0b1d56eda2635b43dbecf8de3cf3f5d4a228f667
1\documentclass[a4paper]{article}
2\usepackage[dvipsnames, table]{xcolor}
3\usepackage{adjustbox}
4\usepackage{amsmath}
5\usepackage{amssymb}
6\usepackage{array}
7\usepackage{blindtext}
8\usepackage{dblfloatfix}
9\usepackage{enumitem}
10\usepackage{fancyhdr}
11\usepackage[a4paper,margin=1.8cm]{geometry}
12\usepackage{graphicx}
13\usepackage{harpoon}
14\usepackage{hhline}
15\usepackage{import}
16\usepackage{keystroke}
17\usepackage{listings}
18\usepackage{makecell}
19\usepackage{mathtools}
20\usepackage{mathtools}
21\usepackage{multicol}
22\usepackage{multirow}
23\usepackage{pgfplots}
24\usepackage{pst-plot}
25\usepackage{rotating}
26\usepackage{subfiles}
27\usepackage{tabularx}
28\usepackage{tcolorbox}
29\usepackage{tikz-3dplot}
30\usepackage{tikz}
31\usepackage{tkz-fct}
32\usepackage[obeyspaces]{url}
33\usepackage{wrapfig}
34
35
36\usetikzlibrary{%
37 angles,
38 arrows,
39 arrows.meta,
40 calc,
41 datavisualization.formats.functions,
42 decorations,
43 decorations.markings,
44 decorations.text,
45 decorations.pathreplacing,
46 decorations.text,
47 scopes
48}
49
50\newcommand\given[1][]{\:#1\vert\:}
51\newcommand{\midarrow}{\tikz \draw[-triangle 90] (0,0) -- +(.1,0);}
52
53\usepgflibrary{arrows.meta}
54\pgfplotsset{compat=1.16}
55\pgfplotsset{every axis/.append style={
56 axis x line=middle,
57 axis y line=middle,
58 axis line style={->},
59 xlabel={$x$},
60 ylabel={$y$},
61}}
62
63\psset{dimen=monkey,fillstyle=solid,opacity=.5}
64\def\object{%
65 \psframe[linestyle=none,fillcolor=blue](-2,-1)(2,1)
66 \psaxes[linecolor=gray,labels=none,ticks=none]{->}(0,0)(-3,-3)(3,2)[$x$,0][$y$,90]
67 \rput{*0}{%
68 \psline{->}(0,-2)%
69 \uput[-90]{*0}(0,-2){$\vec{w}$}}
70}
71
72\pagestyle{fancy}
73\fancypagestyle{plain}{\fancyhead[LO,LE]{} \fancyhead[CO,CE]{}} % rm title & author for first page
74\fancyhead[LO,LE]{Year 12 Specialist}
75\fancyhead[CO,CE]{Andrew Lorimer}
76
77\renewcommand\hphantom[1]{{\color[gray]{.6}#1}} % comment out!
78\newcommand*\leftlap[3][\,]{#1\hphantom{#2}\mathllap{#3}}
79\newcommand*\rightlap[2]{\mathrlap{#2}\hphantom{#1}}
80\linespread{1.5}
81\setlength{\parindent}{0pt}
82\setlength\fboxsep{0pt} \setlength\fboxrule{.2pt} % for the \fboxes
83
84\newcolumntype{L}[1]{>{\hsize=#1\hsize\raggedright\arraybackslash}X}%
85\newcolumntype{R}[1]{>{\hsize=#1\hsize\raggedleft\arraybackslash}X}%
86\newcolumntype{Y}{>{\centering\arraybackslash}X}
87
88\definecolor{cas}{HTML}{e6f0fe}
89\definecolor{important}{HTML}{fc9871}
90\definecolor{dark-gray}{gray}{0.2}
91\definecolor{light-gray}{HTML}{cccccc}
92\definecolor{peach}{HTML}{e6beb2}
93\definecolor{lblue}{HTML}{e5e9f0}
94
95\newcommand{\tg}{\mathop{\mathrm{tg}}}
96\newcommand{\cotg}{\mathop{\mathrm{cotg}}}
97\newcommand{\arctg}{\mathop{\mathrm{arctg}}}
98\newcommand{\arccotg}{\mathop{\mathrm{arccotg}}}
99
100\newtcolorbox{cas}{colframe=cas!75!black, fonttitle=\sffamily\bfseries, title=On CAS, left*=3mm}
101\newtcolorbox{theorembox}[1]{colback=green!10!white, colframe=blue!20!white, coltitle=black, fontupper=\sffamily, fonttitle=\sffamily, #1}
102\newtcolorbox{warning}{colback=white!90!black, leftrule=3mm, colframe=important, coltext=darkgray, fontupper=\sffamily\bfseries}
103
104\begin{document}
105
106\title{\vspace{-23mm}Year 12 Specialist\vspace{-5mm}}
107\author{Andrew Lorimer}
108\date{}
109\maketitle
110\vspace{-10mm}
111\begin{multicols}{2}
112
113 \section{Complex numbers}
114
115 \[\mathbb{C}=\{a+bi:a,b\in\mathbb{R}\}\]
116
117 \begin{align*}
118 \text{Cartesian form: } & a+bi\\
119 \text{Polar form: } & r\operatorname{cis}\theta
120 \end{align*}
121
122 \subsection*{Operations}
123
124 \begin{tabularx}{\columnwidth}{|r|X|X|}
125 \hline
126 \rowcolor{cas}
127 & \textbf{Cartesian} & \textbf{Polar} \\
128 \hline
129 \(z_1 \pm z_2\) & \((a \pm c)(b \pm d)i\) & convert to \(a+bi\)\\
130 \hline
131 \(+k \times z\) & \multirow{2}{*}{\(ka \pm kbi\)} & \(kr\operatorname{cis} \theta\)\\
132 \cline{1-1}\cline{3-3}
133 \(-k \times z\) & & \(kr \operatorname{cis}(\theta\pm \pi)\)\\
134 \hline
135 \(z_1 \cdot z_2\) & \(ac-bd+(ad+bc)i\) & \(r_1r_2 \operatorname{cis}(\theta_1 + \theta_2)\)\\
136 \hline
137 \(z_1 \div z_2\) & \((z_1 \overline{z_2}) \div |z_2|^2\) & \(\left(\frac{r_1}{r_2}\right) \operatorname{cis}(\theta_1 - \theta_2)\) \\
138 \hline
139 \end{tabularx}
140
141 \subsubsection*{Scalar multiplication in polar form}
142
143 For \(k \in \mathbb{R}^+\):
144 \[k\left(r \operatorname{cis}\theta\right)=kr \operatorname{cis}\theta\]
145
146 \noindent For \(k \in \mathbb{R}^-\):
147 \[k\left(r \operatorname{cis}\theta\right)=kr \operatorname{cis}\left(\begin{cases}\theta - \pi & |0<\operatorname{Arg}(z)\le \pi \\ \theta + \pi & |-\pi<\operatorname{Arg}(z)\le 0\end{cases}\right)\]
148
149 \subsection*{Conjugate}
150
151 \begin{align*}
152 \overline{z} &= a \mp bi\\
153 &= r \operatorname{cis}(-\theta)
154 \end{align*}
155 \noindent \colorbox{cas}{On CAS: \texttt{conjg(a+bi)}}
156
157 \subsubsection*{Properties}
158
159 \begin{align*}
160 \overline{z_1 \pm z_2} &= \overline{z_1}\pm\overline{z_2}\\
161 \overline{z_1 \cdot z_2} &= \overline{z_1}\cdot\overline{z_2}\\
162 \overline{kz} &= k\overline{z} \> \forall \> k \in \mathbb{R}\\
163 z\overline{z} &= (a+bi)(a-bi)\\
164 &= a^2 + b^2\\
165 &= |z|^2
166 \end{align*}
167
168 \subsection*{Modulus}
169
170 \[|z|=|\vec{Oz}|=\sqrt{a^2 + b^2}\]
171
172 \subsubsection*{Properties}
173
174 \begin{align*}
175 |z_1z_2|&=|z_1||z_2|\\
176 \left|\frac{z_1}{z_2}\right|&=\frac{|z_1|}{|z_2|}\\
177 |z_1+z_2|&\le|z_1|+|z_2|
178 \end{align*}
179
180 \subsection*{Multiplicative inverse}
181
182 \begin{align*}
183 z^{-1}&=\frac{a-bi}{a^2+b^2}\\
184 &=\frac{\overline{z}}{|z|^2}a\\
185 &=r \operatorname{cis}(-\theta)
186 \end{align*}
187
188 \subsection*{Dividing over \(\mathbb{C}\)}
189
190 \begin{align*}
191 \frac{z_1}{z_2}&=z_1z_2^{-1}\\
192 &=\frac{z_1\overline{z_2}}{|z_2|^2}\\
193 &=\frac{(a+bi)(c-di)}{c^2+d^2}\\
194 & \text{then rationalise denominator}
195 \end{align*}
196
197 \subsection*{Polar form}
198
199 \begin{align*}
200 z&=r\operatorname{cis}\theta\\
201 &=r(\cos \theta + i \sin \theta)
202 \end{align*}
203
204 \begin{itemize}
