1 Statistics

Probability

$$
\begin{aligned}
\operatorname{Pr}(A \cup B) & =\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B) \\
\operatorname{Pr}(A \cap B) & =\operatorname{Pr}(A \mid B) \times \operatorname{Pr}(B) \\
\operatorname{Pr}(A \mid B) & =\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)} \\
\operatorname{Pr}(A) & =\operatorname{Pr}(A \mid B) \cdot \operatorname{Pr}(B)+\operatorname{Pr}\left(A \mid B^{\prime}\right) \cdot \operatorname{Pr}\left(B^{\prime}\right)
\end{aligned}
$$

Mutually exclusive $\Longrightarrow \operatorname{Pr}(A \cup B)=0$

Independent events:

$$
\begin{aligned}
\operatorname{Pr}(A \cap B) & =\operatorname{Pr}(A) \times \operatorname{Pr}(B) \\
\operatorname{Pr}(A \mid B) & =\operatorname{Pr}(A) \\
\operatorname{Pr}(B \mid A) & =\operatorname{Pr}(B)
\end{aligned}
$$

Combinatorics

- Arrangements $\binom{n}{k}=\frac{n!}{(n-k)}$
- Combinations $\binom{n}{k}=\frac{n!}{k!(n-k)!}$
- $\operatorname{Note}\binom{n}{k}=\binom{n}{k-1}$

Distributions

Mean μ
Mean μ or expected value $E(X)$

$$
\begin{array}{rlr}
E(X) & =\frac{\Sigma[x \cdot f(x)]}{\Sigma f} & (f=\text { absolute frequency) } \\
& =\sum_{i=1}^{n}\left[x_{i} \cdot \operatorname{Pr}\left(X=x_{i}\right)\right] & \text { (discrete) } \\
& =\int_{\mathbf{X}}(x \cdot f(x)) d x &
\end{array}
$$

Mode

Most popular value (has highest probability of all X values). Multiple modes can exist if $>1 X$ value have equal-highest probability. Number must exist in distribution.

Median

If $m>0.5$, then value of X that is reached is the median of X. If $m=0.5=0.5$, then m is halfway between this value and the next. To find m, add values of X from smallest to alrgest until the sum reaches 0.5 .

$$
m=X \text { such that } \int_{-\infty}^{m} f(x) d x=0.5
$$

Variance σ^{2}

$$
\begin{aligned}
\operatorname{Var}(x) & =\sum_{i=1}^{n} p_{i}\left(x_{i}-\mu\right)^{2} \\
& =\sum(x-\mu)^{2} \times \operatorname{Pr}(X=x) \\
& =\sum x^{2} \times p(x)-\mu^{2}
\end{aligned}
$$

$$
=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2} \quad=E\left[(X-\mu)^{2}\right]
$$

Standard deviation σ

$$
\begin{aligned}
\sigma & =\operatorname{sd}(X) \\
& =\sqrt{\operatorname{Var}(X)}
\end{aligned}
$$

Binomial distributions

Conditions for a binomial distribution:

1. Two possible outcomes: success or failure
2. Pr (success) is constant across trials (also denoted p)
3. Finite number n of independent trials

Properties of $X \sim \operatorname{Bi}(n, p)$

$$
\begin{aligned}
\mu(X) & =n p \\
\operatorname{Var}(X) & =n p(1-p) \\
\sigma(X) & =\sqrt{n p(1-p)} \\
\operatorname{Pr}(X=x) & =\binom{n}{x} \cdot p^{x} \cdot(1-p)^{n-x}
\end{aligned}
$$

On CAS

Interactive \rightarrow Distribution \rightarrow binomialPdf then input

$\mathrm{x}:$	no. of successes
numtrial:	no. of trials
pos:	probability of success

Continuous random variables

A continuous random variable X has a pdf f such that:

1. $f(x) \geq 0 \forall x$
2. $\int_{-\infty}^{\infty} f(x) d x=1$

$$
\begin{aligned}
& E(X)=\int_{\mathbf{X}}(x \cdot f(x)) d x \\
& \operatorname{Var}(X)=E\left[(X-\mu)^{2}\right] \\
& \operatorname{Pr}(X \leq c)=\int_{-\infty}^{c} f(x) d x
\end{aligned}
$$

Two random variables X, Y

If X and Y are independent:

$$
\begin{aligned}
\mathrm{E}(a X+b Y) & =a \mathrm{E}(X)+b \mathrm{E}(Y) \\
\operatorname{Var}(a X \pm b Y \pm c) & =a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)
\end{aligned}
$$

