Physics Andrew Lorimer

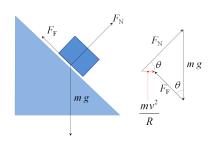
1 Motion

 $m/s \times 3.6 = km/h$

Inclined planes

 $F = mg\sin\theta - F_{\text{frict}} = ma$

Banked tracks



$$\theta = \tan^{-1} \frac{v^2}{ra}$$

 ΣF always acts towards centre (horizontally)

$$\Sigma F = F_{\text{norm}} + F_{\text{g}} = \frac{mv^2}{r} = mg \tan \theta$$
Design speed $v = \sqrt{gr \tan \theta}$

$$n \sin \theta = mv^2 \div r, \quad n \cos \theta = mg$$

Work and energy

$$W = Fs = Fs \cos \theta = \Delta \Sigma E$$

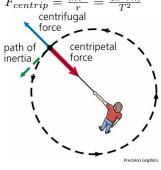
$$E_K = \frac{1}{2} m v^2 \text{ (kinetic)}$$

$$E_G = mgh \text{ (potential)}$$

$$\Sigma E = \frac{1}{2} m v^2 + mgh \text{ (energy transfer)}$$

Horizontal circular motion

$$\begin{split} v &= \frac{2\pi r}{T} \\ f &= \frac{1}{T}, \quad T = \frac{1}{f} \\ a_{centrip} &= \frac{v^2}{r} = \frac{4\pi^2 r}{T^2} \\ \Sigma F, a \text{ towards centre, } v \text{ tangential} \\ F_{centrip} &= \frac{mv^2}{r} = \frac{4\pi^2 rm}{T^2} \\ &= \frac{4\pi^2 rm}{T^2} \end{split}$$



Vertical circular motion

T= tension, e.g. circular pendulum $T+mg=\frac{mv^2}{r}$ at highest point $T-mg=\frac{mv^2}{r}$ at lowest point

Projectile motion

• v_x is constant: $v_x = \frac{s}{t}$

• use suvat to find t from y-component

• vertical component gravity: $a_y = -g$

$$v = \sqrt{v_x^2 + v_y^2} \qquad \text{(vectors)}$$

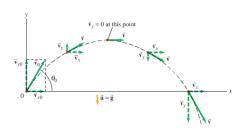
$$h = \frac{u^2 \sin \theta^2}{2g} \qquad \text{(max height)}$$

$$x = ut \cos \theta \qquad (\Delta x \text{ at } t)$$

$$y = ut \sin \theta - \frac{1}{2}gt^2 \qquad \text{(height at } t)$$

$$t = \frac{2u \sin \theta}{g} \qquad \text{(time of flight)}$$

$$d = \frac{v^2}{g} \sin \theta \qquad \text{(horiz. range)}$$



Pulley-mass system

 $a = \frac{m_2 g}{m_1 + m_2}$ where m_2 is suspended $\Sigma F = m_2 g - m_1 g = \Sigma m a$ (solve)

Graphs

• Force-time: $A = \Delta \rho$

• Force-disp: A = W

• Force-ext: m = k, $A = E_{spr}$

• Force-dist: $A = \Delta$ gpe

• Field-dist: $A = \Delta \operatorname{gpe} / \operatorname{kg}$

Hooke's law

$$F = -kx$$
elastic potential energy = $\frac{1}{2}kx^2$

$$x = \frac{2mg}{k}$$

Motion equations

$$v = u + at$$

$$x = \frac{1}{2}(v + u)t$$

$$x = ut + \frac{1}{2}at^{2}$$

$$x = vt - \frac{1}{2}at^{2}$$

$$u$$

$$v^{2} = u^{2} + 2ax$$

Momentum

 $\rho=mv$ impulse $=\Delta\rho,\quad F\Delta t=m\Delta v$ $\Sigma(mv_0)=(\Sigma m)v_1$ (conservation) if elastic:

$$\sum_{i=1}^{n} E_K(i) = \sum_{i=1}^{n} (\frac{1}{2} m_i v_{i0}^2) = \frac{1}{2} \sum_{i=1}^{n} (m_i) v_f^2$$

2 Relativity

Postulates

1. Laws of physics are constant in all intertial reference frames

2. Speed of light c is the same to all observers (Michelson-Morley)

 \therefore t must dilate as speed changes

high-altitude particles: t dilation means more particles reach Earth than expected (half-life greater when obs. from Earth)

