2257b41a661dc8927aa8ad8385b60603b8eb52b2
1\documentclass[a4paper, twocolumn]{article}
2\usepackage[dvipsnames, table]{xcolor}
3\usepackage{adjustbox}
4\usepackage{amsmath}
5\usepackage{amssymb}
6\usepackage{blindtext}
7\usepackage{enumitem}
8\usepackage{fancyhdr}
9\usepackage[a4paper,margin=2cm]{geometry}
10\usepackage{graphicx}
11\usepackage{harpoon}
12\usepackage{listings}
13\usepackage{longtable}
14\usepackage{makecell}
15\usepackage{mathtools}
16\usepackage{multicol}
17\usepackage{multirow}
18\usepackage{newclude}
19\usepackage{pgfplots}
20\usepackage{pst-plot}
21\usepackage{standalone}
22\usepackage{tabularx}
23\usepackage{tabu}
24\usepackage{tcolorbox}
25\usepackage{tikz-3dplot}
26\usepackage{tikz}
27\usepackage{tkz-fct}
28\usepackage[obeyspaces]{url}
29\usepackage{wrapfig}
30
31
32\usetikzlibrary{%
33 angles,
34 calc,
35 datavisualization.formats.functions,
36 decorations,
37 decorations.markings,
38 decorations.pathreplacing,
39 decorations.text,
40 scopes
41}
42\newcommand{\midarrow}{\tikz \draw[-triangle 90] (0,0) -- +(.1,0);}
43\usepgflibrary{arrows.meta}
44\pgfplotsset{compat=1.8}
45\psset{dimen=monkey,fillstyle=solid,opacity=.5}
46\def\object{%
47 \psframe[linestyle=none,fillcolor=blue](-2,-1)(2,1)
48 \psaxes[linecolor=gray,labels=none,ticks=none]{->}(0,0)(-3,-3)(3,2)[$x$,0][$y$,90]
49 \rput{*0}{%
50 \psline{->}(0,-2)%
51 \uput[-90]{*0}(0,-2){$\vec{w}$}}
52}
53\newcommand{\tg}{\mathop{\mathrm{tg}}}
54\newcommand{\cotg}{\mathop{\mathrm{cotg}}}
55\newcommand{\arctg}{\mathop{\mathrm{arctg}}}
56\newcommand{\arccotg}{\mathop{\mathrm{arccotg}}}
57\pgfplotsset{every axis/.append style={
58 axis x line=middle, % centre axes
59 axis y line=middle,
60 axis line style={->}, % arrows on axes
61 xlabel={$x$}, % axes labels
62 ylabel={$y$}
63}}
64
65\pagestyle{fancy}
66\fancyhead[LO,LE]{Year 12 Methods}
67\fancyhead[CO,CE]{Andrew Lorimer}
68\fancypagestyle{plain}{\fancyhead[LO,LE]{} \fancyhead[CO,CE]{}} % rm title & author for first page
69
70\providecommand{\tightlist}{\setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}
71\linespread{1.5}
72\setlength{\parindent}{0cm}
73\setlength\fboxsep{0pt} \setlength\fboxrule{.2pt} % for the \fboxes
74\newcommand*\leftlap[3][\,]{#1\hphantom{#2}\mathllap{#3}}
75\newcommand*\rightlap[2]{\mathrlap{#2}\hphantom{#1}}
76
77\newcolumntype{L}[1]{>{\hsize=#1\hsize\raggedright\arraybackslash}X}
78\newcolumntype{R}[1]{>{\hsize=#1\hsize\raggedleft\arraybackslash}X}
79\newcolumntype{Y}{>{\centering\arraybackslash}X}
80
81\definecolor{cas}{HTML}{e6f0fe}
82\definecolor{important}{HTML}{fc9871}
83\definecolor{dark-gray}{gray}{0.2}
84\definecolor{shade1}{HTML}{ffffff}
85\definecolor{shade2}{HTML}{e6f2ff}
86\definecolor{shade3}{HTML}{cce2ff}
87
88\newtcolorbox{cas}{colframe=cas!75!black, title=On CAS, left*=3mm}
89\newtcolorbox{warning}{colback=white!90!black, leftrule=3mm, colframe=important, coltext=important, fontupper=\sffamily\bfseries}
90
91
92\begin{document}
93
94\title{\vspace{-20mm}Year 12 Methods}
