Year 12 Methods

Andrew Lorimer

1 Functions

- vertical line test
- \bullet each x value produces only one y value

One to one functions

- f(x) is 1:1 if $f(a) \neq f(b) \, \forall \{a, b\} \in \text{dom}(f)$ \implies unique y for each x
- e.g. $\sin x$ is not 1:1, x^3 is
- horizontal line test
- if not one to one, it is many to one

Odd and even functions

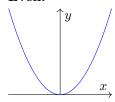
Even: f(x) = f(-x)

Odd: -f(x) = f(-x)

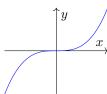
Even \implies symmetrical across y-axis $x^{\pm \frac{p}{q}}$ is odd if q is odd

For x^n , parity of $n \equiv \text{parity of function}$

Even:



Odd:



Inverse functions

- Inverse of f(x) is denoted $f^{-1}(x)$
- f must be one to one
- If f(g(x)) = x, then g is the inverse of f
- Represents reflection across y = x
- $\implies f^{-1}(x) = f(x)$ intersections lie on y = x
- ran $f = \text{dom } f^{-1}$ dom $f = \text{ran } f^{-1}$
- "Inverse" ≠ "inverse function" (functions must pass vertical line test)

Finding f^{-1}

- 1. Let y = f(x)
- 2. Swap x and y ("take inverse"
- 3. Solve for y

Sqrt: state \pm solutions then restrict

- 4. State rule as $f^{-1}(x) = \dots$
- 5. For inverse function, state in function notation

Simultaneous equations (linear)

- Unique solution lines intersect at point
- Infinitely many solutions lines are equal
- No solution lines are parallel

Solving
$$\begin{cases} px + qy = a \\ rx + sy = b \end{cases}$$
 for $\{0, 1, \infty\}$ solutions

where all coefficients are known except for one, and a,b are known

- 1. Write as matrices: $\begin{bmatrix} p & q \\ r & s \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$
- 2. Find det(first matrix) = $\vec{ps} \vec{qr}$
- 3. Let $\det = 0$ for $\{0, \infty\}$ solutions or $\det \neq 0$ for 1 solution
- 4. Solve to find variable

For infinite/no solutions:

- 5. Substitute variable into both original equations
- 6. Rearrange so that LHS of each is the same
- 7. ∞ solns: RHS(1) = RHS(2) \Longrightarrow (1) = (2) $\forall x$
 - 0 solns: RHS(1) \neq RHS(2) \Longrightarrow (1) \neq (2) $\forall x$

On CAS

 $Action \rightarrow Matrix \rightarrow Calculation \rightarrow det$

Solving
$$\begin{cases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \\ a_3x + b_3y + c_3z = d_3 \end{cases}$$

- Use elimination
- Generate two new equations with only two variables
- Rearrange & solve
- Substitute one variable into another equation to find another variable

Piecewise functions

e.g.
$$f(x) = \begin{cases} x^{1/3}, & x \le 0 \\ 2, & 0 < x < 2 \\ x, & x \ge 2 \end{cases}$$

Open circle: point included

Closed circle: point not included

On CAS

Define piecewise functions:

$$Math3 \rightarrow \begin{bmatrix} \blacksquare, \square \\ \square, \square \end{bmatrix}$$

Operations on functions

For $f \pm g$ and $f \times g$: $\mathrm{dom}' = \mathrm{dom}(f) \cap \mathrm{dom}(g)$ Addition of linear piecewise graphs: add y-values at key points

Product functions:

- product will equal 0 if f = 0 or g = 0
- $f'(x) = 0 \lor g'(x) = 0 \Rightarrow (f \times g)'(x) = 0$

Composite functions

 $(f \circ g)(x)$ is defined iff $ran(g) \subseteq dom(f)$

2 Polynomials

Factor theorem

General form $\beta x + \alpha$

If
$$\beta x + \alpha$$
 is a factor of $P(x)$, then $P(-\frac{\alpha}{\beta}) = 0.$

Simple form x - a

If
$$(x-a)$$
 is a factor of $P(x)$, remainder $R=0$. $\implies P(a)=0$

Remainder theorem

When P(x) is divided by $\beta x + \alpha,$ the remainder is $-\frac{\alpha}{\beta}.$

Rational root theorem

Let $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ be a polynomial of degree n with $a_i \in \mathbb{Z} \forall a$. Let $\alpha, \beta \in \mathbb{Z}$ such that their highest common factor is 1 (i.e. relatively prime). If $\beta x + \alpha$ is a factor of P(x), then β divides a_n and α divides a_0 .

