$Physics \ \ {\rm Andrew \ Lorimer}$

1 Motion

Unit conversion

 $\rm m/s \times 3.6 = \rm km/h$

Inclined planes

 $F = mg\sin\theta - F_{frict} = ma$

Banked tracks

 $\theta = \tan^{-1} \frac{v^2}{rg}$ (also for objects on string)

 ΣF always acts towards centre, but not necessarily horizontally $\Sigma F = \frac{mv^2}{r} = mg \tan \theta$ Design speed $v = \sqrt{gr \tan \theta}$

Work and energy

$$\begin{split} W &= Fx = \Delta \Sigma E \text{ (work)} \\ E_K &= \frac{1}{2} m v^2 \text{ (kinetic)} \\ E_G &= mgh \text{ (potential)} \\ \Sigma E &= \frac{1}{2} m v^2 + mgh \text{ (energy transfer)} \end{split}$$

Horizontal motion

 $v = \frac{2\pi r}{T}$

$$f = \frac{1}{T}, \quad T = \frac{1}{f}$$
$$a_{centrip} = \frac{v^2}{r} = \frac{4\pi^2 r}{T^2}$$

 ΣF towards centre, v tangential

Vertical circular motion

T = tension, e.g. circular pendulum $T + mg = \frac{mv^2}{r}$ at highest point T $mg = \frac{mv^2}{r}$ at lowest point

Projectile motion

- horizontal component of velocity is constant if no air resistance
- vertical component affected by gravity: $a_y = -g$

$$v = \sqrt{v_x^2 + v_y^2} \text{ (vector addition)}$$

$$h = \frac{u^2 \sin \theta^2}{2g} \text{ (max height)}$$

$$y = ut \sin \theta - \frac{1}{2}gt^2 \text{ (time of flight)}$$

$$d = \frac{v^2}{a} sin\theta$$
 (horizontal range)

Pulley-mass system

 $a = \frac{m_2 g}{m_1 + m_2}$ where m_2 is suspended

Graphs

- Force-time: $A = \Delta \rho$
- Force-disp: A = W
- Force-ext: m = k, $A = E_{spr}$

Hooke's law

$$F = -kx$$
$$E_{elastic} = \frac{1}{2}kx^2$$

Motion equations

v = u + at	x
$x = \frac{1}{2}(v+u)t$	a
$x = ut + \frac{1}{2}at^2$	v
$x = vt - \frac{1}{2}at^2$	u
$v^2 = u^2 + 2ax$	t

Momentum

 $\rho = mv$ impulse = $\Delta \rho$, $F\Delta t = m\Delta v$ Momentum is conserved. $\Sigma E_{K \text{ before}} = \Sigma E_{K \text{ after}}$ if elastic x $2^{\vec{v}}$ Relativity