95\author{Andrew Lorimer}
96\date{}
97\maketitle
98
99
100\section{Functions}
101
102\begin{itemize} \tightlist
103 \item vertical line test
104 \item each \(x\) value produces only one \(y\) value
105\end{itemize}
106
107\subsection*{One to one functions}
108
109\begin{itemize} \tightlist
110 \item
111 \(f(x)\) is \emph{one to one} if \(f(a) \ne f(b)\) if
112 \(a, b \in \operatorname{dom}(f)\) and \(a \ne b\)\\
113 \(\implies\) unique \(y\) for each \(x\) (\(\sin x\) is not 1:1,
114 \(x^3\) is)
115 \item
116 horizontal line test
117 \item
118 if not one to one, it is many to one
119\end{itemize}
120
121\subsection*{Odd and even functions}
122
123\begin{align*}
124 \text{Even:}&& f(x) &= f(-x) \\
125 \text{Odd:} && -f(x) &= f(-x)
126\end{align*}
127
128Even \(\implies\) symmetrical across \(y\)-axis \\
129\(x^{\pm {p \over q}}\) is odd if \(q\) is odd\\
130For \(x^n\), parity of \(n \equiv\) parity of function
131
132\begin{tabularx}{\columnwidth}{XX}
133 \textbf{Even:} & \textbf{Odd:} \\
134 \begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^2)}; \end{axis}\end{tikzpicture} &
135 \begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^3)}; \end{axis}\end{tikzpicture}
136\end{tabularx}
137
138\subsection*{Inverse functions}
139
140\begin{itemize} \tightlist
141 \item Inverse of \(f(x)\) is denoted \(f^{-1}(x)\)
142 \item \(f\) must be one to one
143 \item If \(f(g(x)) = x\), then \(g\) is the inverse of \(f\)
144 \item Represents reflection across \(y=x\)
145 \item \(\implies f^{-1}(x)=f(x)\) intersections lie on \(y=x\)
146 \item \(\operatorname{ran} \> f = \operatorname{dom} \> f^{-1} \\
147 \operatorname{dom} \> f = \operatorname{ran} \> f^{-1}\)
148 \item ``Inverse'' \(\ne\) ``inverse \emph{function}'' (functions must pass vertical line test)\\
149\end{itemize}
150
151\subsubsection*{Finding \(f^{-1}\)}
152
153\begin{enumerate} \tightlist
154 \item Let \(y=f(x)\)
155 \item Swap \(x\) and \(y\) (``take inverse''
156 \item Solve for \(y\) \\
157 Sqrt: state \(\pm\) solutions then restrict
158 \item State rule as \(f^{-1}(x)=\dots\)
159 \item For inverse \emph{function}, state in function notation
160\end{enumerate}
161
162\subsection*{Simultaneous equations (linear)}
163
164\begin{itemize} \tightlist
165 \item \textbf{Unique solution} - lines intersect at point
166 \item \textbf{Infinitely many solutions} - lines are equal
167 \item \textbf{No solution} - lines are parallel
168\end{itemize}
169
170\subsubsection*{Solving \(\protect\begin{cases}px + qy = a \\ rx + sy = b\protect\end{cases} \>\) for \(\{0,1,\infty\}\) solutions}
171 where all coefficients are known except for one, and \(a, b\) are known
172
173 \begin{enumerate} \tightlist
174 \item Write as matrices: \(\begin{bmatrix}p & q \\ r & s \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}\)
175 \item Find determinant of first matrix: \(\Delta = ps-qr\)
176 \item Let \(\Delta = 0\) for number of solutions \(\ne 1\)\\
177 or let \(\Delta \ne 0\) for one unique solution.