205 \item{\(r=|z|=\sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}\)}
206 \item{\(\theta = \operatorname{arg}(z)\) \quad \colorbox{cas}{On CAS: \texttt{arg(a+bi)}}}
207 \item{\(\operatorname{Arg}(z) \in (-\pi,\pi)\) \quad \bf{(principal argument)}}
208 \item{Multiple representations:\\\(r\operatorname{cis}\theta=r\operatorname{cis}(\theta+2n\pi)\) with \(n \in \mathbb{Z}\) revolutions}
209 \item{\(\operatorname{cis}\pi=-1,\qquad \operatorname{cis}0=1\)}
210 \end{itemize}
211
212 \begin{cas}
213 \-\hspace{1em}\verb|compToTrig(a+bi)| \(\iff\) \verb|cExpand{r·cisX}|
214 \end{cas}
215
216 \subsection*{de Moivres' theorem}
217
218 \[(r \operatorname{cis} \theta)^n = r^n \operatorname{cis}(n\theta) \text{ where } n \in \mathbb{Z}\]
219
220 \subsection*{Complex polynomials}
221
222 Include \(\pm\) for all solutions, incl. imaginary
223
224 \begin{tabularx}{\columnwidth}{ R{0.55} X }
225 \hline
226 Sum of squares & \(\begin{aligned}
227 z^2 + a^2 &= z^2-(ai)^2\\
228 &= (z+ai)(z-ai) \end{aligned}\) \\
229 \hline
230 Sum of cubes & \(a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)\)\\
231 \hline
232 Division & \(P(z)=D(z)Q(z)+R(z)\) \\
233 \hline
234 Remainder theorem & Let \(\alpha \in \mathbb{C}\). Remainder of \(P(z) \div (z-\alpha)\) is \(P(\alpha)\)\\
235 \hline
236 Factor theorem & \(z-\alpha\) is a factor of \(P(z) \iff P(\alpha)=0\) for \(\alpha \in \mathbb{C}\)\\
237 \hline
238 Conjugate root theorem & \(P(z)=0 \text{ at } z=a\pm bi\) (\(\implies\) both \(z_1\) and \(\overline{z_1}\) are solutions)\\
239 \hline
240 \end{tabularx}
241
242 \subsection*{\(n\)th roots}
243
244 \(n\)th roots of \(z=r\operatorname{cis}\theta\) are:
245
246 \[z = r^{\frac{1}{n}} \operatorname{cis}\left(\frac{\theta+2k\pi}{n}\right)\]
247
248 \begin{itemize}
249
250 \item{Same modulus for all solutions}
251 \item{Arguments separated by \(\frac{2\pi}{n} \therefore\) there are \(n\) roots}
252 \item{If one square root is \(a+bi\), the other is \(-a-bi\)}
253 \item{Give one implicit \(n\)th root \(z_1\), function is \(z=z_1^n\)}
254 \item{Solutions of \(z^n=a\) where \(a \in \mathbb{C}\) lie on the circle \(x^2+y^2=\left(|a|^{\frac{1}{n}}\right)^2\) \quad (intervals of \(\frac{2\pi}{n}\))}
255 \end{itemize}
256
257 \noindent For \(0=az^2+bz+c\), use quadratic formula:
258
259 \[z=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\]
260
261 \subsection*{Fundamental theorem of algebra}
262
263 A polynomial of degree \(n\) can be factorised into \(n\) linear factors in \(\mathbb{C}\):
264
265 \[\implies P(z)=a_n(z-\alpha_1)(z-\alpha_2)(z-\alpha_3)\dots(z-\alpha_n)\]
266 \[\text{ where } \alpha_1,\alpha_2,\alpha_3,\dots,\alpha_n \in \mathbb{C}\]
267
268 \subsection*{Argand planes}
269
270 \begin{center}\begin{tikzpicture}[scale=2]
271 \draw [->] (-0.2,0) -- (1.5,0) node [right] {$\operatorname{Re}(z)$};
272 \draw [->] (0,-0.2) -- (0,1.5) node [above] {$\operatorname{Im}(z)$};
273 \coordinate (P) at (1,1);
274 \coordinate (a) at (1,0);
275 \coordinate (b) at (0,1);
276 \coordinate (O) at (0,0);
277 \draw (0,0) -- (P) node[pos=0.5, above left]{\(r\)} node[pos=1, right]{\(\begin{aligned}z&=a+bi\\&=r\operatorname{cis}\theta\end{aligned}\)};
278 \draw [gray, dashed] (1,1) -- (1,0) node[black, pos=1, below]{\(a\)};
279 \draw [gray, dashed] (1,1) -- (0,1) node[black, pos=1, left]{\(b\)};
280 \begin{scope}
281 \path[clip] (O) -- (P) -- (a);
282 \fill[red, opacity=0.5, draw=black] (O) circle (2mm);
283 \node at ($(O)+(20:3mm)$) {$\theta$};
284 \end{scope}
285 \filldraw (P) circle (0.5pt);
286 \end{tikzpicture}\end{center}
287
288 \begin{itemize}
289 \item{Multiplication by \(i \implies\) CCW rotation of \(\frac{\pi}{2}\)}
290 \item{Addition: \(z_1 + z_2 \equiv\) \overrightharp{\(Oz_1\)} + \overrightharp{\(Oz_2\)}}
291 \end{itemize}
292
293 \subsection*{Sketching complex graphs}
294
295 \subsubsection*{Linear}
296
297 \begin{itemize}
298 \item{\(\operatorname{Re}(z)=c\) or \(\operatorname{Im}(z)=c\) (perpendicular bisector)}
299 \item{\(\operatorname{Im}(z)=m\operatorname{Re}(z)\)}
300 \item{\(|z+a|=|z+b| \implies 2(a-b)x=b^2-a^2\)\\Geometric: equidistant from \(a,b\)}
301 \end{itemize}
302
303 \subsubsection*{Circles}
304
305 \begin{itemize}
306 \item \(|z-z_1|^2=c^2|z_2+2|^2\)
307 \item \(|z-(a+bi)|=c \implies (x-a)^2+_(y-b)^2=c^2\)
308 \end{itemize}
309
310 \noindent \textbf{Loci} \qquad \(\operatorname{Arg}(z)<\theta\)
311
312 \begin{center}\begin{tikzpicture}[scale=2,mydot/.style={circle, fill=white, draw, outer sep=0pt, inner sep=1.5pt}]
313 \draw [->] (0,0) -- (1,0) node [right] {$\operatorname{Re}(z)$};
314 \draw [->] (0,-0.5) -- (0,1) node [above] {$\operatorname{Im}(z)$};
315 \draw [<-, dashed, thick, blue] (-1,0) -- (0,0);
316 \draw [->, thick, blue] (0,0) -- (1,1);
317 \fill [gray, opacity=0.2, domain=-1:1, variable=\x] (-1,-0.5) -- (-1,0) -- (0, 0) -- (1,1) -- (1,-0.5) -- cycle;
318 \begin{scope}
319 \path[clip] (0,0) -- (1,1) -- (1,0);
320 \fill[red, opacity=0.5, draw=black] (0,0) circle (2mm);
321 \node at ($(0,0)+(20:3mm)$) {$\frac{\pi}{4}$};
322 \end{scope}
323 \node [font=\footnotesize] at (0.5,-0.25) {\(\operatorname{Arg}(z)\le\frac{\pi}{4}\)};
324 \node [blue, mydot] {};
325 \end{tikzpicture}\end{center}
326
327 \noindent \textbf{Rays} \qquad \(\operatorname{Arg}(z-b)=\theta\)
328
329 \begin{center}\begin{tikzpicture}[scale=2,mydot/.style={circle, fill=white, draw, outer sep=0pt, inner sep=1.5pt}]
330 \draw [->] (-0.75,0) -- (1.5,0) node [right] {$\operatorname{Re}(z)$};
331 \draw [->] (0,-1) -- (0,1) node [above] {$\operatorname{Im}(z)$};
332 \draw [->, thick, brown] (-0.25,0) -- (-0.75,-1);
333 \node [above, font=\footnotesize] at (-0.25,0) {\(\frac{1}{4}\)};
334 \begin{scope}
335 \path[clip] (-0.25,0) -- (-0.75,-1) -- (0,0);
336 \fill[orange, opacity=0.5, draw=black] (-0.25,0) circle (2mm);
337 \end{scope}
338 \node at (-0.08,-0.3) {\(\frac{\pi}{8}\)};
339 \node [font=\footnotesize, left] at (-0.75,-1) {\(\operatorname{Arg}(z+\frac{1}{4})=\frac{\pi}{8}\)};
340 \node [brown, mydot] at (-0.25,0) {};
341 \draw [<->, thick, green] (0,-1) -- (1.5,0.5) node [pos=0.25, black, font=\footnotesize, right] {\(|z-2|=|z-(1+i)|\)};
342 \node [left, font=\footnotesize] at (0,-1) {\(-1\)};
343 \node [below, font=\footnotesize] at (1,0) {\(1\)};
