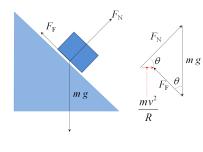
1 Motion

 $\rm m/s \times 3.6 = \rm km/h$

Inclined planes

 $F = mg\sin\theta F_{frict} = ma$

Banked tracks



$$\theta = \tan^{-1} \frac{v^2}{r_s}$$

 ΣF always acts towards centre, but not necessarily horizontally $\Sigma F = F_{\text{norm}} + F_{\text{g}} = \frac{mv^2}{r} = mg \tan \theta$ Design speed $v = \sqrt{gr \tan \theta}$

Work and energy

$$\begin{split} W &= Fx = \Delta \Sigma E \text{ (work)} \\ E_K &= \frac{1}{2} m v^2 \text{ (kinetic)} \\ E_G &= mgh \text{ (potential)} \\ \Sigma E &= \frac{1}{2} m v^2 + mgh \text{ (energy transfer)} \end{split}$$

Horizontal circular motion

 $v = \frac{2\pi r}{T}$ $f = \frac{1}{T}, \quad T = \frac{1}{f}$ $a_{centrip} = \frac{v^2}{r} = \frac{4\pi^2 r}{T^2}$ $\Sigma F, a \text{ towards centre, } v \text{ tangential}$ $F_{centrip} = \frac{mv^2}{r} = \frac{4\pi^2 rm}{T^2}$ centrifugal
force
path of
centripetal
force rection Gaphics

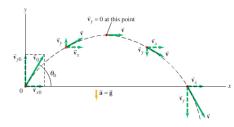
Vertical circular motion

T = tension, e.g. circular pendulum $T + mg = \frac{mv^2}{r}$ at highest point $T - mg = \frac{mv^2}{r}$ at lowest point

Projectile motion

- horizontal component of velocity is constant if no air resistance
- vertical component affected by gravity: $a_y = -g$

$$v = \sqrt{v_x^2 + v_y^2} \qquad (vectors)$$
$$h = \frac{u^2 \sin \theta^2}{2g} \qquad (max \text{ height})$$
$$x = ut \cos \theta \qquad (\Delta x \text{ at } t)$$
$$= ut \sin \theta - \frac{1}{2}gt^2 \qquad (\text{height at } t)$$
$$t = \frac{2u \sin \theta}{g} \qquad (time \text{ of flight})$$
$$d = \frac{v^2}{g} \sin \theta \qquad (\text{horiz. range})$$



Pulley-mass system

 $a = \frac{m_2 g}{m_1 + m_2}$ where m_2 is suspended $\Sigma F = m_2 g - m_1 g = \Sigma ma$ (solve)

Graphs

y

- Force-time: $A = \Delta \rho$
- Force-disp: A = W
- Force-ext: m = k, $A = E_{spr}$
- Force-dist: $A = \Delta$ gpe
- Field-dist: $A = \Delta \operatorname{gpe} / \operatorname{kg}$

Hooke's law

$$\begin{split} F &= -kx \\ E_{elastic} &= \frac{1}{2}kx^2 \end{split}$$

Motion equations

 $v = u + at \qquad x$ $x = \frac{1}{2}(v + u)t \qquad a$ $x = ut + \frac{1}{2}at^2 \qquad v$ $x = vt - \frac{1}{2}at^2 \qquad u$ $v^2 = u^2 + 2ax \qquad t$

Momentum

$$\begin{split} \rho &= mv \\ \text{impulse} &= \Delta \rho, \quad F\Delta t = m\Delta v \\ \Sigma mv_0 &= \Sigma mv_1 \text{ (conservation)} \\ \Sigma E_{K \text{ before}} &= \Sigma E_{K \text{ after}} \text{ if elastic} \\ n\text{-body collisions: } \rho \text{ of each body is} \\ \text{independent} \end{split}$$

2 Relativity

Postulates

1. Laws of physics are constant in all intertial reference frames

2. Speed of light c is the same to all observers (Michelson-Morley)

 \therefore, t must dilate as speed changes

Inertial reference frame a = 0Proper time $t_0 \mid \text{length } l_0$ measured by observer in same frame as events

Lorentz factor

$$v = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

 $t = t_0 \gamma \ (t \text{ longer in moving frame})$ $l = \frac{l_0}{\gamma} \ (l \text{ contracts } \parallel v: \text{ shorter in mov-ing frame})$

 $m = m_0 \gamma$ (mass dilation)

7

$$v = c \sqrt{1 - \frac{1}{\gamma^2}}$$

Energy and work

 $E_0 = mc^2 \text{ (rest)}$ $E_{total} = E_K + E_{rest} = \gamma mc^2$ $E_K = (\gamma 1)mc^2$ $W = \Delta E = \Delta mc^2$

Relativistic momentum

$$\rho = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}} = \gamma mv = \gamma \rho_0$$