178 \item Solve determinant equation to find variable \\
179 \textbf{For infinite/no solutions:}
180 \item Substitute variable into both original equations
181 \item Rearrange equations so that LHS of each is the same
182 \item \(\text{RHS}(1) = \text{RHS}(2) \implies (1)=(2) \> \forall x\) (\(\infty\) solns)\\
183 \(\text{RHS}(1) \ne \text{RHS}(2) \implies (1)\ne(2) \> \forall x\) (0 solns)
184 \end{enumerate}
185
186 \colorbox{cas}{On CAS:} Matrix \(\rightarrow\) \texttt{det}
187
188 \subsubsection*{Solving \(\protect\begin{cases}a_1 x + b_1 y + c_1 z = d_1 \\ a_2 x + b_2 y + c_2 z = d_2 \\ a_3 x + b_3 y + c_3 z = d_3\protect\end{cases}\)}
189
190 \begin{itemize} \tightlist
191 \item Use elimination
192 \item Generate two new equations with only two variables
193 \item Rearrange \& solve
194 \item Substitute one variable into another equation to find another variable
195 \end{itemize}
196
197 \subsection*{Piecewise functions}
198
199 \[\text{e.g.} \quad f(x) = \begin{cases} x^{1 / 3}, \hspace{2em} x \le 0 \\ 2, \hspace{3.4em} 0 < x < 2 \\ x, \hspace{3.4em} x \ge 2 \end{cases}\]
200
201 \textbf{Open circle:} point included\\
202 \textbf{Closed circle:} point not included
203
204 \subsection*{Operations on functions}
205
206 For \(f \pm g\) and \(f \times g\):
207 \quad \(\text{dom}^\prime = \operatorname{dom}(f) \cap \operatorname{dom}(g)\)
208
209 Addition of linear piecewise graphs: add \(y\)-values at key points
210
211 Product functions:
212
213 \begin{itemize}
214 \tightlist
215 \item
216 product will equal 0 if \(f=0\) or \(g=0\)
217 \item
218 \(f^\prime(x)=0 \veebar g^\prime(x)=0 \not\Rightarrow (f \times g)^\prime(x)=0\)
219 \end{itemize}
220
221 \subsection*{Composite functions}
222
223 \((f \circ g)(x)\) is defined iff
224 \(\operatorname{ran}(g) \subseteq \operatorname{dom}(f)\)
225
226 \pgfplotsset{
227 blank/.append style={%
228 enlargelimits=true,
229 ticks=none,
230 yticklabels={,,}, xticklabels={,,},
231 xlabel=, ylabel=,
232 scale=0.4,
233 samples=100, smooth, unbounded coords=jump
234 }
235 }
236 \tikzset{
237 blankplot/.append style={orange, mark=none}
238 }
239
240 \begin{figure*}[ht]
241 \centering
242
243 \begin{tabularx}{\textwidth}{r|Y|Y}
244
245 & \(n\) is even & \(n\) is odd \\ \hline
246
247 \centering \(x^n, n \in \mathbb{Z}^+\) &
248
249 \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
250 \begin{axis}[blank, xmin=-3, xmax=3]
251 \addplot[blankplot] {(x^2)};
252 \end{axis}
253 \end{tikzpicture}} &
254
255 \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
256 \begin{axis}[blank, xmin=-3, xmax=3]
257 \addplot[blankplot, domain=-3:3] {(x^3)};
258 \end{axis}
259 \end{tikzpicture}} \\ \hline
260
261 \centering \(x^n, n \in \mathbb{Z}^-\) &
262
263 \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
264 \begin{axis}[blank, xmin=-4, xmax=4, ymax=8, ymin=-0]
265 \addplot[blankplot, samples=100] {(x^(-2))};
266 \end{axis}
267 \end{tikzpicture}} &
268
269 \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
270 \begin{axis}[blank, xmin=-3, xmax=3]
271 \addplot[blankplot, domain=-3:-0.1] {(x^(-1))};
272 \addplot[blankplot, domain=0.1:3] {(x^(-1))};
273 \end{axis}
274 \end{tikzpicture}} \\ \hline
275
276 \centering \(x^{\frac{1}{n}}, n \in \mathbb{Z}^-\) &
277
278 \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
279 \begin{axis}[blank, xmin=-1, xmax=5]
280 \addplot[blankplot] {(x^(1/2))};
281 \end{axis}
282 \end{tikzpicture}} &
283
284 \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
285 \begin{axis}[blank, xmin=-3, xmax=3, ymin=-3, ymax=3]
286 \addplot [blankplot, domain=-2:2] gnuplot[id=poly]{sgn(x)*(abs(x)**(1./3)) };
287 \end{axis}
288 \end{tikzpicture}} \\ \hline
289