344 \end{tikzpicture}\end{center}
345
346 \section{Vectors}
347 \begin{center}\begin{tikzpicture}
348 \draw [->] (-0.5,0) -- (3,0) node [right] {\(x\)};
349 \draw [->] (0,-0.5) -- (0,3) node [above] {\(y\)};
350 \draw [orange, ->, thick] (0.5,0.5) -- (2.5,2.5) node [pos=0.5, above] {\(\vec{u}\)};
351 \begin{scope}[very thick, every node/.style={sloped,allow upside down}]
352 \draw [gray, dashed, thick] (0.5,0.5) -- (2.5,0.5) node [pos=0.5] {\midarrow} node[black, pos=0.5, below]{\(x\vec{i}\)};
353 \draw [gray, dashed, thick] (2.5,0.5) -- (2.5,2.5) node [pos=0.5] {\midarrow};
354 \end{scope}
355 \node[black, right] at (2.5,1.5) {\(y\vec{j}\)};
356 \end{tikzpicture}\end{center}
357 \subsection*{Column notation}
358
359 \[\begin{bmatrix}x\\ y \end{bmatrix} \iff x\boldsymbol{i} + y\boldsymbol{j}\]
360 \(\begin{bmatrix}x_2-x_1\\ y_2-y_1 \end{bmatrix}\) \quad between \(A(x_1,y_1), \> B(x_2,y_2)\)
361
362 \subsection*{Scalar multiplication}
363
364 \[k\cdot (x\boldsymbol{i}+y\boldsymbol{j})=kx\boldsymbol{i}+ky\boldsymbol{j}\]
365
366 \noindent For \(k \in \mathbb{R}^-\), direction is reversed
367
368 \subsection*{Vector addition}
369 \begin{center}\begin{tikzpicture}[scale=1]
370 \coordinate (A) at (0,0);
371 \coordinate (B) at (2,2);
372 \draw [->, thick, red] (0,0) -- (2,2) node [pos=0.5, below right] {\(\vec{u}=2\vec{i}+2\vec{j}\)};
373 \draw [->, thick, blue] (2,2) -- (1,4) node [pos=0.5, above right] {\(\vec{v}=-\vec{i}+2\vec{j}\)};
374 \draw [->, thick, orange] (0,0) -- (1,4) node [pos=0.5, left] {\(\vec{u}+\vec{v}=\vec{i}+4\vec{j}\)};
375 \end{tikzpicture}\end{center}
376
377 \[(x\boldsymbol{i}+y\boldsymbol{j}) \pm (a\boldsymbol{i}+b\boldsymbol{j})=(x \pm a)\boldsymbol{i}+(y \pm b)\boldsymbol{j}\]
378
379 \begin{itemize}
380 \item Draw each vector head to tail then join lines
381 \item Addition is commutative (parallelogram)
382 \item \(\boldsymbol{u}-\boldsymbol{v}=\boldsymbol{u}+(-\boldsymbol{v}) \implies \overrightharp{AB}=\boldsymbol{b}-\boldsymbol{a}\)
383 \end{itemize}
384
385 \subsection*{Magnitude}
386
387 \[|(x\boldsymbol{i} + y\boldsymbol{j})|=\sqrt{x^2+y^2}\]
388
389 \subsection*{Parallel vectors}
390
391 \[\boldsymbol{u} || \boldsymbol{v} \iff \boldsymbol{u} = k \boldsymbol{v} \text{ where } k \in \mathbb{R} \setminus \{0\}\]
392
393 For parallel vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\):\\
394 \[\boldsymbol{a \cdot b}=\begin{cases}
395 |\boldsymbol{a}||\boldsymbol{b}| \hspace{2.8em} \text{if same direction}\\
396 -|\boldsymbol{a}||\boldsymbol{b}| \hspace{2em} \text{if opposite directions}
397 \end{cases}\]
398 %\includegraphics[width=0.2,height=\textheight]{graphics/parallelogram-vectors.jpg}
399 %\includegraphics[width=1]{graphics/vector-subtraction.jpg}
400
401 \subsection*{Perpendicular vectors}
402
403 \[\boldsymbol{a} \perp \boldsymbol{b} \iff \boldsymbol{a} \cdot \boldsymbol{b} = 0\ \quad \text{(since \(\cos 90 = 0\))}\]
404
405 \subsection*{Unit vector \(|\hat{\boldsymbol{a}}|=1\)}
406 \[\begin{split}\hat{\boldsymbol{a}} & = {\frac{1}{|\boldsymbol{a}|}}\boldsymbol{a} \\ & = \boldsymbol{a} \cdot {|\boldsymbol{a}|}\end{split}\]
407
408 \subsection*{Scalar product \(\boldsymbol{a} \cdot \boldsymbol{b}\)}
409
410
411 \begin{center}\begin{tikzpicture}[scale=2]
412 \draw [->] (0,0) -- (1,0.5) node [pos=0.5, above left] {\(\boldsymbol{b}\)};
413 \draw [->] (0,0) -- (1,0) node [pos=0.5, below] {\(\boldsymbol{a}\)};
414 \begin{scope}
415 \path[clip] (1,0.5) -- (1,0) -- (0,0);
416 \fill[orange, opacity=0.5, draw=black] (0,0) circle (2mm);
417 \node at ($(0,0)+(15:4mm)$) {\(\theta\)};
418 \end{scope}
419 \end{tikzpicture}\end{center}
420 \begin{align*}\boldsymbol{a} \cdot \boldsymbol{b} &= a_1 b_1 + a_2 b_2 \\ &= |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta \\ &\quad (\> 0 \le \theta \le \pi) \text{ - from cosine rule}\end{align*}
421 \noindent\colorbox{cas}{On CAS: \texttt{dotP({[}a\ b\ c{]},\ {[}d\ e\ f{]})}}
422
423 \subsubsection*{Properties}
424
425 \begin{enumerate}
426 \item
427 \(k(\boldsymbol{a\cdot b})=(k\boldsymbol{a})\cdot \boldsymbol{b}=\boldsymbol{a}\cdot (k\boldsymbol{b})\)
428 \item
429 \(\boldsymbol{a \cdot 0}=0\)
430 \item
431 \(\boldsymbol{a} \cdot (\boldsymbol{b} + \boldsymbol{c})=\boldsymbol{a} \cdot \boldsymbol{b} + \boldsymbol{a} \cdot \boldsymbol{c}\)
432 \item
433 \(\boldsymbol{i \cdot i} = \boldsymbol{j \cdot j} = \boldsymbol{k \cdot k}= 1\)
434 \item
435 \(\boldsymbol{a} \cdot \boldsymbol{b} = 0 \quad \implies \quad \boldsymbol{a} \perp \boldsymbol{b}\)
436 \item
437 \(\boldsymbol{a \cdot a} = |\boldsymbol{a}|^2 = a^2\)
438 \end{enumerate}
439
440 \subsection*{Angle between vectors}
441
442 \[\cos \theta = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}| |\boldsymbol{b}|} = \frac{a_1 b_1 + a_2 b_2}{|\boldsymbol{a}| |\boldsymbol{b}|}\]
443
444 \noindent \colorbox{cas}{On CAS:} \texttt{angle([a b c], [a b c])}
445
446 (Action \(\rightarrow\) Vector \(\rightarrow\)Angle)
447
448 \subsection*{Angle between vector and axis}
449
450 \noindent For\(\boldsymbol{a} = a_1 \boldsymbol{i} + a_2 \boldsymbol{j} + a_3 \boldsymbol{k}\)
451 which makes angles \(\alpha, \beta, \gamma\) with positive side of
452 \(x, y, z\) axes:
453 \[\cos \alpha = \frac{a_1}{|\boldsymbol{a}|}, \quad \cos \beta = \frac{a_2}{|\boldsymbol{a}|}, \quad \cos \gamma = \frac{a_3}{|\boldsymbol{a}|}\]
454
455 \noindent \colorbox{cas}{On CAS:} \texttt{angle({[}a\ b\ c{]},\ {[}1\ 0\ 0{]})}\\for angle
456 between \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) and
457 \(x\)-axis
458
459 \subsection*{Projections \& resolutes}
460
461 \begin{tikzpicture}[scale=3]
462 \draw [->, purple] (0,0) -- (1,0.5) node [pos=0.5, above left] {\(\boldsymbol{a}\)};
463 \draw [->, orange] (0,0) -- (1,0) node [pos=0.5, below] {\(\boldsymbol{u}\)};
464 \draw [->, blue] (1,0) -- (2,0) node [pos=0.5, below] {\(\boldsymbol{b}\)};
465 \begin{scope}
466 \path[clip] (1,0.5) -- (1,0) -- (0,0);
467 \fill[orange, opacity=0.5, draw=black] (0,0) circle (2mm);
468 \node at ($(0,0)+(15:4mm)$) {\(\theta\)};
469 \end{scope}
470 \begin{scope}[very thick, every node/.style={sloped,allow upside down}]
471 \draw [gray, dashed, thick] (1,0) -- (1,0.5) node [pos=0.5] {\midarrow} node[black, pos=0.5, right, rotate=-90]{\(\boldsymbol{w}\)};