Inertial reference frame a=0Proper time $t_0 \mid \text{length } l_0$ measured by observer in same frame as events

Lorentz factor

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

 $t=t_0\gamma$ (t longer in moving frame) $l=\frac{l_0}{\gamma}$ (l contracts || v: shorter in moving frame)

 $m = m_0 \gamma \text{ (mass dilation)}$

$$v = c\sqrt{1 - \frac{1}{\gamma^2}}$$

Energy and work

$$E_{\rm rest} = mc^2, \quad E_K = (\gamma - 1)mc^2$$

 $E_{\rm total} = E_K + E_{\rm rest} = \gamma mc^2$

Relativistic momentum

$$\rho = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}} = \gamma mv = \gamma \rho_0$$

 $\rho \to \infty \text{ as } v \to c$

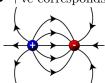
v = c is impossible (requires $E = \infty$)

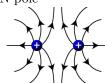
$$v = \frac{\rho}{m\sqrt{1 + \frac{p^2}{m^2c^2}}}$$

Fields and power 3

Non-contact forces

- electric fields (dipoles & monopoles)
- magnetic fields (dipoles only)
- gravitational fields (monopoles only)
- monopoles: lines towards centre
- dipoles: field lines $+ \rightarrow -$ or $N \rightarrow S$ (or perpendicular to wire)
- closer field lines means larger force
- dot: out of page, cross: into page
- +ve corresponds to N pole





Gravity

$$F_g = G \frac{m_1 m_2}{r^2}$$
 (grav. force)

$$g = \frac{F_g}{m_2} = G \frac{m_1}{r^2} \qquad \text{(field of } m_1\text{)}$$

$$E_g = mg\Delta h$$
 (gpe)

$$W = \Delta E_g = Fx \qquad \text{(work)}$$

$$w = m(q - a)$$
 (app. weight)

Satellites

$$v = \sqrt{\frac{Gm_{\mathrm{planet}}}{r}} = \sqrt{gr} = \frac{2\pi r}{T}$$

$$T = \frac{\sqrt{4\pi^2 r^3}}{GM_{\text{planet}}} \qquad \text{(period)}$$

$$r = \sqrt[3]{\frac{GMT^2}{4\pi^2}}$$
 (radius)

Magnetic fields

- \bullet field strength B measured in tesla
- magnetic flux Φ measured in weber
- \bullet charge q measured in coulombs
- emf \mathcal{E} measured in volts

$$F = qvB$$
 (F on moving q)

$$F = IlB$$
 (F of B on I)

$$B = \frac{mv}{ar}$$
 (field strength on e-)

$$r = \frac{mv}{aB} \qquad \text{(radius of } q \text{ in } B\text{)}$$

if
$$B \not\perp A, \Phi \to 0$$
 , if $B \parallel A, \Phi = 0$

Electric fields

$$F = qE$$
 $(E = \text{strength})$

$$F = k \frac{q_1 q_2}{r^2}$$
 (force between $q_{1,2}$)

$$E = k \frac{q}{r^2}$$
 (field on point charge) • Parallel V is constant

$$E = \frac{V}{d}$$
 (field between plates)

$$F = BInl$$
 (force on a coil)

$$\Phi = B_{\perp}A$$
 (magnetic flux)

$$\mathcal{E} = -N \frac{\Delta \Phi}{\Delta t} \qquad \text{(induced emf)}$$

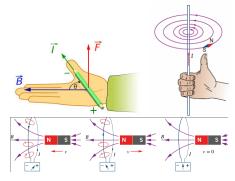
$$\frac{V_p}{V_s} = \frac{N_p}{N_s} = \frac{I_s}{I_p} \quad \text{(xfmr coil ratios)}$$

Lenz's law: $I_{\rm emf}$ opposes $\Delta\Phi$

(emf creates I with associated field that opposes $\Delta \phi$)

Eddy currents: counter movement within a field

Right hand grip: thumb points to I (single wire) or N (solenoid / coil)



Flux-time graphs: $m \times n = \text{emf}$. If f increases, ampl. & f of \mathcal{E} increase **Transformers:** core strengthens &

focuses Φ

Particle acceleration

 $1 \, \text{eV} = 1.6 \times 10^{-19} \, \text{J}$

e- accelerated with $x ext{ V}$ is given $x ext{ eV}$

$$W = \frac{1}{2}mv^2 = qV$$
 (field or points)

$$v = \sqrt{\frac{2qV}{m}}$$
 (velocity of particle)