290 \end{tabularx}
291 \end{figure*}
292
293 \section{Polynomials}
294
295 \subsection*{Linear equations}
296
297 \subsubsection*{Forms}
298
299 \begin{itemize}
300 \tightlist
301 \item \(y=mx+c\)
302 \item \(\frac{x}{a} + \frac{y}{b}=1\) where \((x_1, y_1)\) lies on the graph
303 \item \(y-y_1 = m(x-x_1)\) where \((a,0)\) and \((0,b)\) are \(x\)- and \(y\)-intercepts
304 \end{itemize}
305
306 \subsubsection*{Line properties}
307
308 Parallel lines: \(m_1 = m_2\)\\
309 Perpendicular lines: \(m_1 \times m_2 = -1\)\\
310 Distance: \(|\vec{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)
311
312 \subsection*{Quadratics}
313 \setlength{\abovedisplayskip}{1pt}
314 \setlength{\belowdisplayskip}{1pt}
315 \[ x^2 + bx + c = (x+m)(x+n) \]
316 \hfill where \(mn=c, \> m+n=b\)
317
318 \textbf{Difference of squares}
319 \[ a^2 - b^2 = (a-b)(a+b) \]
320 \textbf{Perfect squares}
321 \[ a^2 \pm 2ab + b^2 = (a \pm b^2) \]
322 \textbf{Completing the square}
323 \begin{align*}
324 x^2+bx+c &= (x+\frac{b}{2})^2+c-\frac{b^2}{4} \\
325 ax^2+bx+c &= a(x-\frac{b}{2a})^2+c-\frac{b^2}{4a}
326 \end{align*}
327 \textbf{Quadratic formula}
328 \[ x = \dfrac{-b\pm\sqrt{b^2-4ac}}{2a} \]
329 \hfill (Discriminant \(\Delta=b^2-4ac\))
330
331 \subsection*{Cubics}
332
333 \textbf{Difference of cubes}
334 \[ a^3 - b^3 = (a-b)(a^2 + ab + b^2) \]
335 \textbf{Sum of cubes}
336 \[ a^3 + b^3 = (a+b)(a^2 - ab + b^2) \]
337 \textbf{Perfect cubes}
338 \[ a^3 \pm 3a^2b + 3ab^2 \pm b^3 = (a \pm b)^3 \]
339
340 \[ y=a(bx-h)^3 + c \]
341
342 \begin{itemize}
343 \tightlist
344 \item
345 \(m=0\) at \emph{stationary point of inflection}
346 (i.e.~(\({h \over b}, k)\))
347 \item \(y=(x-a)^2(x-b)\) --- max at \(x=a\), min at \(x=b\)
348 \item \(y=a(x-b)(x-c)(x-d)\) --- roots at \(b, c, d\)
349 \item \(y=a(x-b)^2(x-c)\) --- roots at \(b\) (instantaneous), \(c\) (intercept)
350 \end{itemize}
351
352 \subsection*{Quartic graphs}
353
354 \subsubsection*{Forms of quartic equations}
355
356 \(y=ax^4\)\\
357 \(y=a(x-b)(x-c)(x-d)(x-e)\)\\
358 \(y=ax^4+cd^2 (c \ge 0)\)\\
359 \(y=ax^2(x-b)(x-c)\)\\
360 \(y=a(x-b)^2(x-c)^2\)\\
361 \(y=a(x-b)(x-c)^3\)
362
363 \input{transformations}
364 \input{stuff}
365 \input{circ-functions}
366 \input{calculus}
367
368
369
370 \section{Statistics}
371
372 \subsection*{Probability}
373
374 \begin{align*}
375 \Pr(A \cup B) &= \Pr(A) + \Pr(B) - \Pr(A \cap B) \\
376 \Pr(A \cap B) &= \Pr(A|B) \times \Pr(B) \\
377 \Pr(A|B) &= \frac{\Pr(A \cap B)}{\Pr(B)} \\
378 \Pr(A) &= \Pr(A|B) \cdot \Pr(B) + \Pr(A|B^{\prime}) \cdot \Pr(B^{\prime})
379 \end{align*}
380
381 Mutually exclusive \(\implies \Pr(A \cup B) = 0\) \\
382
383 Independent events:
384 \begin{flalign*}
385 \quad \Pr(A \cap B) &= \Pr(A) \times \Pr(B)& \\
386 \Pr(A|B) &= \Pr(A) \\
387 \Pr(B|A) &= \Pr(B)
388 \end{flalign*}
389
390 \subsection*{Combinatorics}
391
392 \begin{itemize}
393 \item Arrangements \({n \choose k} = \frac{n!}{(n-k)}\)
394 \item \colorbox{important}{Combinations} \({n \choose k} = \frac{n!}{k!(n-k)!}\)
395 \item Note \({n \choose k} = {n \choose k-1}\)
396 \end{itemize}
397
398 \subsection*{Distributions}
399
400 \subsubsection*{Mean \(\mu\)}
401
402 \textbf{Mean} \(\mu\) or \textbf{expected value} \(E(X)\)
403
404 \begin{align*}
405 E(X) &= \frac{\Sigma \left[ x \cdot f(x) \right]}{\Sigma f} \tag{\(f =\) absolute frequency} \\
406 &= \sum_{i=1}^n \left[ x_i \cdot \Pr(X=x_i) \right] \tag{discrete}\\
407 &= \int_\textbf{X} (x \cdot f(x)) \> dx
408 \end{align*}
409
410 \subsubsection*{Mode}
411
412 Most popular value (has highest probability of all \(X\) values). Multiple modes can exist if \(>1 \> X\) value have equal-highest probability. Number must exist in distribution.