472 \end{scope}
473 \draw (0,0) coordinate (O)
474 (1,0) coordinate (A)
475 (1,0.5) coordinate (B)
476 pic [draw,red,angle radius=2mm] {right angle = O--A--B};
477 \end{tikzpicture}
478
479 \subsubsection*{\(\parallel\boldsymbol{b}\) (vector projection/resolute)}
480
481 \begin{align*}
482 \boldsymbol{u} & = \frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|^2}\boldsymbol{b} \\
483 & = \left(\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|}\right)\left(\frac{\boldsymbol{b}}{|\boldsymbol{b}|}\right) \\
484 & = (\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}
485 \end{align*}
486
487 \subsubsection*{\(\perp\boldsymbol{b}\) (perpendicular projection)}
488 \[\boldsymbol{w} = \boldsymbol{a} - \boldsymbol{u}\]
489
490 \subsubsection*{\(|\boldsymbol{u}|\) (scalar projection/resolute)}
491 \begin{align*}
492 s &= |\boldsymbol{u}|\\
493 &= \boldsymbol{a} \cdot \hat{\boldsymbol{b}}\\
494 &=\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|}\\
495 &= |\boldsymbol{a}| \cos \theta
496 \end{align*}
497
498 \subsubsection*{Rectangular (\(\parallel,\perp\)) components}
499
500 \[\boldsymbol{a}=\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{\boldsymbol{b}\cdot\boldsymbol{b}}\boldsymbol{b}+\left(\boldsymbol{a}-\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{\boldsymbol{b}\cdot\boldsymbol{b}}\boldsymbol{b}\right)\]
501
502
503 \subsection*{Vector proofs}
504
505 \textbf{Concurrent:} intersection of \(\ge\) 3 lines
506
507 \begin{tikzpicture}
508 \draw [blue] (0,0) -- (1,1);
509 \draw [red] (1,0) -- (0,1);
510 \draw [brown] (0.4,0) -- (0.6,1);
511 \filldraw (0.5,0.5) circle (2pt);
512 \end{tikzpicture}
513
514 \subsubsection*{Collinear points}
515
516 \(\ge\) 3 points lie on the same line
517
518 \begin{tikzpicture}
519 \draw [purple] (0,0) -- (4,1);
520 \filldraw (2,0.5) circle (2pt) node [above] {\(C\)};
521 \filldraw (1,0.25) circle (2pt) node [above] {\(A\)};
522 \filldraw (3,0.75) circle (2pt) node [above] {\(B\)};
523 \coordinate (O) at (2.8,-0.2);
524 \node at (O) [below] {\(O\)};
525 \begin{scope}[->, orange, thick]
526 \draw (O) -- (2,0.5) node [pos=0.5, above, font=\footnotesize, black] {\(\boldsymbol{c}\)};
527 \draw (O) -- (1,0.25) node [pos=0.5, below, font=\footnotesize, black] {\(\boldsymbol{a}\)};
528 \draw (O) -- (3,0.75) node [pos=0.5, right, font=\footnotesize, black] {\(\boldsymbol{b}\)};
529 \end{scope}
530 \end{tikzpicture}
531
532 \begin{align*}
533 \text{e.g. Prove that}\\
534 \overrightharp{AC}=m\overrightharp{AB} \iff \boldsymbol{c}&=(1-m)\boldsymbol{a}+m\boldsymbol{b}\\
535 \implies \boldsymbol{c} &= \overrightharp{OA} + \overrightharp{AC}\\
536 &= \overrightharp{OA} + m\overrightharp{AB}\\
537 &=\boldsymbol{a}+m(\boldsymbol{b}-\boldsymbol{a})\\
538 &=\boldsymbol{a}+m\boldsymbol{b}-m\boldsymbol{a}\\
539 &=(1-m)\boldsymbol{a}+m{b}
540 \end{align*}
541 \begin{align*}
542 \text{Also, } \implies \overrightharp{OC} &= \lambda \vec{OA} + \mu \overrightharp{OB} \\
543 \text{where } \lambda + \mu &= 1\\
544 \text{If } C \text{ lies along } \overrightharp{AB}, & \implies 0 < \mu < 1
545 \end{align*}
546
547
548 \subsubsection*{Parallelograms}
549
550 \begin{center}\begin{tikzpicture}
551 \coordinate (O) at (0,0) node [below left] {\(O\)};
552 \coordinate (A) at (4,0);
553 \coordinate (B) at (6,2);
554 \coordinate (C) at (2,2);
555 \coordinate (D) at (6,0);
556
557 \draw[postaction={decorate}, decoration={markings, mark=at position 0.6 with {\arrow{>>}}}] (O)--(A) node [below left] {\(A\)};
558 \draw[postaction={decorate}, decoration={markings,mark=at position 0.5 with {\arrow{>}}}] (A)--(B) node [above right] {\(B\)};
559 \draw[postaction={decorate}, decoration={markings, mark=at position 0.6 with {\arrow{>>}}}] (B)--(C) node [above left] {\(C\)};
560 \draw[postaction={decorate}, decoration={markings,mark=at position 0.5 with {\arrow{>}}}] (C)--(O);
561
562 \draw [gray, dashed] (O) -- (B) node [pos=0.75] {\(\diagdown\diagdown\)} node [pos=0.25] {\(\diagdown\diagdown\)};
563 \draw [gray, dashed] (A) -- (C) node [pos=0.75] {\(\diagup\)} node [pos=0.25] {\(\diagup\)};
564 \begin{scope}
565 \path[clip] (C) -- (A) -- (O);
566 \fill[orange, opacity=0.5, draw=black] (0,0) circle (4mm);
567 \node at ($(0,0)+(20:8mm)$) {\(\theta\)};
568 \end{scope}
569 \draw [gray, thick, dotted] (B) -- (D) node [pos=0.5, right, black, font=\footnotesize] {\(|\boldsymbol{c}|\sin\theta\)} (A) -- (D) node [pos=0.5, below, black, font=\footnotesize] {\(|\boldsymbol{c}|\cos\theta\)};
570 \draw pic [draw,thick,red,angle radius=2mm] {right angle=O--D--B};
571 \end{tikzpicture}\end{center}
572
573 \begin{itemize}
574 \item
575 Diagonals \(\overrightharp{OB}, \overrightharp{AC}\) bisect each other
576 \item
577 If diagonals are equal length, it is a rectangle
578 \item
579 \(|\overrightharp{OB}|^2 + |\overrightharp{CA}|^2 = |\overrightharp{OA}|^2 + |\overrightharp{AB}|^2 + |\overrightharp{CB}|^2 + |\overrightharp{OC}|^2\)
580 \item
581 Area \(=\boldsymbol{c} \cdot \boldsymbol{a}\)
582 \end{itemize}
583
584 \subsubsection*{Useful vector properties}
585
586 \begin{itemize}
587 \item
588 \(\boldsymbol{a} \parallel \boldsymbol{b} \implies \boldsymbol{b}=k\boldsymbol{a}\) for some
589 \(k \in \mathbb{R} \setminus \{0\}\)
590 \item
591 If \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are parallel with at
592 least one point in common, then they lie on the same straight line
593 \item
594 \(\boldsymbol{a} \perp \boldsymbol{b} \iff \boldsymbol{a} \cdot \boldsymbol{b}=0\)
595 \item
596 \(\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2\)
597 \end{itemize}
598
599 \subsection*{Linear dependence}
600
601 \(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\) are linearly dependent if they are \(\nparallel\) and:
602 \begin{align*}
603 0&=k\boldsymbol{a}+l\boldsymbol{b}+m\boldsymbol{c}\\
604 \therefore \boldsymbol{c} &= m\boldsymbol{a} + n\boldsymbol{b} \quad \text{(simultaneous)}
605 \end{align*}
606
607 \noindent \(\boldsymbol{a}, \boldsymbol{b},\) and \(\boldsymbol{c}\) are linearly
608 independent if no vector in the set is expressible as a linear
609 combination of other vectors in set, or if they are parallel.