 $\rho \to \infty$ as $v \to c$

v = c is impossible (requires $E = \infty$)

$$v = \frac{\rho}{m\sqrt{1 + \frac{p^2}{m^2c^2}}}$$

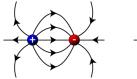
High-altitude muons

- t dilation more muons reach Earth than expected
- normal half-life $2.2\,\mu s$ in stationary frame, $> 2.2 \,\mu s$ observed from Earth

3 Fields and power

Non-contact forces

- electric fields (dipoles & monopoles)
- magnetic fields (dipoles only)
- gravitational fields (monopoles only)
- monopoles: lines towards centre
- dipoles: field lines $+ \rightarrow -$ or $N \rightarrow S$ (or perpendicular to wire)
- closer field lines means larger force
- dot: out of page, cross: into page
- +ve corresponds to N pole



Gravity

$$F_g = G \frac{m_1 m_2}{r^2} \quad (\text{grav. force})$$

$$g = \frac{F_g}{m_2} = G \frac{m_1}{r^2} \quad (\text{field of } m_1)$$

$$E_g = mg\Delta h \quad (\text{gpe})$$

$$W = \Delta E_g = Fx \quad (\text{work})$$

$$w = m(g - a)$$
 (app. weight)

Satellites

$$v = \sqrt{\frac{Gm_{\rm planet}}{r}} = \sqrt{gr} = \frac{2\pi r}{T}$$

$$T = \frac{\sqrt{4\pi^2 r^2}}{GM} \qquad (\text{period})$$
$$\sqrt[3]{\frac{GMT^2}{4\pi^2}} \qquad (\text{radius})$$

Magnetic fields

- field strength B measured in tesla
- magnetic flux Φ measured in weber
- charge q measured in coulombs
- emf \mathcal{E} measured in volts
- (F on moving q)F = qvBF = IlB (F of B on I) • Parallel V is constant $r = \frac{mv}{qB}$ (radius of q in B) if $B \not\perp A, \Phi \to 0$, if $B \parallel A, \Phi = 0$

Electric fields

F = qE (E = strength) $F = k \frac{q_1 q_2}{r^2}$ (force between $q_{1,2}$) $E = k \frac{q}{r^2}$ (field on point charge) $E = \frac{V}{d}$ (field between plates) F = BInl(force on a coil) $\Phi = B_{\perp} A$ (magnetic flux) $\mathcal{E} = -N \frac{\Delta \Phi}{\Delta t}$ (induced emf) $\frac{V_p}{V_s} = \frac{N_p}{N_s} = \frac{I_s}{I_p} \quad ({\rm xfmr~coil~ratios})$ Lenz's law: I_{emf} opposes $\Delta \Phi$ Eddy currents: counter movement

within a field Right hand grip: thumb points to

- I (single wire) or N (solenoid / coil)
- **Right hand slap:** $B \perp I \perp F$

Flux-time graphs: $m \times n = \text{emf}$ **Transformers:** core strengthens & focuses Φ

Particle acceleration

 $1 \,\mathrm{eV} = 1.6 \times 10^{-19} \,\mathrm{J}$ e- accelerated with $x \vee x$ is given $x \vee x = 0$ **nodes:** fixed on graph

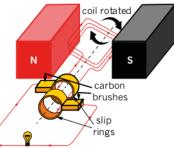
$$W = \frac{1}{2}mv^2 = qV \quad \text{(field or points)}$$
$$v = \sqrt{\frac{2qV}{m}} \quad \text{(velocity of particle)}$$

Power transmission

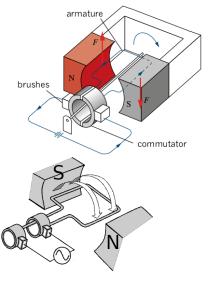
$$V_{\rm rms} = \frac{V_{\rm p \to p}}{\sqrt{2}}$$
$$P_{\rm loss} = \Delta V I = I^2 R = \frac{\Delta V^2}{R}$$
$$V_{\rm loss} = I R$$

Use high-V side for correct
$$|V_{dron}|$$

• Series
$$V$$
 shared within branch

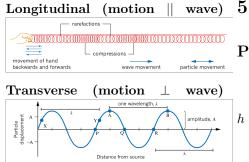


Motors



DC: split ring (two halves) AC: slip ring (separate rings with constant contact)

Waves 4



Motors

 $T = \frac{1}{f}$ (period: time for one cycle) $v = f\lambda$ (speed: displacement / sec)

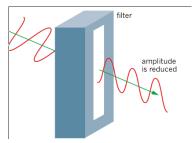
Doppler effect

When P_1 approaches P_2 , each wave w_n has slightly less distance to travel than w_{n-1} . w_n reaches observer sooner than w_{n-1} ("apparent" λ).