413
414 \subsubsection*{Median}
415
416 If \(m > 0.5\), then value of \(X\) that is reached is the median of \(X\). If \(m = 0.5 = 0.5\), then \(m\) is halfway between this value and the next. To find \(m\), add values of \(X\) from smallest to alrgest until the sum reaches 0.5.
417
418 \[ m = X \> \text{such that} \> \int_{-\infty}^{m} f(x) dx = 0.5 \]
419
420 \subsubsection*{Variance \(\sigma^2\)}
421
422 \begin{align*}
423 \operatorname{Var}(x) &= \sum_{i=1}^n p_i (x_i-\mu)^2 \\
424 &= \sum (x-\mu)^2 \times \Pr(X=x) \\
425 &= \sum x^2 \times p(x) - \mu^2 \\
426 &= \operatorname{E}(X^2) - [\operatorname{E}(X)]^2
427 &= E\left[(X-\mu)^2\right]
428 \end{align*}
429
430 \subsubsection*{Standard deviation \(\sigma\)}
431
432 \begin{align*}
433 \sigma &= \operatorname{sd}(X) \\
434 &= \sqrt{\operatorname{Var}(X)}
435 \end{align*}
436
437 \subsection*{Binomial distributions}
438
439 Conditions for a \textit{binomial distribution}:
440 \begin{enumerate}
441 \item Two possible outcomes: \textbf{success} or \textbf{failure}
442 \item \(\Pr(\text{success})\) is constant across trials (also denoted \(p\))
443 \item Finite number \(n\) of independent trials
444 \end{enumerate}
445
446
447 \subsubsection*{Properties of \(X \sim \operatorname{Bi}(n,p)\)}
448
449 \begin{align*}
450 \mu(X) &= np \\
451 \operatorname{Var}(X) &= np(1-p) \\
452 \sigma(X) &= \sqrt{np(1-p)} \\
453 \Pr(X=x) &= {n \choose x} \cdot p^x \cdot (1-p)^{n-x}
454 \end{align*}
455
456 \begin{cas}
457 Interactive \(\rightarrow\) Distribution \(\rightarrow\) \verb;binomialPdf; then input
458 \begin{description}[nosep, style=multiline, labelindent=0.5cm, leftmargin=3cm, font=\normalfont]
459 \item [x:] no. of successes
460 \item [numtrial:] no. of trials
461 \item [pos:] probability of success
462 \end{description}
463 \end{cas}
464
465 \subsection*{Continuous random variables}
466
467 A continuous random variable \(X\) has a pdf \(f\) such that:
468
469 \begin{enumerate}
470 \item \(f(x) \ge 0 \forall x \)
471 \item \(\int^\infty_{-\infty} f(x) \> dx = 1\)
472 \end{enumerate}
473
474 \begin{align*}
475 E(X) &= \int_\textbf{X} (x \cdot f(x)) \> dx \\
476 \operatorname{Var}(X) &= E\left[(X-\mu)^2\right]
477 \end{align*}
478
479 \[ \Pr(X \le c) = \int^c_{-\infty} f(x) \> dx \]
480
481
482 \subsection*{Two random variables \(X, Y\)}
483
484 If \(X\) and \(Y\) are independent:
485 \begin{align*}
486 \operatorname{E}(aX+bY) & = a\operatorname{E}(X)+b\operatorname{E}(Y) \\
487 \operatorname{Var}(aX \pm bY \pm c) &= a^2 \operatorname{Var}(X) + b^2 \operatorname{Var}(Y)
488 \end{align*}
489
490 \subsection*{Linear functions \(X \rightarrow aX+b\)}
491
492 \begin{align*}
493 \Pr(Y \le y) &= \Pr(aX+b \le y) \\
494 &= \Pr\left(X \le \dfrac{y-b}{a}\right) \\
495 &= \int^{\frac{y-b}{a}}_{-\infty} f(x) \> dx
496 \end{align*}
497
498 \begin{align*}
499 \textbf{Mean:} && \operatorname{E}(aX+b) & = a\operatorname{E}(X)+b \\
500 \textbf{Variance:} && \operatorname{Var}(aX+b) &= a^2 \operatorname{Var}(X) \\
