Polynomials

Factorising

Quadratics

Quadratics: $x^2 + bx + c = (x + m)(x + n)$ where mn = c, m + n = bDifference of squares: $a^2 - b^2 = (a - b)(a + b)$ Perfect squares: $a^2 \pm 2ab + b^2 = (a \pm b^2)$ Completing the square (monic): $x^2 + bx + c = (x + \frac{b}{2})^2 + c - \frac{b^2}{4}$ Completing the square (non-monic): $ax^2 + bx + c = a(x - \frac{b}{2a})^2 + c - \frac{b^2}{4a}$ Quadratic formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ where $\Delta = b^2 - 4ac$ (if Δ is a perfect square, rational roots)

Cubics

Difference of cubes: $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ **Sum of cubes:** $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ **Perfect cubes:** $a^3 \pm 3a^2b + 3ab^2 \pm b^3 = (a \pm b)^3$

Linear and quadratic graphs

Forms of linear equations

y = mx + c where *m* is gradient and *c* is *y*-intercept $\frac{x}{a} + \frac{y}{b} = 1$ where *m* is gradient and (x_1, y_1) lies on the graph $y - y_1 = m(x - x_1)$ where (a, 0) and (0, b) are *x*- and *y*-intercepts

Line properties

Parallel lines: $m_1 = m_2$ Perpendicular lines: $m_1 \times m_2 = -1$ Distance: $\vec{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Cubic graphs

$$y = a(x-b)^3 + c$$

- m = 0 at stationary point of inflection
- in form $y = (x a)^2(x b)$, local max at x = a, local min at x = b
- in form y = a(x b)(x c)(x d): x-intercepts at b, c, d

Quartic graphs

Forms of quadratic equations

 $y = ax^{4}$ y = a(x - b)(x - c)(x - d)(x - e) $y = ax^{4} + cd^{2}(c \ge 0)$ $y = ax^{2}(x - b)(x - c)$ $y = a(x - b)^{2}(x - c)^{2}$ $y = a(x - b)(x - c)^{3}$

Literal equations

Equations with multiple pronumerals. Solutions are expressed in terms of pronumerals (parameters)

Simultaneous equations (linear)

- Unique solution lines intersect at point
- Infinitely many solutions lines are equal
- No solution lines are parallel

Solving $\begin{cases} px + qy = a \\ rx + sy = b \end{cases}$ for one, infinite and no solutions

where all coefficients are known except for one, and a, b are known

- 1. Write as matrices: $\begin{bmatrix} p & q \\ r & s \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$ 2. Find determinant of first matrix: $\Delta = ps qr$
- 3. Let $\Delta = 0$ for number of solutions $\neq 1$ or let $\Delta \neq 0$ for one unique solution.
- 4. Solve determinant equation to find variable
 - — for infinite/no solutions: —
- 5. Substitute variable into both original equations
- 6. Rearrange equations so that LHS of each is the same
- 7. If RHS(1) = RHS(2), lines are coincident (infinite solutions) If $RHS(1) \neq RHS(2)$, lines are parallel (no solutions)

Or use Matrix \rightarrow det on CAS.

Solving
$$\begin{cases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \\ a_3x + b_3y + c_3z = d_3 \end{cases}$$

- Use elimination
- Generate two new equations with only two variables
- Rearrange & solve
- Substitute one variable into another equation to find another variable
- etc.