610
611 \subsection*{Three-dimensional vectors}
612
613 Right-hand rule for axes: \(z\) is up or out of page.
614
615 \tdplotsetmaincoords{60}{120}
616 \begin{center}\begin{tikzpicture} [scale=3, tdplot_main_coords, axis/.style={->,thick},
617 vector/.style={-stealth,red,very thick},
618 vector guide/.style={dashed,gray,thick}]
619
620 %standard tikz coordinate definition using x, y, z coords
621 \coordinate (O) at (0,0,0);
622
623 %tikz-3dplot coordinate definition using x, y, z coords
624
625 \pgfmathsetmacro{\ax}{1}
626 \pgfmathsetmacro{\ay}{1}
627 \pgfmathsetmacro{\az}{1}
628
629 \coordinate (P) at (\ax,\ay,\az);
630
631 %draw axes
632 \draw[axis] (0,0,0) -- (1,0,0) node[anchor=north east]{$x$};
633 \draw[axis] (0,0,0) -- (0,1,0) node[anchor=north west]{$y$};
634 \draw[axis] (0,0,0) -- (0,0,1) node[anchor=south]{$z$};
635
636 %draw a vector from O to P
637 \draw[vector] (O) -- (P);
638
639 %draw guide lines to components
640 \draw[vector guide] (O) -- (\ax,\ay,0);
641 \draw[vector guide] (\ax,\ay,0) -- (P);
642 \draw[vector guide] (P) -- (0,0,\az);
643 \draw[vector guide] (\ax,\ay,0) -- (0,\ay,0);
644 \draw[vector guide] (\ax,\ay,0) -- (0,\ay,0);
645 \draw[vector guide] (\ax,\ay,0) -- (\ax,0,0);
646 \node[tdplot_main_coords,above right]
647 at (\ax,\ay,\az){(\ax, \ay, \az)};
648 \end{tikzpicture}\end{center}
649
650 \subsection*{Parametric vectors}
651
652 Parametric equation of line through point \((x_0, y_0, z_0)\) and
653 parallel to \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) is:
654
655 \[\begin{cases}x = x_o + a \cdot t \\ y = y_0 + b \cdot t \\ z = z_0 + c \cdot t\end{cases}\]
656
657 \section{Circular functions}
658
659 \(\sin(bx)\) or \(\cos(bx)\): period \(=\frac{2\pi}{b}\)
660
661 \noindent \(\tan(nx)\): period \(=\frac{\pi}{n}\)\\
662 \indent\indent\indent asymptotes at \(x=\frac{(2k+1)\pi}{2n} \> \vert \> k \in \mathbb{Z}\)
663
664 \subsection*{Reciprocal functions}
665
666 \subsubsection*{Cosecant}
667
668 \[\operatorname{cosec} \theta = \frac{1}{\sin \theta} \> \vert \> \sin \theta \ne 0\]
669
670 \begin{itemize}
671 \item
672 \textbf{Domain} \(= \mathbb{R} \setminus {n\pi : n \in \mathbb{Z}}\)
673 \item
674 \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\)
675 \item
676 \textbf{Turning points} at
677 \(\theta = \frac{(2n + 1)\pi}{2} \> \vert \> n \in \mathbb{Z}\)
678 \item
679 \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
680 \end{itemize}
681
682 \subsubsection*{Secant}
683
684\begin{tikzpicture}
685 \begin{axis}[ytick={-1,1}, yticklabels={\(-1\), \(1\)}, xmin=-7,xmax=7,ymin=-3,ymax=3,enlargelimits=true, xtick={-6.2830, -3.1415, 3.1415, 6.2830},xticklabels={\(-2\pi\), \(-\pi\), \(\pi\), \(2\pi\)}]
686% \addplot[blue, domain=-6.2830:6.2830,unbounded coords=jump,samples=80] {sec(deg(x))};
687 \addplot[blue, restrict y to domain=-10:10, domain=-7:7,samples=100] {sec(deg(x))} node [pos=0.93, black, right] {\(\operatorname{sec} x\)};
688 \addplot[red, dashed, domain=-7:7,samples=100] {cos(deg(x))};
689 \draw [gray, dotted, thick] ({axis cs:1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:1.5708,0}|-{rel axis cs:0,1});
690 \draw [gray, dotted, thick] ({axis cs:4.71239,0}|-{rel axis cs:0,0}) -- ({axis cs:4.71239,0}|-{rel axis cs:0,1});
691 \draw [gray, dotted, thick] ({axis cs:-4.71239,0}|-{rel axis cs:0,0}) -- ({axis cs:-4.71239,0}|-{rel axis cs:0,1});
692 \draw [gray, dotted, thick] ({axis cs:-1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:-1.5708,0}|-{rel axis cs:0,1});
693\end{axis}
694 \node [black] at (7,3.5) {\(\cos x\)};
695\end{tikzpicture}
696
697 \[\operatorname{sec} \theta = \frac{1}{\cos \theta} \> \vert \> \cos \theta \ne 0\]
698
699 \begin{itemize}
700
701 \item
702 \textbf{Domain}
703 \(= \mathbb{R} \setminus \frac{(2n + 1) \pi}{2} : n \in \mathbb{Z}\}\)
704 \item
705 \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\)
706 \item
707 \textbf{Turning points} at
708 \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
709 \item
710 \textbf{Asymptotes} at
711 \(\theta = \frac{(2n + 1) \pi}{2} \> \vert \> n \in \mathbb{Z}\)
712 \end{itemize}
713
714 \subsubsection*{Cotangent}
715
716\begin{tikzpicture}
717 \begin{axis}[xmin=-3,xmax=3,ymin=-1.5,ymax=1.5,enlargelimits=true, xtick={-3.1415, -1.5708, 1.5708, 3.1415},xticklabels={\(-\pi\), \(-\frac{\pi}{2}\), \(\frac{\pi}{2}\), \(\pi\)}]
718 \addplot[blue, smooth, domain=-3:-0.1,unbounded coords=jump,samples=105] {cot(deg(x))} node [pos=0.3, left] {\(\operatorname{cot} x\)};
719\addplot[blue, smooth, domain=0.1:3,unbounded coords=jump,samples=105] {cot(deg(x))};
720\addplot[red, smooth, dashed] gnuplot [domain=-1.5:1.5,unbounded coords=jump,samples=105] {tan(x)};
721\addplot[red, smooth, dashed] gnuplot [domain=-3.5:-1.8,unbounded coords=jump,samples=105] {tan(x)} node [pos=0.5, right] {\(\tan x\)};
722\addplot[red, smooth, dashed] gnuplot [domain=1.8:3.5,unbounded coords=jump,samples=105] {tan(x)};
723 \draw [thick, red, dotted] ({axis cs:-1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:-1.5708,0}|-{rel axis cs:0,1});
724 \draw [thick, blue, dotted] ({axis cs:-3.1415,0}|-{rel axis cs:0,0}) -- ({axis cs:-3.1415,0}|-{rel axis cs:0,1});
725 \draw [thick, blue, dotted] ({axis cs:0,0}|-{rel axis cs:0,0}) -- ({axis cs:0,0}|-{rel axis cs:0,1});
726 \draw [thick, blue, dotted] ({axis cs:3.1415,0}|-{rel axis cs:0,0}) -- ({axis cs:3.1415,0}|-{rel axis cs:0,1});
727 \draw [thick, red, dotted] ({axis cs:1.5708,0}|-{rel axis cs:0,0}) -- ({axis cs:1.5708,0}|-{rel axis cs:0,1});
728\end{axis}
729\end{tikzpicture}
730
731 \[\operatorname{cot} \theta = {{\cos \theta} \over {\sin \theta}} \> \vert \> \sin \theta \ne 0\]
732
733 \begin{itemize}
734
735 \item
736 \textbf{Domain} \(= \mathbb{R} \setminus \{n \pi: n \in \mathbb{Z}\}\)
737 \item
738 \textbf{Range} \(= \mathbb{R}\)
739 \item
740 \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
741 \end{itemize}
742
743 \subsubsection*{Symmetry properties}
744
745 \[\begin{split}
746 \operatorname{sec} (\pi \pm x) & = -\operatorname{sec} x \\
747 \operatorname{sec} (-x) & = \operatorname{sec} x \\
748 \operatorname{cosec} (\pi \pm x) & = \mp \operatorname{cosec} x \\
749 \operatorname{cosec} (-x) & = - \operatorname{cosec} x \\
750 \operatorname{cot} (\pi \pm x) & = \pm \operatorname{cot} x \\
751 \operatorname{cot} (-x) & = - \operatorname{cot} x
752 \end{split}\]
753
754 \subsubsection*{Complementary properties}
755
756 \[\begin{split}
757 \operatorname{sec} \left({\pi \over 2} - x\right) & = \operatorname{cosec} x \\
758 \operatorname{cosec} \left({\pi \over 2} - x\right) & = \operatorname{sec} x \\
759 \operatorname{cot} \left({\pi \over 2} - x\right) & = \tan x \\
760 \tan \left({\pi \over 2} - x\right) & = \operatorname{cot} x
761 \end{split}\]
762
763 \subsubsection*{Pythagorean identities}
764
765 \[\begin{split}
766 1 + \operatorname{cot}^2 x & = \operatorname{cosec}^2 x, \quad \text{where } \sin x \ne 0 \\
767 1 + \tan^2 x & = \operatorname{sec}^2 x, \quad \text{where } \cos x \ne 0
768 \end{split}\]
769
770 \subsection*{Compound angle formulas}
771
772 \[\cos(x \pm y) = \cos x + \cos y \mp \sin x \sin y\]
773 \[\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y\]
774 \[\tan(x \pm y) = {{\tan x \pm \tan y} \over {1 \mp \tan x \tan y}}\]
775
776 \subsection*{Double angle formulas}
777
778 \[\begin{split}
779 \cos 2x &= \cos^2 x - \sin^2 x \\
780 & = 1 - 2\sin^2 x \\
781 & = 2 \cos^2 x -1
782 \end{split}\]
783
784 \[\sin 2x = 2 \sin x \cos x\]
785
786 \[\tan 2x = {{2 \tan x} \over {1 - \tan^2 x}}\]
787
788 \subsection*{Inverse circular functions}
789
790 \begin{tikzpicture}
791 \begin{axis}[ymin=-2, ymax=4, xmin=-1.1, xmax=1.1, ytick={-1.5708, 1.5708, 3.14159},yticklabels={$-\frac{\pi}{2}$, $\frac{\pi}{2}$, $\pi$}]
792 \addplot[color=red, smooth] gnuplot [domain=-2:2,unbounded coords=jump,samples=500] {asin(x)} node [pos=0.25, below right] {\(\sin^{-1}x\)};