501 \end{align*}
502
503 \subsection*{Expectation theorems}
504
505 For some non-linear function \(g\), the expected value \(E(g(X))\) is not equal to \(g(E(X))\).
506
507 \begin{align*}
508 E(X^2) &= \operatorname{Var}(X) - \left[E(X)\right]^2 \\
509 E(X^n) &= \Sigma x^n \cdot p(x) \tag{non-linear} \\
510 &\ne [E(X)]^n \\
511 E(aX \pm b) &= aE(X) \pm b \tag{linear} \\
512 E(b) &= b \tag{\(\forall b \in \mathbb{R}\)}\\
513 E(X+Y) &= E(X) + E(Y) \tag{two variables}
514 \end{align*}
515
516 \subsection*{Sample mean}
517
518 Approximation of the \textbf{population mean} determined experimentally.
519
520 \[ \overline{x} = \dfrac{\Sigma x}{n} \]
521
522 where
523 \begin{description}[nosep, labelindent=0.5cm]
524 \item \(n\) is the size of the sample (number of sample points)
525 \item \(x\) is the value of a sample point
526 \end{description}
527
528 \begin{cas}
529 \begin{enumerate}[leftmargin=3mm]
530 \item Spreadsheet
531 \item In cell A1:\\ \path{mean(randNorm(sd, mean, sample size))}
532 \item Edit \(\rightarrow\) Fill \(\rightarrow\) Fill Range
533 \item Input range as A1:An where \(n\) is the number of samples
534 \item Graph \(\rightarrow\) Histogram
535 \end{enumerate}
536 \end{cas}
537
538 \subsubsection*{Sample size of \(n\)}
539
540 \[ \overline{X} = \sum_{i=1}^n \frac{x_i}{n} = \dfrac{\sum x}{n} \]
541
542 Sample mean is distributed with mean \(\mu\) and sd \(\frac{\sigma}{\sqrt{n}}\) (approaches these values for increasing sample size \(n\)).
543
544 For a new distribution with mean of \(n\) trials, \(\operatorname{E}(X^\prime) = \operatorname{E}(X), \quad \operatorname{sd}(X^\prime) = \dfrac{\operatorname{sd}(X)}{\sqrt{n}}\)
545
546 \begin{cas}
547
548 \begin{itemize}
549 \item Spreadsheet \(\rightarrow\) Catalog \(\rightarrow\) \verb;randNorm(sd, mean, n); where \verb;n; is the number of samples. Show histogram with Histogram key in top left
550 \item To calculate parameters of a dataset: Calc \(\rightarrow\) One-variable
551 \end{itemize}
552
553 \end{cas}
554
555 \subsection*{Normal distributions}
556
557
558 \[ Z = \frac{X - \mu}{\sigma} \]
559
560 Normal distributions must have area (total prob.) of 1 \(\implies \int^\infty_{-\infty} f(x) \> dx = 1\) \\
561 \(\text{mean} = \text{mode} = \text{median}\)
