2964beab3232f02bb5819a197985c1cfc562c18a
1\section{Exponentials \& Logarithms}
2
3\subsubsection*{Logarithmic identities}
4
5\begin{align*}
6 \log_b (xy) &= \log_b x + \log_b y \\
7 \log_b x^n &= n \log_b x \\
8 \log_b y^{x^n} &= x^n \log_b y \\
9 \log_a(\frac{m}{n}) &= \log_am - \log_a \\
10 \log_a(m^{-1}) & = -\log_am \\
11 \log_b c &= \frac{\log_a c}{\log_a b}
12\end{align*}
13
14\subsubsection*{Index identities}
15
16\begin{align*}
17 b^{m+n} &= b^m \cdot b^n \\
18 (b^m)^n &= b^{m \cdot n} \\
19 (b \cdot c)^n &= b^n \cdot c^n \\
20 {b^m \div a^n} &= {b^{m-n}}
21\end{align*}
22
23\subsection*{Inverse functions}
24
25For \(f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=a^x\), inverse is:
26
27\[f^{-1}: \mathbb{R}^+ \rightarrow \mathbb{R}, f^{-1}=\log_ax\]
28
29\subsection*{Euler's number \(e\)}
30
31\[e= \lim_{n \rightarrow \infty} (1 + {1 \over n})^n\]
32
33\subsection*{Modelling}
34
35\[A = A_0 e^{kt}\]
36
37\begin{itemize}
38\tightlist
39\item
40 \(A_0\) is initial value
41\item
42 \(t\) is time taken
43\item
44 \(k\) is a constant
45\item
46 For continuous growth, \(k > 0\)
47\item
48 For continuous decay, \(k < 0\)
49\end{itemize}
50
51\subsection*{Graphing exponential functions}
52
53\[f(x)=Aa^{k(x-b)} + c, \quad \vert \> a > 1\]
54
55\begin{itemize}
56\tightlist
57\item
58 \textbf{\(y\)-intercept} at \((0, A \cdot a^{-kb}+c)\) as
59 \(x \rightarrow \infty\)
60\item
61 \textbf{horizontal asymptote} at \(y=c\)
62\item
63 \textbf{domain} is \(\mathbb{R}\)
64\item
65 \textbf{range} is \((c, \infty)\)
66\item
67 dilation of factor \(|A|\) from \(x\)-axis
68\item
69 dilation of factor \(1 \over k\) from \(y\)-axis
70\end{itemize}
71
72\begin{tikzpicture}
73 \begin{axis}[restrict x to domain=-0.9:0.9, axis y line = middle, yticklabels={,,}, xticklabels={,,}, enlargelimits, ticks=none]
74 \addplot[red, thick, smooth, samples=100] plot (\x, {pow(2,x)}) node[below, pos=1] {\(2^x\)};
75 \addplot[blue, thick, smooth, samples=100] plot (\x, {pow(3,x)}) node[left, pos=1] {\(3^x\)};
76 \addplot[orange, thick, smooth, samples=100] plot (\x, {pow(e,x)}) node[below, pos=1] {\(e^x\)};
77 \addplot[mark=*] coordinates {(0,1)} node[above left]{\((0,1)\)} ;
78 \addplot[purple, ultra thick, dashed] plot (\x, 0) node[black, below, font=\footnotesize, pos=0.75] {\(y=0\)};
79 \end{axis}
80\end{tikzpicture}
81
82\subsection*{Graphing logarithmic functions}
83
84\(\log_e x\) is the inverse of \(e^x\) (reflection across \(y=x\))
85
86\[f(x)=A \log_a k(x-b) + c\]
87
88where
89
90\begin{itemize}
91\tightlist
92\item
93 \textbf{domain} is \((b, \infty)\)
94\item
95 \textbf{range} is \(\mathbb{R}\)
96\item
97 \textbf{vertical asymptote} at \(x=b\)
98\item
99 \(y\)-intercept exists if \(b<0\)
100\item
101 dilation of factor \(|A|\) from \(x\)-axis
102\item
103 dilation of factor \(1 \over k\) from \(y\)-axis
104\end{itemize}
105\begin{tikzpicture}
106 \begin{axis}[axis lines=middle, xmin=-0.5, xmax=5, ymin=-2, ymax=3, ticks=none]
107 \addplot[purple, ultra thick, dashed] coordinates {(0,-1.8) (0,2.8)} node[black, below right, pos=0.75, font=\footnotesize] {\(x=0\)};
108 \addplot[orange,thick,domain=0.01:4,smooth,samples=100] {ln(x)} node[right, pos=1] {\(\log_e x\)};
109 \addplot[red,thick,domain=0.01:4,smooth,samples=100] {log2(x)} node[right, pos=1] {\(\log_2 x\)};
110 \addplot[blue,thick,domain=0.01:4,smooth,samples=100] {ln(x)/ln(3)} node[below right, pos=1] {\(\log_3 x\)};
111 \addplot[mark=*] coordinates {(1,0)} node[above left]{\((0,1)\)} ;
112 \end{axis}
113\end{tikzpicture}
114
115\subsection*{Finding equations}
116
117\colorbox{cas}{On CAS:}
118\includegraphics[width=0.78125in]{graphics/cas-simultaneous.png}