Methods - Calculus

Average rate of change

$$
m \text { of } x \in[a, b]=\frac{f(b)-f(a)}{b-a}=\frac{d y}{d x}
$$

Average rate of change between $x=[a, b]$ given two points $P(a, f(a))$ and $Q(b, f(b))$ is the gradient m of line $\overleftrightarrow{P Q}$ On CAS: (Action|Interactive) -> Calculation $->$ Diff $->f(x)$ or $y=\ldots$

Instantaneous rate of change

Secant - line passing through two points on a curve
Chord - line segment joining two points on a curve
Estimated by using two given points on each side of the concerned point. Evaluate as in average rate of change.

Limits \& continuity

Limit theorems

1. For constant function $f(x)=k, \lim _{x \rightarrow a} f(x)=k$
2. $\lim _{x \rightarrow a}(f(x) \pm g(x))=F \pm G$
3. $\lim _{x \rightarrow a}(f(x) \times g(x))=F \times G$
4. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{F}{G}, G \neq 0$

A function is continuous if $L^{-}=L^{+}=f(x)$ for all values of x.

First principles derivative

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Tangents \& gradients

Tangent line - defined by $y=m x+c$ where $m=\frac{d y}{d x}$
Normal line $-\perp$ tangent ($m_{\text {tan }} \cdot m_{\text {norm }}=-1$)
Secant $=\frac{f(x+h)-f(x)}{h}$

Solving on CAS

In main: type function. Interactive -> Calculation -> Line -> (Normal| Tan line)
In graph: define function. Analysis $->$ Sketch $->$ (Normal | Tan line). Type x value to solve for a point. Return to show equation for line.

Stationary points

Stationary where $m=0$.
Find derivative, solve for $\frac{d y}{d x}=0$

Local maximum at point A

- $f^{\prime}(x)>0$ left of $A-f^{\prime}(x)<0$ right of A

Local minimum at point B

- $f^{\prime}(x)<0$ left of $B-f^{\prime}(x)>0$ right of B

Stationary point of inflection at C

Function derivatives

$f(x)$	$f^{\prime}(x)$
x^{n}	$n x^{n-1}$
$k x^{n}$	$k n x^{n-1}$
$g(x)+h(x)$	$g^{\prime}(x)+h^{\prime}(x)$
c	0
$\frac{u}{v}$	$\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v}$
$u v$	$u \frac{d v}{d x}+v \frac{d u}{d x}$
$f \circ g$	$\frac{d y}{d u} \cdot \frac{d u}{d x}$

