Physics Andrew Lorimer

1 Motion

Unit conversion

$\mathrm{m} / \mathrm{s} \times 3.6=\mathrm{km} / \mathrm{h}$

Inclined planes

$F=m g \sin \theta-F_{\text {frict }}=m a$

Banked tracks

$\theta=\tan ^{-1} \frac{v^{2}}{r g}$ (also for objects on string)
ΣF always acts towards centre, but not necessarily horizontally
$\Sigma F=\frac{m v^{2}}{r}=m g \tan \theta$
Design speed $v=\sqrt{g r \tan \theta}$

Work and energy
$W=F x=\Delta \Sigma E$ (work)
$E_{K}=\frac{1}{2} m v^{2}$ (kinetic)
$E_{G}=m g h$ (potential)
$\Sigma E=\frac{1}{2} m v^{2}+m g h$ (energy transfer)

Horizontal motion

$v=\frac{2 \pi r}{T}$
$f=\frac{1}{T}, \quad T=\frac{1}{f}$
$a_{\text {centrip }}=\frac{v^{2}}{r}=\frac{4 \pi^{2} r}{T^{2}}$
ΣF towards centre, v tangential

$$
F_{\text {centrip }}=\frac{m v^{2}}{r}=\frac{4 \pi^{2} r m}{T^{2}}
$$

Vertical circular motion

$T=$ tension, e.g. circular pendulum
$T+m g=\frac{m v^{2}}{r}$ at highest point $T-$ $m g=\frac{m v^{2}}{r}$ at lowest point

Projectile motion

- horizontal component of velocity is constant if no air resistance
- vertical component affected by gravity: $a_{y}=-g$
$v=\sqrt{v_{x}^{2}+v_{y}^{2}}$ (vector addition)
$h=\frac{u^{2} \sin \theta^{2}}{2 g}$ (max height)
$y=u t \sin \theta-\frac{1}{2} g t^{2}$ (time of flight)
$d=\frac{v^{2}}{g} \sin \theta$ (horizontal range)

