b_a \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \cdot dt \]
1228
1229        \noindent \textbf{Shortest distance between \(\boldsymbol{r}(t_0)\) and \(\boldsymbol{r}(t_1)\):}
1230        \[ = |\boldsymbol{r}(t_1) - \boldsymbol{r}(t_2)| \]
1231
1232      \subsection*{Vector functions}
1233
1234        \[ \boldsymbol{r}(t) = x \boldsymbol{i} + y \boldsymbol{j} + z \boldsymbol{k} \]
1235
1236        \begin{itemize}
1237          \item If \(\boldsymbol{r}(t) \equiv\) position with time, then the graph of endpoints of \(\boldsymbol{r}(t) \equiv\) Cartesian path
1238          \item Domain of \(\boldsymbol{r}(t)\) is the range of \(x(t)\)
1239          \item Range of \(\boldsymbol{r}(t)\) is the range of \(y(t)\)
1240        \end{itemize}
1241
1242      \subsection*{Vector calculus}
1243
1244      \subsubsection*{Derivative}
1245
1246        Let \(\boldsymbol{r}(t)=x(t)\boldsymbol{i} + y(t)\boldsymbol(j)\). If both \(x(t)\) and \(y(t)\) are differentiable, then:
1247        \[ \boldsymbol{r}(t)=x(t)\boldsymbol{i}+y(t)\boldsymbol{j} \]
1248
1249      \subfile{dynamics}
1250      \subfile{statistics}
1251  \end{multicols}
1252\end{document}