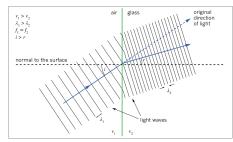
Interference

When a medium changes character, energy is reflected, absorbed, and transmitted

Polarisation



Refraction



Angle of incidence θ_i = angle of reflection θ_r

Critical angle $\theta_c = \sin^- 1 \frac{n_2}{n_1}$ Snell's law $n_1 \sin \theta_1 = n_2 \sin \theta_2$

Light and Matter

Planck's equation

$$f = \frac{c}{\lambda}, \quad E = hf = \frac{hc}{\lambda} = \rho c$$
$$h = 6.63 \times 10^{-34} \text{ Js} = 4.14 \times 10^{-15} \text{ eVs}$$
$$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$$

Force of electrons

$$F = \frac{2P_{\rm in}}{c}$$

photons / sec = $\frac{\text{total energy}}{\text{energy / photon}}$

$$=\frac{P_{\rm in}\lambda}{hc}=\frac{P_{\rm in}}{hf}$$

Photoelectric effect

- V_{supply} does not affect photocurrent
- $V_{\rm sup} > 0$: e- attracted to collector anode
- $V_{\rm sup} < 0$: attracted to illuminated cathode, $I \rightarrow 0$
- v of depends on ionisation energy (shell)
- max current depends on intensity

Threshold frequency f_0

Minimum f for photoelectrons to be ejected. x-intercept of frequency vs \bullet No. of lines - include all possible E_K graph. if $f < f_0$, no photoelectrons are detected.

Work function ϕ

Minimum E required to release photo electrons. Magnitude of y-intercept of frequency vs E_K graph. ϕ is determined by strength of bonding.

$$\phi = hf_0$$

Kinetic energy

 $E_{k-max} = hf - \phi$

voltage in circuit or stopping voltage $= \max E_K$ in eV equal to x-intercept of volts vs current graph (in eV)

Stopping potential V for min I

$$V = h_{\rm eV}(f - f_0)$$

De Broglie's theory

$$\lambda = \frac{h}{\rho} = \frac{h}{mv}$$
$$\rho = \frac{hf}{c} = \frac{h}{\lambda} = mv, \quad E = \rho c$$

- cannot confirm with double-slit (slit $< r_{\rm proton}$)
- confirmed by similar e- and x-ray diff patterns

X-ray electron interaction

- e- is only stable if $mvr = n\frac{h}{2\pi}$ where $n \in \mathbb{Z}$
- rearranging this, $2\pi r = n \frac{h}{mv} = n\lambda$ (circumference)
- if $2\pi r \neq n \frac{h}{mv}$, no standing wave
- if e- = x-ray diff patterns, E_{e-} = $\frac{\rho^2}{2m} = (\frac{h}{\lambda})^2 \div 2m$
- calculating h: $\lambda = \frac{h}{\rho}$

Spectral analysis

- $\Delta E = hf = \frac{hc}{\lambda}$ between ground / excited state
- E and f of photon: $E_2 E_1 = hf =$
- Ionisation energy min E required to remove e-
- EMR is absorbed/emitted when $E_{\text{K-in}} = \Delta E_{\text{shells}}$ (i.e. $\lambda = \frac{hc}{\Delta E_{\text{shells}}}$)
- states

5.1Uncertainty principle

measuring location of an e- requires hitting it with a photon, but this causes ρ to be transferred to electron, moving it.

Wave-particle duaity 5.2

wave model:

- cannot explain photoelectric effect
- f is irrelevant to photocurrent
- predicts delay between incidence and ejection
- speed depends on medium

particle model:

6 Uncertainty

Relative uncertainty - \mathcal{E} - unitless.

- explains photoelectric effect
- rate of photoelectron release \propto intensity
- no time delay one photon releases one electron
- double slit: photons interact. interference pattern still appears when a dim light source is used so that only one photon can pass at a time
- light exerts force
- light bent by gravity

Absolute uncertainty -
$$\Delta$$
 - same units as quantity.

$$\Delta(m) = \frac{\mathcal{E}(m)}{100} \cdot m$$

$$\begin{split} \mathcal{E}(m) &= \frac{\Delta(m)}{m} \cdot 100 \\ (A \pm \mathcal{E}A) \cdot (B \pm \mathcal{E}B) &= (A \cdot B) \pm (\mathcal{E}A + \mathcal{E}B) \\ (A \pm \mathcal{E}A) \div (B \pm \mathcal{E}B) &= (A \div B) \pm (\mathcal{E}A + \mathcal{E}B) \\ (A \pm \mathcal{E}A)^n &= (A^n \pm n \mathcal{E}A) \\ c(A \pm \mathcal{E}A) &= cA \pm \mathcal{E}A \end{split}$$

 $(A \pm \Delta A) + (B \pm \Delta A) = (A + B) \pm (\Delta A + \Delta B)$ certainty of a measurement is $\frac{1}{2}$ the smallest division $(A \pm \Delta A) - (B \pm \Delta A) = (A - B) \pm (\Delta A + \Delta B)$ **Precision** - concordance of values $c(A \pm \Delta A) = cA \pm c\Delta A$ **Accuracy** - closeness to actual value