215845dc033695058ee7b9f03272b801100faf46
1---
2geometry: margin=1cm
3columns: 2
4graphics: yes
5tables: yes
6author: Andrew Lorimer
7header-includes:
8- \usepackage{tabularx}
9---
10
11
12\pagenumbering{gobble}
13\renewcommand{\arraystretch}{1.4}
14
15
16# Methods - Calculus
17
18## Average rate of change
19
20$$m \operatorname{of} x \in [a,b] = {{f(b)-f(a)}\over {b - a}} = {dy \over dx}$$
21
22On CAS: Action $\rightarrow$ Calculation $\rightarrow$ Diff $\rightarrow$ ($f(x)$ | $y$) $=\dots$
23
24## Instantaneous rate of change
25
26**Secant** - line passing through two points on a curve
27**Chord** - line segment joining two points on a curve
28
29## Limit theorems
30
311. For constant function $f(x)=k$, $\lim_{x \rightarrow a} f(x) = k$
322. $\lim_{x \rightarrow a} (f(x) \pm g(x)) = F \pm G$
333. $\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G$
344. ${\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0$
35
36A function is continuous if $L^-=L^+=f(x)$ for all values of $x$.
37
38## First principles derivative
39
40$$f^\prime(x)=\lim_{h \rightarrow 0}{{f(x+h)-f(x)} \over h}$$
41
42Not differentiable at:
43
44- discontinuous points
45- sharp point/cusp
46- vertical tangents ($\infty$ gradient)
47
48## Tangents & gradients
49
50**Tangent line** - defined by $y=mx+c$ where $m={dy \over dx}$
51**Normal line** - $\perp$ tangent ($m_{{tan}} \cdot m_{\operatorname{norm}} = -1$)
52**Secant** $={{f(x+h)-f(x)} \over h}$
53
54## Strictly increasing
55
56- **strictly increasing** where $f(x_2) > f(x_1)$ and $x_2 > x_1$
57- **strictly decreasing** where $f(x_2) < f(x_1)$ and $x_2 > x_1$
58- If $f^\prime (x) > 0$ for all $x$ in interval, then $f$ is **strictly increasing**
59- If $f^\prime(x) < 0$ for all $x$ in interval, then $f$ is **strictly decreasing**
60- Endpoints are included, even where gradient $=0$
61
62### Solving on CAS
63
64**In main**: type function. Interactive $\rightarrow$ Calculation $\rightarrow$ Line $\rightarrow$ (Normal | Tan line)
65**In graph**: define function. Analysis $\rightarrow$ Sketch $\rightarrow$ (Normal | Tan line). Type $x$ value to solve for a point. Return to show equation for line.
66
67## Stationary points
68
69Stationary where $m=0$.
70Find derivative, solve for ${dy \over dx} = 0$
71
72\begin{center}
73 \includegraphics[height=3cm]{graphics/stationary-points.png}
74\end{center}
75
76**Local maximum at point $A$**
77
78- $f^\prime (x) > 0$ left of $A$
79- $f^\prime (x) < 0$ right of $A$
80
81**Local minimum at point $B$**
82
83- $f^\prime (x) < 0$ left of $B$
84- $f^\prime (x) > 0$ right of $B$
85
86**Stationary** point of inflection at $C$
87
88## Function derivatives
89
90\begin{tabularx}{\columnwidth}{rl}
91
92 \hline \(f(x)\) & \(f^\prime(x)\) \\ \hline
93
94 \(kx^n\) & \(knx^{n-1}\)\tabularnewline
95 \(g(x) \pm h(x)\) & \(g^\prime (x) \pm h^\prime (x)\)\tabularnewline
96 \(c\) & \(0\)\tabularnewline
97 \({u \over v}\) &
98 \({{(v{du \over dx} - u{dv \over dx}}) \div v^2}\)\tabularnewline
99 \(uv\) & \(u{dv \over dx} + v{du \over dx}\)\tabularnewline
100 \(f \circ g\) & \({dy \over du} \cdot {du \over dx}\)\tabularnewline
101 \(\sin ax\) & \(a\cos ax\)\tabularnewline
102 \(\sin(f(x))\) & \(f^\prime(x) \cdot \cos(f(x))\)\tabularnewline
103 \(\cos ax\) & \(-a \sin ax\)\tabularnewline
104 \(\cos(f(x))\) & \(f^\prime(x)(-\sin(f(x)))\) \\
105 \(e^{ax}\) & \(ae^{ax}\)\tabularnewline
106 \(\log_e {ax}\) & \(1 \over x\)\tabularnewline
107 \(\log_e f(x)\) & \(f^\prime (x) \over f(x)\)\tabularnewline
108
109 \hline
110
111\end{tabularx}