793 \addplot[color=blue, smooth] gnuplot [domain=-2:2,unbounded coords=jump,samples=500] {acos(x)} node [pos=0.25, below left] {\(\cos^{-1}x\)};
794 \addplot[mark=*, red] coordinates {(-1,-1.5708)} node[right, font=\footnotesize]{\((-1,-\frac{\pi}{2})\)} ;
795 \addplot[mark=*, red] coordinates {(1,1.5708)} node[left, font=\footnotesize]{\((1,\frac{\pi}{2})\)} ;
796 \addplot[mark=*, blue] coordinates {(1,0)};
797 \addplot[mark=*, blue] coordinates {(-1,3.1415)} node[right, font=\footnotesize]{\((-1,\pi)\)} ;
798 \end{axis}
799 \end{tikzpicture}\\
800
801 Inverse functions: \(f(f^{-1}(x)) = x\) (restrict domain)
802
803 \[\sin^{-1}: [-1, 1] \rightarrow \mathbb{R}, \quad \sin^{-1} x = y\]
804 \hfill where \(\sin y = x, \> y \in [{-\pi \over 2}, {\pi \over 2}]\)
805
806 \[\cos^{-1}: [-1,1] \rightarrow \mathbb{R}, \quad \cos^{-1} x = y\]
807 \hfill where \(\cos y = x, \> y \in [0, \pi]\)
808
809 \[\tan^{-1}: \mathbb{R} \rightarrow \mathbb{R}, \quad \tan^{-1} x = y\]
810 \hfill where \(\tan y = x, \> y \in \left(-{\pi \over 2}, {\pi \over 2}\right)\)
811
812 \begin{tikzpicture}
813 \begin{axis}[yticklabel style={yshift=1.0pt, anchor=north east},x=0.1cm, y=1cm, ymax=2, ymin=-2, xticklabels={}, ytick={-1.5708,1.5708},yticklabels={\(-\frac{\pi}{2}\),\(\frac{\pi}{2}\)}]
814 \addplot[color=orange, smooth] gnuplot [domain=-35:35, unbounded coords=jump,samples=350] {atan(x)} node [pos=0.5, above left] {\(\tan^{-1}x\)};
815 \addplot[gray, dotted, thick, domain=-35:35] {1.5708} node [black, font=\footnotesize, below right, pos=0] {\(y=\frac{\pi}{2}\)};
816 \addplot[gray, dotted, thick, domain=-35:35] {-1.5708} node [black, font=\footnotesize, above left, pos=1] {\(y=-\frac{\pi}{2}\)};
817 \end{axis}
818 \end{tikzpicture}
819\columnbreak
820 \section{Differential calculus}
821
822 \subsection*{Limits}
823
824 \[\lim_{x \rightarrow a}f(x)\]
825 \(L^-,\quad L^+\) \qquad limit from below/above\\
826 \(\lim_{x \to a} f(x)\) \quad limit of a point\\
827
828 \noindent For solving \(x\rightarrow\infty\), put all \(x\) terms in denominators\\
829 e.g. \[\lim_{x \rightarrow \infty}{{2x+3} \over {x-2}}={{2+{3 \over x}} \over {1-{2 \over x}}}={2 \over 1} = 2\]
830
831 \subsubsection*{Limit theorems}
832
833 \begin{enumerate}
834 \item
835 For constant function \(f(x)=k\), \(\lim_{x \rightarrow a} f(x) = k\)
836 \item
837 \(\lim_{x \rightarrow a} (f(x) \pm g(x)) = F \pm G\)
838 \item
839 \(\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G\)
840 \item
841 \(\therefore \lim_{x \rightarrow a} c \times f(x)=cF\) where \(c=\) constant
842 \item
843 \({\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0\)
844 \item
845 \(f(x)\) is continuous \(\iff L^-=L^+=f(x) \> \forall x\)
846 \end{enumerate}
847
848 \subsection*{Gradients of secants and tangents}
849
850 \textbf{Secant (chord)} - line joining two points on curve\\
851 \textbf{Tangent} - line that intersects curve at one point
852
853 \subsection*{First principles derivative}
854
855 \[f^\prime(x) = \lim_{\delta x \rightarrow 0}{\delta y \over \delta x}={\frac{dy}{dx}}\]
856
857 \subsubsection*{Logarithmic identities}
858
859 \(\log_b (xy)=\log_b x + \log_b y\)\\
860 \(\log_b x^n = n \log_b x\)\\
861 \(\log_b y^{x^n} = x^n \log_b y\)
862
863 \subsubsection*{Index identities}
864
865 \(b^{m+n}=b^m \cdot b^n\)\\
866 \((b^m)^n=b^{m \cdot n}\)\\
867 \((b \cdot c)^n = b^n \cdot c^n\)\\
868 \({a^m \div a^n} = {a^{m-n}}\)
869
870 \subsection*{Reciprocal derivatives}
871
872 \[\frac{1}{\frac{dy}{dx}} = \frac{dx}{dy}\]
873
874 \subsection*{Differentiating \(x=f(y)\)}
875 Find \(\dfrac{dx}{dy}\), then \(\dfrac{dy}{dx} = \dfrac{1}{\left(\dfrac{dx}{dy}\right)}\)
876
877 \subsection*{Second derivative}
878 \begin{align*}f(x) \longrightarrow &f^\prime (x) \longrightarrow f^{\prime\prime}(x)\\
879 \implies y \longrightarrow &\frac{dy}{dx} \longrightarrow \frac{d^2 y}{dx^2}\end{align*}
880
881 \noindent Order of polynomial \(n\)th derivative decrements each time the derivative is taken
882
883 \subsubsection*{Points of Inflection}
884
885 \emph{Stationary point} - i.e.
886 \(f^\prime(x)=0\)\\
887 \emph{Point of inflection} - max \(|\)gradient\(|\) (i.e.
888 \(f^{\prime\prime} = 0\))
889
890 \subsubsection*{Strictly increasing/decreasing}
891
892 For \(x_2\) and \(x_1\) where \(x_2 > x_1\):
893
894 \textbf{strictly increasing}\\
895 \-\hspace{1em}where \(f(x_2) > f(x_1)\) or \(f^\prime(x)>0\)
896
897 \textbf{strictly decreasing}\\
898 \hspace{1em}where \(f(x_2) < f(x_1)\) or \(f^\prime(x)<0\)
899 \begin{warning}
900 Endpoints are included, even where \(\boldsymbol{\frac{dy}{dx}=0}\)
901 \end{warning}
902
903
904 \begin{table*}[ht]
905 \centering
906 \begin{tabularx}{\textwidth}{|r|Y|Y|Y|}
907 \hline
908 \rowcolor{lblue}
909 & \adjustbox{margin=0 1ex, valign=m}{\centering\(\dfrac{d^2 y}{dx^2} > 0\)} & \adjustbox{margin=0 1ex, valign=m}{\centering \(\dfrac{d^2y}{dx^2}<0\)} & \adjustbox{margin=0 1ex, valign=m}{\(\dfrac{d^2y}{dx^2}=0\) (inflection)} \\
910 \hline
911 \(\dfrac{dy}{dx}>0\) &
912 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-3, xmax=0.8, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(e^(x)}; \addplot[red] {x/2.5+0.75}; \end{axis}\end{tikzpicture} \\Rising (concave up)}&
913 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=0.1, xmax=4, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(ln(x))}; \addplot[red] {x/1.5-0.56}; \end{axis}\end{tikzpicture} \\Rising (concave down)}&
914 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1.5, xmax=1.5, scale=0.2, samples=100] \addplot[blue] {(sin((deg x)))}; \addplot[red] {x}; \end{axis}\end{tikzpicture} \\Rising inflection point}\\
915 \hline
916 \(\dfrac{dy}{dx}<0\) &
917 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-.5, xmax=1, ymin=-.5, ymax=.5, scale=0.2, samples=100] \addplot[blue] {1/(x+1)-1}; \addplot[red] {-x}; \end{axis}\end{tikzpicture} \\Falling (concave up)}&
918 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=0, xmax=1.5, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(2-x*x)^(1/2)}; \addplot[red] {-x+2}; \end{axis}\end{tikzpicture} \\Falling (concave down)}&
919 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=1.5, xmax=4.5, scale=0.2, samples=100] \addplot[blue] {(sin((deg x)))}; \addplot[red] {-x+3.1415}; \end{axis}\end{tikzpicture} \\Falling inflection point}\\
920 \hline
921 \(\dfrac{dy}{dx}=0\)&
922 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1, xmax=1, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(x*x)}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \\Local minimum}& \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1, xmax=1, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(-x*x)}; \addplot[red, very thick] {0}; \end{axis}\end{tikzpicture} \\Local maximum}&
923 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1, xmax=1, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(x*x*x)}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \(\>\) \begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1, xmax=1, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(-x*x*x)}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \\Stationary inflection point}\\
924 \hline
925 \end{tabularx}
926 \end{table*}
927 \begin{itemize}
928 \item
929 \(f^\prime (a) = 0, \> f^{\prime\prime}(a) > 0\) \\
930 \textbf{local min} at \((a, f(a))\) (concave up)
931 \item
932 \(f^\prime (a) = 0, \> f^{\prime\prime} (a) < 0\) \\
933 \textbf{local max} at \((a, f(a))\) (concave down)
934 \item
935 \(f^{\prime\prime}(a) = 0\) \\
936 \textbf{point of inflection} at \((a, f(a))\)
937 \item
938 \(f^{\prime\prime}(a) = 0, \> f^\prime(a)=0\) \\
939 stationary point of inflection at \((a, f(a)\)
940 \end{itemize}
941
942 \subsection*{Implicit Differentiation}
943
944 \noindent Used for differentiating circles etc.