Power transmission

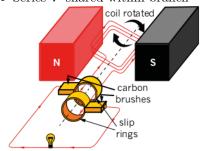
$$V_{\rm rms} = \frac{V_{\rm p \to p}}{\sqrt{2}}$$

$$P_{\rm loss} = \Delta V I = I^2 R = \frac{\Delta V^2}{R}$$

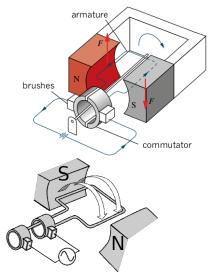
$$V_{\rm loss} = IR$$

Use high-V side for correct $|V_{drop}|$

- Series V shared within branch



Motors



Force on current-carying wire, not copper

F = 0 for front back of coil (parallel) Incoherent - e.g. incandescent/LED Refraction Any angle > 0 will produce force

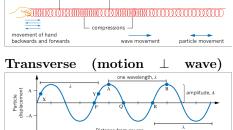
DC: split ring (two halves)

AC: slip ring (separate rings with constant contact)

\mathbf{Waves} 4

nodes: fixed on graph **amplitude:** max disp. from y = 0rarefactions and compressions mechanical: transfer of energy without net transfer of matter

Longitudinal (motion || wave)

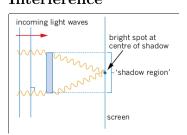


(period: time for one cycle) (speed: displacement / sec) $f = \frac{c}{\lambda}$ (for v = c)

Doppler effect

When P_1 approaches P_2 , each wave w_n has slightly less distance to travel than w_{n-1} . w_n reaches observer sooner than w_{n-1} ("apparent" λ).

Interference



Poissons's spot supports wave theory (circular diffraction)

Standing waves - constructive int. at resonant freq

- identical frequency, phase, direction (ie strong tional). e.g. laser

Harmonics

1st harmonic = fundamental

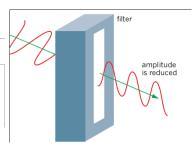
for nodes at both ends:

$$\lambda = 2l \div n \qquad f = nv \div 2l$$

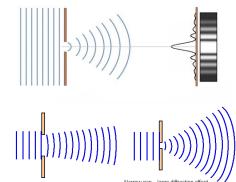
for node at one end (n is odd):

 $\lambda = 4l \div n$ $f = nv \div 4l$ alternatively, $\lambda = \frac{4l}{2n-1}$ where $n \in \mathbb{Z}$ and n+1 is the next possible harmonic

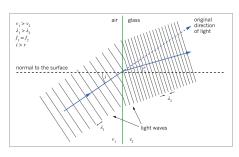
Polarisation



Diffraction



- Constructive: $pd = n\lambda, n \in \mathbb{Z}$
- Destructive: $pd = (n \frac{1}{2})\lambda, n \in \mathbb{Z}$
- Path difference: $\Delta x = \frac{\lambda l}{d}$ where l = distance from source to observer d = separation between each wavesource (e.g. slit) = $S_1 - S_2$
- diffraction $\propto \frac{\lambda}{d}$
- significant diffraction when $\frac{\lambda}{\Delta x} \geq 1$
- direc- diffraction creates distortion (electron > optical microscopes)



When a medium changes character, energy is reflected, absorbed, and transmitted

angle of incidence θ_i = angle of reflec-

Critical angle $\theta_c = \sin^{-1} \frac{n_2}{n_1}$ Snell's law $n_1 \sin \theta_1 = n_2 \sin \theta_2$ $v_1 \div v_2 = \sin \theta_1 \div \sin \theta_2$ $n_1 v_1 = n_2 v_2$

Light and Matter

Planck's equation

$$E = hf = \frac{hc}{\lambda} = \rho c = qV$$

$$h = 6.63 \times 10^{-34} \text{ Js} = 4.14 \times 10^{-15} \text{ eVs}$$

$$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$$

De Broglie's theory

$$\lambda = \frac{h}{\rho} = \frac{h}{mv}$$

$$\rho = \frac{hf}{c} = \frac{h}{\lambda} = mv, \quad E = \rho c$$

$$v = \sqrt{2E_K \div m}$$

- cannot confirm with double-slit (slit $< r_{\rm proton})$
- confirmed by e- and x-ray patterns

