26d12f1445d65d905e95a6109d25a9ff630f7006
1\documentclass[a4paper]{article}
2\usepackage[a4paper,margin=2cm]{geometry}
3\usepackage{multicol}
4\usepackage{amsmath}
5\usepackage{amssymb}
6\usepackage{tcolorbox}
7\usepackage{fancyhdr}
8\usepackage{carbohydrates}
9\usepackage{tabularx}
10\usepackage{mhchem}
11
12\pagestyle{fancy}
13\fancyhead[LO,LE]{Food Chemistry}
14\fancyhead[CO,CE]{Andrew Lorimer}
15
16\setlength\parindent{0pt}
17
18\begin{document}
19
20 \title{Food chemistry}
21 \author{Andrew Lorimer}
22 \date{}
23 \maketitle
24
25 \section{Vitamins}
26
27 \subsection*{Fat-soluble vitamins}
28
29 \begin{itemize}
30 \item Carbon and hydrogen
31 \item Non-polar (few or no polar groups)
32 \item Soluble in other non-polar solvents e.g. fats, oils
33 \item Can be synthesised endogenously
34 \end{itemize}
35
36 \subsection*{Water-soluble vitamins}
37
38 \begin{itemize}
39 \item Absorbed directly into bloodstream
40 \item Catalyse cellular reactions
41 \item Excreted through kidneys in urine
42 \item Must be obtained from food
43 \end{itemize}
44
45 \section{Proteins}
46
47 \begin{itemize}
48 \item All proteins contain C, H, O, N
49 \item Plants make proteins from inorganic compounds, animals cannot
50 \item Built from monomers called \textbf{amino acids}
51 \end{itemize}
52
53 \subsection*{Aminio acids}
54
55 \begin{itemize}
56 \item Contains amino (\ce{-NH2}) and carboxyl (\ce{-COOH})
57 \item Most have four groups bonded to central atom
58 \item May be polar or non-polar (amphoteric), acidic or basic
59 \item \textbf{Essential amino acids} - cannot be synthesised, must be supplied in diet
60 \item Amino acids (except glycine) are enantiomers due to chiral centres
61 \item Must be correct chirality to act as a biological catalyst
62 \end{itemize}
63
64 % amino acid general structure (see Jacaranda p.328)
65
66 \chemfig{\color{red}N(-[:135]H)(-[:225]H)-[:-45]C(-[:-90]\color{yellow}\textit{R})(-H)-[:45]\color{blue}C(=[:90]O)-OH}
67
68 \subsection*{Zwitterions}
69
70 \begin{itemize}
71 \item Zwitterion = \textit{dipolar ion}
72 \item Behaves as a base in acidic environments: \ce{-COOH- + H+ -> -COOH}
73 \item Behaves as an acid in basic environments: ammonium group loses \ce{H+} \(\implies\) anionic form
74 \end{itemize}
75
76 % Zwitterion structural equation (Jacaranda p.330)
77
78 \[ \ce{$\underset{\text{acid form}}{\ce{^+H3N-CH2-COOH}}$ <=>[+H+] $\underset{\text{zwitterion form}}{\ce{^+H3N-CH2-COO-}}$ <=>[-H+] $\underset{\text{basic form}}{\ce{H2N-CH2-COO-}}$} \]
79 \[ \text{cationic} \hspace{12cm} \text{anionic} \]
80
81 \subsection*{Formation of proteins}
82
83 \[ \text{Amino acid} \rightarrow \text{peptide} \tag{polymerisation} \]
84
85 Peptide group (amide): \ce{-C=ONH} (condensation reaction produces \ce{H2O})
86
87 Amino acid \textit{residue} - product of peptide formation reaction
88
89 Large polypeptides are called \textit{proteins}
90
91 \subsection*{Protein structure}
92
93 \begin{enumerate}
94 \item \textbf{Primary structure} - order of amino acids in peptide chain
95 \item \textbf{Secondary structure} - coils/pleats/folds in polymer
96 \item \textbf{Tertiary structure} - three-dimensional structure, e.g. H-bonding, ionic bonding
97 \item \textbf{Quaternary structure} - arrangement of multiple protein molecules
98 \end{enumerate}
99
100 % diagram of structural levels (Jacaranda p.332)
101
102 \subsection*{Enzymes}
103
104 \begin{itemize}
105 \item Biological catalysts (lowers \(E_A\))
106 \item Names usually end in \textit{-ase}
107 \item Every enzyme has a unique 3D shape
108 \item Rate of reaction \(\propto\) concentration up to \textit{saturation point}
109 \item \textbf{Substrate} - reactant molecule
110 \item \textbf{Active site} - destination of substrate
111 \end{itemize}
112
113 % enzyme catalyst diagram (Jacaranda p.334)
114
115 \subsubsection*{Lock and key model}
116
117 Reactants and enzymes must have complementary shapes
118
119 \subsubsection*{Indicued fit model}
120
121 Active site may change to fit subtrate
122
123 \subsection*{Coenzymes}
124
125 "Helper" molecules to enzymes. Non-protein molecules. Temporarily forms a loose bond with protein molecule to form active enzyme. Coenzymes are not specific to the substrate (different to enzymes).
126
127 \section*{Digestion of protein}
128
129 Proteins are hydrolysed by the \textit{pepsin} enzyme (\(\implies\) addition of \ce{H2O}).
130
131 \begin{description}
132 \item [Hydrolysis:] breaking of strong covalent (peptide) bonds
133 \item [Denaturation:] breaking of weak bonds (dispersion, H-bonds)
134 \end{description}
135
136 \section{Carbohydrates}
137
138 \subsubsection*{Monosaccharides}
139
140 The smallest carbohydrates.
141
142 \chemname{\glucose[model=haworth, ring]}{\(\alpha\) glucose \\ \ce{C6H12O6}}
143 \chemname{\glucose[anomer=beta, model=haworth, ring]}{\(\beta\) glucose \\ \ce{C6H12O6}}
144 \chemname{\galactose[model=haworth, ring]}{galactose \\ \ce{C6H12O6}}
145 \chemname{\mannose[model=haworth, ring]}{mannose \\ \ce{C6H12O6}}
146 \chemname{\xylose[model=haworth, ring]}{xylose\\ \ce{C5H10O5}}
147 \setchemfig{cram width=2pt}
148 \chemname{\chemfig{(-[:90]HO)(-[:270]HOCH2)-[:-45](-[:270, 0.5]HO)-(-[:90, 0.5]OH)-[:45]D-[:135]E}}{fructose \\ \ce{C6H12O6}}
149
150\end{document}