2055b63a7d86e0fb419e1f9b851304547ead4d5b
1---
2geometry: margin=1.5cm
3<!-- columns: 2 -->
4graphics: yes
5tables: yes
6author: Andrew Lorimer
7classoption: twocolumn
8header-includes: \pagenumbering{gobble}
9---
10
11# Exponential and Index Functions
12
13## Index laws
14
15\begin{equation}\begin{split}
16 a^m \times a^n & = a^{m+n} \\
17 a^m \div a^n & = a^{m-n}4 \\
18 (a^m)^n & = a^{_mn} \\
19 (ab)^m & = a^m b^m \\
20 {({a \over b})}^m & = {a^m \over b^m}
21\end{split}\end{equation}
22
23## Fractional indices
24
25$$^n\sqrt{x}=x^{1/n}$$
26
27## Logarithms
28
29$$\log_b (x) = n \quad \operatorname{where} \hspace{0.5em} b^n=x$$
30
31## Using logs to solve index eq's
32
33Used for equations without common base exponent
34
35Or change base:
36$$\log_b c = {{\log_a c} \over {\log_a b}}$$
37
38If $a<1, \quad \log_{b} a < 0$ (flip inequality operator)
39
40## Exponential functions
41
42$e^x$ - natural exponential function
43
44$$\lim_{h \rightarrow 0} {{e^h-1} \over h}=1$$
45
46## Logarithm laws
47
48\begin{equation}\begin{split}
49 \log_a(mn) & = \log_am + \log_an \\
50 \log_a({m \over n}) & = \log_am - \log_a \\
51 \log_a(m^p) & = p\log_am \\
52 \log_a(m^{-1}) & = -\log_am \\
53 \log_a1 = 0 & \text{ and } \log_aa = 1
54\end{split}\end{equation}
55
56
57## Inverse functions
58
59For $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=a^x$, inverse is:
60
61$$f^{-1}: \mathbb{R}^+ \rightarrow \mathbb{R}, f^{-1}=log_ax$$
62
63## Euler's number
64
65$$e= \lim_{n \rightarrow \infty} (1 + {1 \over n})^n$$
66
67## Exponential and logarithmic modelling
68
69$$A = A_0 e^{kt}$$
70
71where
72$A_0$ is initial value
73$t$ is time taken
74$k$ is a constant
75For continuous growth, $k > 0$
76For continuous decay, $k < 0$
77
78## Graphing exponential functions
79
80$$f(x)=Aa^{k(x-b)} + c, \quad \vert \> a > 1$$
81
82- **$y$-intercept** at $(0, A \cdot a^{-kb}+c)$ as $x \rightarrow \infty$
83- **horizontal asymptote** at $y=c$
84- **domain** is $\mathbb{R}$
85- **range** is $(c, \infty)$
86- dilation of factor $A$ from $x$-axis
87- dilation of factor $1 \over k$ from $y$-axis
88
89![](graphics/exponential-graphs.png){#id .class width=30%}
90
91## Graphing logarithmic functions
92
93$\log_e x$ is the inverse of $e^x$ (reflection across $y=x$)
94
95$$f(x)=A \log_a k(x-b) + c$$
96
97where
98
99- **domain** is $(b, \infty)$
100- **range** is $\mathbb{R}$
101- **vertical asymptote** at $x=b$
102- $y$-intercept exists if $b<0$
103- dilation of factor $A$ from $x$-axis
104- dilation of factor $1 \over k$ from $y$-axis
105
106![](graphics/log-graphs.png){#id .class width=30%}
107
108## Finding equations
109
110Solve simultaneous equations on CAS: ![](graphics/cas-simultaneous.png){#id .class width=75px}