Force of electrons

$$F = \frac{2P_{\text{in}}}{c}$$
 photons / sec = $\frac{\text{total energy}}{\text{energy / photon}}$ = $\frac{P_{\text{in}}\lambda}{hc} = \frac{P_{\text{in}}}{hf}$

X-ray electron interaction

- e- stable if $mvr = n\frac{h}{2\pi}$ where $n \in \mathbb{Z}$ $\Delta E = hf = \frac{hc}{\lambda}$ between ground / and r is radius of orbit
- $\therefore 2\pi r = n \frac{h}{mv} = n\lambda$ (circumference) E and f of photon: $E_2 E_1 = hf =$
- if $2\pi r \neq n \frac{h}{mv}$, no standing wave
- $\frac{\rho^2}{2m} = (\frac{h}{\lambda})^2 \div 2m$

Photoelectric effect

- V_{supply} does not affect photocurrent
- $V_{\text{sup}} > 0$: attracted to +ve
- $V_{\text{sup}} < 0$: attracted to -ve, $I \to 0$
- \bullet v of e- depends on shell
- max I (not V) depends on intensity

Threshold frequency f_0

min f for photoelectron release. $f < f_0$, no photoelectrons.

Work function $\phi = hf_0$

 $\min E$ for photoelectron release. determined by strength of bonding. Units: eV or J.

Kinetic energy $\mathbf{E}_K = hf - \phi = qV_0$

 $V_0 = E_K$ in eV dashed line below $E_K = 0$

Stopping potential V_0 for min I

$$V_0 = h_{\rm eV}(f - f_0)$$

Graph features

	m	x-int	y-int
$f \cdot E_K$	h	f_0	$-\phi$
$V \cdot I$		V_0	intensity
$f \cdot V$	$\frac{h}{q}$	f_0	$\frac{-\phi}{q}$

Spectral analysis

- excited state
- ullet if e- = x-ray diff patterns, $E_{ ext{e-}} = ullet$ Ionisation energy min E required to remove e-
 - EMR is absorbed/emitted when $E_{\text{K-in}} = \Delta E_{\text{shells}}$ (i.e. $\lambda = \frac{hc}{\Delta E_{\text{shells}}}$)
 - No. of lines include all possible states

Uncertainty principle

measuring location of an e- requires hitting it with a photon, but this causes ρ to be transferred to electron, moving it.

Wave-particle duality

wave model

- cannot explain photoelectric effect
- f is irrelevant to photocurrent
- predicts delay between incidence and ejection
- speed depends on medium
- supported by bright spot in centre

particle model

- explains photoelectric effect
- rate of photoelectron release \propto inten-
- no time delay one photon releases one electron
- double slit: photons interact. interference pattern still appears when a dim light source is used so that only one photon can pass at a time
- light exerts force

- light bent by gravity
- quantised energy

Experimental design

Absolute uncertainty Δ

(same units as quantity)

$$\Delta(m) = \frac{\mathcal{E}(m)}{100} \cdot m$$

$$(A \pm \Delta A) + (B \pm \Delta A) = (A + B) \pm (\Delta A + \Delta B)$$

$$(A \pm \Delta A) - (B \pm \Delta A) = (A - B) \pm (\Delta A + \Delta B)$$

$$c(A \pm \Delta A) = cA \pm c\Delta A$$

Relative uncertainty \mathcal{E} (unitless)

$$\mathcal{E}(m) = \frac{\Delta(m)}{m} \cdot 100$$

$$(A \pm \mathcal{E}A) \cdot (B \pm \mathcal{E}B) = (A \cdot B) \pm (\mathcal{E}A + \mathcal{E}B)$$

$$(A \pm \mathcal{E}A) \div (B \pm \mathcal{E}B) = (A \div B) \pm (\mathcal{E}A + \mathcal{E}B)$$

$$(A \pm \mathcal{E}A)^n = (A^n \pm n\mathcal{E}A)$$

$$c(A \pm \mathcal{E}A) = cA \pm \mathcal{E}A$$

Uncertainty of a measurement is $\frac{1}{2}$ the smallest division

Precision - concordance of values

Accuracy - closeness to actual value

Random errors - unpredictable, reduced by more tests

Systematic errors - not reduced by more tests

Uncertainty - margin of potential er-

Error - actual difference

Hypothesis - can be tested experimentally

Model - evidence-based but indirect representation