Linear functions $X \rightarrow a X+b$

$$
\begin{aligned}
\operatorname{Pr}(Y \leq y) & =\operatorname{Pr}(a X+b \leq y) \\
& =\operatorname{Pr}\left(X \leq \frac{y-b}{a}\right) \\
& =\int_{-\infty}^{\frac{y-b}{a}} f(x) d x
\end{aligned}
$$

$$
\begin{array}{rr}
\text { Mean: } & \mathrm{E}(a X+b)=a \mathrm{E}(X)+b \\
\text { Variance: } & \operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
\end{array}
$$

Expectation theorems

For some non-linear function g, the expected value $E(g(X))$ is not equal to $g(E(X))$.

$$
\begin{aligned}
E\left(X^{2}\right) & =\operatorname{Var}(X)-[E(X)]^{2} \\
E\left(X^{n}\right) & =\Sigma x^{n} \cdot p(x) \\
& \neq[E(X)]^{n} \\
E(a X \pm b) & =a E(X) \pm b \\
E(b) & =b \\
E(X+Y) & =E(X)+E(Y)
\end{aligned}
$$

$$
E\left(X^{n}\right)=\Sigma x^{n} \cdot p(x)
$$

(linear)
$(\forall b \in \mathbb{R})$
(two variables)

Sample mean

Approximation of the population mean determined experimentally.

$$
\bar{x}=\frac{\Sigma x}{n}
$$

where
n is the size of the sample (number of sample points)
x is the value of a sample point

On CAS

1. Spreadsheet
2. In cell A1:
mean(randNorm(sd, mean, sample size))
3. Edit \rightarrow Fill \rightarrow Fill Range
4. Input range as A1:An where n is the number of samples
5. Graph \rightarrow Histogram

Sample size of n

$$
\bar{X}=\sum_{i=1}^{n} \frac{x_{i}}{n}=\frac{\sum x}{n}
$$

Sample mean is distributed with mean μ and sd $\frac{\sigma}{\sqrt{n}}$ (approaches these values for increasing sample size n).
For a new distribution with mean of n trials, $\mathrm{E}\left(X^{\prime}\right)=\mathrm{E}(X), \quad \operatorname{sd}\left(X^{\prime}\right)=\frac{\operatorname{sd}(X)}{\sqrt{n}}$

On CAS

- Spreadsheet \rightarrow Catalog \rightarrow randNorm (sd, mean, n) where n is the number of samples. Show histogram with Histogram key in top left
- To calculate parameters of a dataset: Calc \rightarrow One-variable

Normal distributions

$$
Z=\frac{X-\mu}{\sigma}
$$

Normal distributions must have area (total prob.) of $1 \Longrightarrow \int_{-\infty}^{\infty} f(x) d x=1$
mean $=$ mode $=$ median
Always express z as + ve. Express confidence interval as ordered pair.

Confidence intervals

- Point estimate: single-valued estimate of the population mean from the value of the sample mean \bar{x}
- Interval estimate: confidence interval for population mean μ
- $C \%$ confidence interval $\Longrightarrow C \%$ of samples will contain population mean μ

$\mathbf{9 5 \%}$ confidence interval

For 95% c.i. of population mean μ :

$$
x \in\left(\bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}\right)
$$

where:
\bar{x} is the sample mean
σ is the population sd
n is the sample size from which \bar{x} was calculated

On CAS

Menu \rightarrow Stats \rightarrow Calc \rightarrow Interval
Set Type $=$ One-Sample Z Int
and select Variable

Margin of error

For 95% confidence interval of μ :

$$
\begin{aligned}
M & =1.96 \times \frac{\sigma}{\sqrt{n}} \\
& =\frac{1}{2} \times \text { width of c.i. } \\
\Longrightarrow n & =\left(\frac{1.96 \sigma}{M}\right)^{2}
\end{aligned}
$$

Always round n up to a whole number of samples.

General case

For $C \%$ c.i. of population mean μ :

$$
x \in\left(\bar{x} \pm k \frac{\sigma}{\sqrt{n}}\right)
$$

where k is such that $\operatorname{Pr}(-k<Z<k)=\frac{C}{100}$

On CAS

Menu \rightarrow Stats \rightarrow Calc \rightarrow Interval
Set Type $=$ One-Prop Z Int
Input $\mathrm{x}=\hat{p} * n$

Confidence interval for multiple trials

For a set of n confidence intervals (samples), there is 0.95^{n} chance that all n intervals contain the population mean μ.