945
946 If \(p\) and \(q\) are expressions in \(x\) and \(y\) such that \(p=q\),
947 for all \(x\) and \(y\), then:
948
949 \[{\frac{dp}{dx}} = {\frac{dq}{dx}} \quad \text{and} \quad {\frac{dp}{dy}} = {\frac{dq}{dy}}\]
950
951 \begin{cas}
952 Action \(\rightarrow\) Calculation \\
953 \-\hspace{1em}\texttt{impDiff(y\^{}2+ax=5,\ x,\ y)}
954 \end{cas}
955
956 \subsection*{Slope fields}
957
958 \begin{tikzpicture}[declare function={diff(\x,\y) = \x+\y;}]
959 \begin{axis}[axis equal, ymin=-4, ymax=4, xmin=-4, xmax=4, ticks=none, enlargelimits=true, ]
960 \addplot[thick, orange, domain=-4:2] {e^(x)-x-1};
961 \pgfplotsinvokeforeach{-4,...,4}{%
962 \draw[gray] ( {#1 -0.1}, {4 - diff(#1, 4) *0.1}) -- ( {#1 +0.1}, {4 + diff(#1, 4) *0.1});
963 \draw[gray] ( {#1 -0.1}, {3 - diff(#1, 3) *0.1}) -- ( {#1 +0.1}, {3 + diff(#1, 3) *0.1});
964 \draw[gray] ( {#1 -0.1}, {2 - diff(#1, 2) *0.1}) -- ( {#1 +0.1}, {2 + diff(#1, 2) *0.1});
965 \draw[gray] ( {#1 -0.1}, {1 - diff(#1, 1) *0.1}) -- ( {#1 +0.1}, {1 + diff(#1, 1) *0.1});
966 \draw[gray] ( {#1 -0.1}, {0 - diff(#1, 0) *0.1}) -- ( {#1 +0.1}, {0 + diff(#1, 0) *0.1});
967 \draw[gray] ( {#1 -0.1}, {-1 - diff(#1, -1) *0.1}) -- ( {#1 +0.1}, {-1 + diff(#1, -1) *0.1});
968 \draw[gray] ( {#1 -0.1}, {-2 - diff(#1, -2) *0.1}) -- ( {#1 +0.1}, {-2 + diff(#1, -2) *0.1});
969 \draw[gray] ( {#1 -0.1}, {-3 - diff(#1, -3) *0.1}) -- ( {#1 +0.1}, {-3 + diff(#1, -3) *0.1});
970 \draw[gray] ( {#1 -0.1}, {-4 - diff(#1, -4) *0.1}) -- ( {#1 +0.1}, {-4 + diff(#1, -4) *0.1});
971 }
972 \end{axis}
973 \end{tikzpicture}
974
975 \subsection*{Parametric equations}
976
977
978 \begin{align*}
979 \dfrac{dy}{dt} &= \dfrac{dy}{dx} \cdot \dfrac{dx}{dt} \\
980 \therefore \dfrac{dy}{dx} &= \dfrac{\left(\dfrac{dy}{dt}\right)}{\left(\dfrac{dx}{dt}\right)} \text{ provided } \dfrac{dx}{dt} \ne 0 \\
981 \dfrac{d^2y}{dx^2} &= \dfrac{\left(\dfrac{dy^\prime}{dt}\right)}{\left(\dfrac{dx}{dt}\right)} \text{ where } y^\prime = \dfrac{dy}{dx}
982 \end{align*}
983
984 \subsection*{Integration}
985
986 \[\int f(x) \cdot dx = F(x) + c \quad \text{where } F^\prime(x) = f(x)\]
987
988 \subsubsection*{Definite integrals}
989
990 \[\int_a^b f(x) \cdot dx = [F(x)]_a^b=F(b)-F(a)\]
991
992 \begin{itemize}
993
994 \item
995 Signed area enclosed by\\
996 \(\> y=f(x), \quad y=0, \quad x=a, \quad x=b\).
997 \item
998 \emph{Integrand} is \(f\).
999 \end{itemize}
1000
1001 \subsubsection*{Properties}
1002
1003 \begin{align*}
1004 \int^b_a f(x) \> dx &= \int^c_a f(x) \> dx + \int^b_c f(x) \> dx \\
1005 \int^a_a f(x) \> dx &= 0 \\
1006 \int^b_a k \cdot f(x) \> dx &= k \int^b_a f(x) \> dx \\
1007 \int^b_a f(x) \pm g(x) \> dx &= \int^b_a f(x) \> dx \pm \int^b_a g(x) \> dx \\
1008 \int^b_a f(x) \> dx &= - \int^a_b f(x) \> dx \\
1009 \end{align*}
1010
1011 \subsection*{Integration by substitution}
1012
1013 \[\int f(u) {\frac{du}{dx}} \cdot dx = \int f(u) \cdot du\]
1014
1015 \begin{warning}
1016 \(\boldsymbol{f(u)}\) must be 1:1 \(\boldsymbol{\implies}\) one \(\boldsymbol{x}\) for each \(\boldsymbol{y}\)
1017 \end{warning}
1018 \begin{align*}\text{e.g. for } y&=\int(2x+1)\sqrt{x+4} \cdot dx\\
1019 \text{let } u&=x+4\\
1020 \implies& {\frac{du}{dx}} = 1\\
1021 \implies& x = u - 4\\
1022 \text{then } &y=\int (2(u-4)+1)u^{\frac{1}{2}} \cdot du\\
1023 &\text{(solve as normal integral)}
1024 \end{align*}
1025
1026 \subsubsection*{Definite integrals by substitution}
1027
1028 For \(\int^b_a f(x) {\frac{du}{dx}} \cdot dx\), evaluate new \(a\) and
1029 \(b\) for \(f(u) \cdot du\).
1030
1031 \subsubsection*{Trigonometric integration}
1032
1033 \[\sin^m x \cos^n x \cdot dx\]
1034
1035 \paragraph{\textbf{\(m\) is odd:}}
1036 \(m=2k+1\) where \(k \in \mathbb{Z}\)\\
1037 \(\implies \sin^{2k+1} x = (\sin^2 z)^k \sin x = (1 - \cos^2 x)^k \sin x\)\\
1038 Substitute \(u=\cos x\)
1039
1040 \paragraph{\textbf{\(n\) is odd:}}
1041 \(n=2k+1\) where \(k \in \mathbb{Z}\)\\
1042 \(\implies \cos^{2k+1} x = (\cos^2 x)^k \cos x = (1-\sin^2 x)^k \cos x\)\\
1043 Substitute \(u=\sin x\)
1044
1045 \paragraph{\textbf{\(m\) and \(n\) are even:}}
1046 use identities...
