Methods - Calculus

Average rate of change

$$m \text{ of } x \in [a, b] = \frac{f(b) - f(a)}{b - a} = \frac{dy}{dx}$$

Average rate of change between x = [a, b] given two points P(a, f(a)) and Q(b, f(b)) is the gradient m of line \overrightarrow{PQ} On CAS: (Action Interactive) -> Calculation -> Diff -> f(x) or $y = \dots$

Instantaneous rate of change

Secant - line passing through two points on a curve Chord - line segment joining two points on a curve

Estimated by using two given points on each side of the concerned point. Evaluate as in average rate of change.

Limits & continuity

Limit theorems

- 1. For constant function f(x) = k, $\lim_{x \to a} f(x) = k$
- 2. $\lim_{x \to a} (f(x) \pm g(x)) = F \pm G$
- 3. $\lim_{x \to a} (f(x) \times g(x)) = F \times G$ 4. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{F}{G}, G \neq 0$

A function is continuous if $L^- = L^+ = f(x)$ for all values of x.

First principles derivative

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Tangents & gradients

Tangent line - defined by y = mx + c where $m = \frac{dy}{dx}$ Normal line - \perp tangent $(m_{tan} \cdot m_{norm} = -1)$ Secant = $\frac{f(x+h)-f(x)}{h}$

Solving on CAS

In main: type function. Interactive -> Calculation -> Line -> (Normal | Tan line) In graph: define function. Analysis -> Sketch -> (Normal | Tan line). Type x value to solve for a point. Return to show equation for line.

Stationary points

Stationary where m = 0. Find derivative, solve for $\frac{dy}{dx} = 0$

Local maximum at point A- f'(x) > 0 left of A - f'(x) < 0 right of A

Local minimum at point B - $f^\prime(x) < 0$ left of B - $f^\prime(x) > 0$ right of B

Stationary point of inflection at C

Function derivatives

f(x)	f'(x)
$\overline{x^n}$	nx^{n-1}
kx^n	knx^{n-1}
g(x) + h(x)	g'(x) + h'(x)
c	0
$\frac{u}{v}$	$\frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
uv	$u \frac{dv}{dx} + v \frac{du}{dx}$
$f\circ g$	$\frac{d\tilde{y}}{du} \cdot \frac{du}{dx}$