562
563 \begin{warning}
564 Always express \(z\) as +ve. Express confidence \textit{interval} as ordered pair.
565 \end{warning}
566
567 \pgfmathdeclarefunction{gauss}{2}{%
568 \pgfmathparse{1/(#2*sqrt(2*pi))*exp(-((x-#1)^2)/(2*#2^2))}%
569 }
570 \pgfkeys{/pgf/decoration/.cd,
571 distance/.initial=10pt
572 } \pgfdeclaredecoration{add dim}{final}{
573 \state{final}{%
574 \pgfmathsetmacro{\dist}{5pt*\pgfkeysvalueof{/pgf/decoration/distance}/abs(\pgfkeysvalueof{/pgf/decoration/distance})}
575 \pgfpathmoveto{\pgfpoint{0pt}{0pt}}
576 \pgfpathlineto{\pgfpoint{0pt}{2*\dist}}
577 \pgfpathmoveto{\pgfpoint{\pgfdecoratedpathlength}{0pt}}
578 \pgfpathlineto{\pgfpoint{(\pgfdecoratedpathlength}{2*\dist}}
579 \pgfsetarrowsstart{latex}
580 \pgfsetarrowsend{latex}
581 \pgfpathmoveto{\pgfpoint{0pt}{\dist}}
582 \pgfpathlineto{\pgfpoint{\pgfdecoratedpathlength}{\dist}}
583 \pgfusepath{stroke}
584 \pgfpathmoveto{\pgfpoint{0pt}{0pt}}
585 \pgfpathlineto{\pgfpoint{\pgfdecoratedpathlength}{0pt}}
586 }}
587 \tikzset{dim/.style args={#1,#2}{decoration={add dim,distance=#2},
588 decorate,
589 postaction={decorate,decoration={text along path,
590 raise=#2,
591 text align={align=center},
592 text={#1}}}}}
593 \begin{figure*}[hb]
594 \centering
595 \begin{tikzpicture}
596 \begin{axis}[every axis plot post/.style={
597 mark=none,domain=-3:3,samples=50,smooth},
598 axis x line=bottom,
599 axis y line=left,
600 enlargelimits=upper,
601 x=\textwidth/10,
602 ytick={0.55},
603 yticklabels={\(\frac{1}{\sigma \sqrt{2\pi}}\)},
604 xtick={-2,-1,0,1,2},
605 x tick label style = {font=\footnotesize},
606 xticklabels={\((\mu-2\sigma)\), \((\mu-\sigma)\), \(\mu\), \((\mu+\sigma)\), \((\mu+2\sigma)\)},
607 xlabel={\(x\)},
608 every axis x label/.style={at={(current axis.right of origin)},anchor=north west},
609 every axis y label/.style={at={(axis description cs:-0.02,0.2)}, anchor=south west, rotate=90},
610 ylabel={\(\Pr(X=x)\)}]
611 \addplot {gauss(0,0.75)};
612 \fill[red!30] (-3,0) -- plot[id=f3,domain=-3:3,samples=50] function {1/(0.75*sqrt(2*pi))*exp(-((x)^2)/(2*0.75^2))} -- (3,0) -- cycle;
613 \fill[darkgray!30] (3,0) -- plot[id=f3,domain=-3:3,samples=50] function {1/(0.75*sqrt(2*pi))*exp(-x*x*0.5/(0.75*0.75))} -- (3,0) -- cycle;
614 \fill[lightgray!30] (-2,0) -- plot[id=f3,domain=-2:2,samples=50] function {1/(0.75*sqrt(2*pi))*exp(-x*x*0.5/(0.75*0.75))} -- (2,0) -- cycle;
615 \fill[white!30] (-1,0) -- plot[id=f3,domain=-1:1,samples=50] function {1/(0.75*sqrt(2*pi))*exp(-x*x*0.5/(0.75*0.75))} -- (1,0) -- cycle;
616 \begin{scope}[<->]
617 \draw (-1,0.35) -- (1,0.35) node [midway, fill=white] {68.3\%};
618 \draw (-2,0.25) -- (2,0.25) node [midway, fill=white] {95.5\%};
619 \draw (-3,0.15) -- (3,0.15) node [midway, fill=white] {99.7\%};
620 \end{scope}
621 \begin{scope}[-, dashed, gray]
622 \draw (-1,0) -- (-1, 0.35);
623 \draw (1,0) -- (1, 0.35);
624 \draw (-2,0) -- (-2, 0.25);
625 \draw (2,0) -- (2, 0.25);
626 \draw (-3,0) -- (-3, 0.15);
627 \draw (3,0) -- (3, 0.15);
628 \end{scope}
629 \end{axis}
630 \begin{axis}[every axis plot post/.append style={
631 mark=none,domain=-3:3,samples=50,smooth},
632 axis x line=bottom,
633 enlargelimits=upper,
634 x=\textwidth/10,
635 xtick={-2,-1,0,1,2},
636 axis x line shift=30pt,
637 hide y axis,
638 x tick label style = {font=\footnotesize},
639 xlabel={\(Z\)},
640 every axis x label/.style={at={(axis description cs:1,-0.25)},anchor=south west}]
641 \addplot {gauss(0,0.75)};
642 \end{axis}
643 \end{tikzpicture}
644 \end{figure*}
645 \end{document}