1047
1048 \begin{itemize}
1049
1050 \item
1051 \(\sin^2x={1 \over 2}(1-\cos 2x)\)
1052 \item
1053 \(\cos^2x={1 \over 2}(1+\cos 2x)\)
1054 \item
1055 \(\sin 2x = 2 \sin x \cos x\)
1056 \end{itemize}
1057
1058 \subsection*{Partial fractions}
1059
1060 To factorise \(f(x) = \frac{\delta}{\alpha \cdot \beta}\):
1061 \begin{align*}
1062 \dfrac{\delta}{\alpha \cdot \beta \cdot \gamma} &= \dfrac{A}{\alpha} + \dfrac{B}{\beta} + \dfrac{C}{\gamma} \tag{1} \\
1063 \text{Multiply by } & (\alpha \cdot \beta \cdot \gamma) \text{:} \\
1064 \delta &= \beta\gamma A + \alpha\gamma B +\alpha\beta C \tag{2} \\
1065 \text{Substitute } x &= \{\alpha, \beta, \gamma\} \text{ into (2) to find denominators}
1066 \end{align*}
1067
1068 \subsubsection*{Repeated linear factors}
1069
1070 \[ \dfrac{p(x)}{(x-a)^n} = \dfrac{A_1}{(x-a)} + \dfrac{A_2}{(x-a)^2} + \dots + \dfrac{A_n}{(x-a)^n} \]
1071
1072 \subsubsection*{Irreducible quadratic factors}
1073
1074 \[ \text{e.g. } \dfrac{3x-4}{(2x-3)(x^2+5)} = \dfrac{A}{2x-3} + \dfrac{Bx+C}{x^2+5} \]
1075
1076 \begin{cas}
1077 Action \(\rightarrow\) Transformation:\\
1078 \-\hspace{1em} \texttt{expand(..., x)}
1079
1080 To reverse, use \texttt{combine(...)}
1081 \end{cas}
1082
1083 \subsection*{Graphing integrals on CAS}
1084
1085 \begin{cas}
1086 \textbf{In main:} Interactive \(\rightarrow\) Calculation \(\rightarrow\) \(\int\)\\
1087 For restrictions, \texttt{Define\ f(x)=...} then \texttt{f(x)\textbar{}x\textgreater{}...}
1088 \end{cas}
1089
1090 \subsection*{Applications of antidifferentiation}
1091
1092 \begin{itemize}
1093
1094 \item
1095 \(x\)-intercepts of \(y=f(x)\) identify \(x\)-coordinates of
1096 stationary points on \(y=F(x)\)
1097 \item
1098 nature of stationary points is determined by sign of \(y=f(x)\) on
1099 either side of its \(x\)-intercepts
1100 \item
1101 if \(f(x)\) is a polynomial of degree \(n\), then \(F(x)\) has degree
1102 \(n+1\)
1103 \end{itemize}
1104
1105 To find stationary points of a function, substitute \(x\) value of given
1106 point into derivative. Solve for \({\frac{dy}{dx}}=0\). Integrate to find
1107 original function.
1108
1109 \subsection*{Solids of revolution}
1110
1111 Approximate as sum of infinitesimally-thick cylinders
1112
1113 \subsubsection*{Rotation about \(\boldsymbol{x}\)-axis}
1114
1115 \[ V = \pi\int^{x=b}_{x=a} f(x)^2 \> dx \]
1116
1117 \subsubsection*{Rotation about \(\boldsymbol{y}\)-axis}
1118
1119 \begin{align*}
1120 V &= \pi \int^{y=b}_{y=a} x^2 \> dy \\
1121 &= \pi \int^{y=b}_{y=a} (f(y))^2 \> dy
1122 \end{align*}
1123
1124 \subsubsection*{Regions not bound by \(\boldsymbol{y=0}\)}
1125
1126 \[V = \pi \int^b_a f(x)^2 - g(x)^2 \> dx\]
1127 \hfill where \(f(x) > g(x)\)
1128
1129 \subsection*{Length of a curve}
1130
1131 \[L = \int^b_a \sqrt{1 + ({\frac{dy}{dx}})^2} \> dx \quad \text{(Cartesian)}\]
1132
1133 \[L = \int^b_a \sqrt{{\frac{dx}{dt}} + ({\frac{dy}{dt}})^2} \> dt \quad \text{(parametric)}\]
1134
1135 \begin{cas}
1136 \begin{enumerate}[label=\alph*), leftmargin=5mm]
1137 \item Evaluate formula
1138 \item Interactive \(\rightarrow\) Calculation \(\rightarrow\) Line \(\rightarrow\) \texttt{arcLen}
1139 \end{enumerate}
1140 \end{cas}
1141
1142 \subsection*{Rates}
1143
1144 \subsubsection*{Gradient at a point on parametric curve}
1145
1146 \[{\frac{dy}{dx}} = {{\frac{dy}{dt}} \div {\frac{dx}{dt}}} \> \vert \> {\frac{dx}{dt}} \ne 0 \text{ (chain rule)}\]
1147
1148 \[\frac{d^2}{dx^2} = \frac{d(y^\prime)}{dx} = {\frac{dy^\prime}{dt} \div {\frac{dx}{dt}}} \> \vert \> y^\prime = {\frac{dy}{dx}}\]
1149
1150 \subsection*{Rational functions}
1151
1152 \[f(x) = \frac{P(x)}{Q(x)} \quad \text{where } P, Q \text{ are polynomial functions}\]
1153
1154 \subsection*{Fundamental theorem of calculus}
1155
1156 If \(f\) is continuous on \([a, b]\), then
1157
1158 \[\int^b_a f(x) \> dx = F(b) - F(a)\]
1159 \hfill where \(F = \int f \> dx\)
1160
1161 \subsection*{Differential equations}
1162
1163 \noindent\textbf{Order} - highest power inside derivative\\
1164 \textbf{Degree} - highest power of highest derivative\\
1165 e.g. \({\left(\dfrac{dy^2}{d^2} x\right)}^3\) \qquad order 2, degree 3
1166
1167 \begin{warning}
1168 To verify solutions, find \(\frac{dy}{dx}\) from \(y\) and substitute into original
1169 \end{warning}
1170
1171 \subsubsection*{Function of the dependent
1172 variable}
1173
1174 If \({\frac{dy}{dx}}=g(y)\), then
1175 \(\frac{dx}{dy} = 1 \div \frac{dy}{dx} = \frac{1}{g(y)}\). Integrate both sides to solve equation. Only add \(c\) on one side. Express
1176 \(e^c\) as \(A\).
1177
1178
1179
1180 \subsubsection*{Mixing problems}
1181
1182 \[\left(\frac{dm}{dt}\right)_\Sigma = \left(\frac{dm}{dt}\right)_{\text{in}} - \left(\frac{dm}{dt}_{\text{out}}\right)\]
1183
1184 \subsubsection*{Separation of variables}
1185
1186 If \({\frac{dy}{dx}}=f(x)g(y)\), then:
1187
1188 \[\int f(x) \> dx = \int \frac{1}{g(y)} \> dy\]
1189
1190 \subsubsection*{Euler's method for solving DEs}
1191
1192 \[\frac{f(x+h) - f(x)}{h} \approx f^\prime (x) \quad \text{for small } h\]
1193
1194 \[\implies f(x+h) \approx f(x) + hf^\prime(x)\]
1195
1196 \include{calculus-rules}
1197
1198 \section{Kinematics \& Mechanics}
1199
1200 \subsection*{Constant acceleration}
1201
1202 \begin{itemize}
1203 \item \textbf{Position} - relative to origin
1204 \item \textbf{Displacement} - relative to starting point
1205 \end{itemize}
1206
1207 \subsubsection*{Velocity-time graphs}
1208
1209 \begin{description}[nosep, labelindent=0.5cm, leftmargin=0.5\columnwidth]
1210 \item[Displacement:] \textit{signed} area
1211 \item[Distance travelled:] \textit{total} area
1212 \end{description}
1213
1214 \[ \text{acceleration} = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right) \]
1215
1216 \begin{center}
1217 \renewcommand{\arraystretch}{1}
1218 \begin{tabular}{ l r }
1219 \hline & no \\ \hline
1220 \(v=u+at\) & \(x\) \\
1221 \(v^2 = u^2+2as\) & \(t\) \\
1222 \(s = \frac{1}{2} (v+u)t\) & \(a\) \\
1223 \(s = ut + \frac{1}{2} at^2\) & \(v\) \\
1224 \(s = vt- \frac{1}{2} at^2\) & \(u\) \\ \hline
1225 \end{tabular}
1226 \end{center}
1227
1228 \[ v_{\text{avg}} = \frac{\Delta\text{position}}{\Delta t} \]
1229 \begin{align*}
1230 \text{speed} &= |{\text{velocity}}| \\
1231 &= \sqrt{v_x^2 + v_y^2 + v_z^2}
1232 \end{align*}
1233
1234 \noindent \textbf{Distance travelled between \(t=a \rightarrow t=b\):}
1235 \[= \int^b_a \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \cdot dt \]
1236
1237 \noindent \textbf{Shortest distance between \(\boldsymbol{r}(t_0)\) and \(\boldsymbol{r}(t_1)\):}
1238 \[ = |\boldsymbol{r}(t_1) - \boldsymbol{r}(t_2)| \]
1239
1240 \subsection*{Vector functions}
1241
1242 \[ \boldsymbol{r}(t) = x \boldsymbol{i} + y \boldsymbol{j} + z \boldsymbol{k} \]
1243
1244 \begin{itemize}
1245 \item If \(\boldsymbol{r}(t) \equiv\) position with time, then the graph of endpoints of \(\boldsymbol{r}(t) \equiv\) Cartesian path
1246 \item Domain of \(\boldsymbol{r}(t)\) is the range of \(x(t)\)
1247 \item Range of \(\boldsymbol{r}(t)\) is the range of \(y(t)\)
1248 \end{itemize}
1249
1250 \subsection*{Vector calculus}
1251
1252 \subsubsection*{Derivative}
1253
1254 Let \(\boldsymbol{r}(t)=x(t)\boldsymbol{i} + y(t)\boldsymbol(j)\). If both \(x(t)\) and \(y(t)\) are differentiable, then:
1255 \[ \boldsymbol{r}(t)=x(t)\boldsymbol{i}+y(t)\boldsymbol{j} \]
1256
1257 \subfile{dynamics}
1258 \subfile{statistics}
1259 \end{multicols}
1260\end{document}