Discriminant

$$\begin{cases} b^2 - 4ac > 0 & \text{two solutions} \\ b^2 - 4ac = 0 & \text{one solution} \\ b^2 - 4ac < 0 & \text{no solutions} \end{cases}$$

Flip inequality sign when multiplying by -1

Long division

$$\begin{array}{r}
x+3 \\
x-1 \\
\hline
 x^2 + 2x + 4 \\
-x^2 + x \\
\hline
 3x + 4 \\
-3x + 3 \\
\hline
 7
\end{array}$$

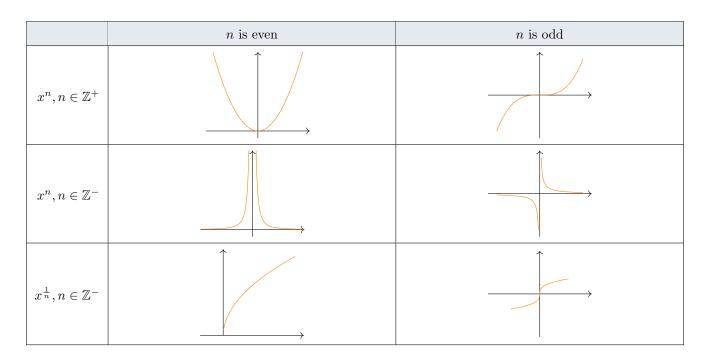
On CAS

 $Action \rightarrow Transformation \rightarrow \texttt{propFrac}$

Linear equations

Forms

 $\bullet \ \ y = mx + c$



- $\frac{x}{a} + \frac{y}{b} = 1$ where (x_1, y_1) lies on the graph
- $y y_1 = m(x x_1)$ where (a, 0) and (0, b) are x-and y-intercepts

Line properties

Parallel lines: $m_1 = m_2$

Perpendicular lines: $m_1 \times m_2 = -1$

Distance: $|\vec{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Quadratics

Linear factorisation

$$x^{2} + bx + c = (x + m)(x + n)$$

where $mn = c, m + n = b$

Difference of squares

$$a^2 - b^2 = (a - b)(a + b)$$

Perfect squares

$$a^2 \pm 2ab + b^2 = (a \pm b^2)$$

Completing the square

$$x^{2} + bx + c = (x + \frac{b}{2})^{2} + c - \frac{b^{2}}{4}$$
$$ax^{2} + bx + c = a(x - \frac{b}{2a})^{2} + c - \frac{b^{2}}{4a}$$

Quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$y = a(x - b)^2 (x - c)^3$$
(Discriminant $\Delta = b^2 - 4ac$) $y = a(x - b)(x - c)^3$

Cubics

Difference of cubes

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

Sum of cubes

$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

Perfect cubes

$$a^3 \pm 3a^2b + 3ab^2 \pm b^3 = (a \pm b)^3$$

$$y = a(bx - h)^3 + c$$

- m=0 at stationary point of inflection (i.e. $(\frac{h}{h},k)$)
- $y = (x-a)^2(x-b)$ max at x = a, min at x = b
- y = a(x b)(x c)(x d) roots at b, c, d
- $y = a(x-b)^2(x-c)$ roots at b (instantaneous), c (intercept)

Quartic graphs

Forms of quartic equations

$$y = ax^{4}$$

$$y = a(x - b)(x - c)(x - d)(x - e)$$

$$y = ax^{4} + cd^{2}(c \ge 0)$$

$$y = ax^{2}(x - b)(x - c)$$

$$y = a(x - b)^{2}(x - c)^{2}$$

$$y = a(x - b)(x - c)^{3}$$

3 Transformations

Order of operations: DRT

dilations — reflections — translations

Transforming x^n to $a(x-h)^n + K$

- dilation factor of |a| units parallel to y-axis or from x-axis
- if a < 0, graph is reflected over x-axis
- translation of k units $\parallel y$ -axis/from x-axis
- translation of h units $\parallel x$ -axis/from y-axis
- for $(ax)^n$, dilation factor is $\frac{1}{a \parallel x}$ -axis/from y-axis
- when 0 < |a| < 1, graph becomes closer to axis

Transforming f(x) to y = Af[n(x+c)] + b

Applies to exponential, log, trig, e^x , polynomials. Functions must be written in form y = Af[n(x+c)] + b

- dilation by factor |A| from x-axis (if A < 0, reflection across y-axis)
- dilation by factor $\frac{1}{n}$ from y-axis (if n < 0, reflection across x-axis)
- translation of c units from y-axis (x-shift)
- translation of b units from x-axis (y-shift)

Dilations

Two pairs of equivalent processes for y = f(x):

- 1. Dilating from x-axis: $(x, y) \to (x, by)$
 - Replacing y with $\frac{y}{h}$ to obtain y = bf(x)
- 2. Dilating from y-axis: $(x, y) \rightarrow (ax, y)$
 - Replacing x with $\frac{x}{a}$ to obtain $y = f(\frac{x}{a})$

For graph of $y = \frac{1}{x}$, horizontal & vertical dilations are equivalent (symmetrical). If $y = \frac{a}{x}$, graph is contracted rather than dilated.

Matrix transformations

Find new point (x', y'). Substitute these into original equation to find image with original variables (x, y).

Reflections

- Reflection in axis = reflection over axis = reflection across axis
- Translations do not change

Translations

For y = f(x), these processes are equivalent:

- applying the translation $(x, y) \to (x + h, y + k)$ to the graph of y = f(x)
- replacing x with x h and y with y k to obtain y k = f(x h)

Power functions

Mostly only on CAS.

We can write $x^{\frac{-1}{n}} = \frac{1}{x^{\frac{1}{n}}} = \frac{1}{n\sqrt{x}}$ n.

Domain is: $\begin{cases} \mathbb{R} \setminus \{0\} & \text{if } n \text{ is odd} \\ \mathbb{R}^+ & \text{if } n \text{ is even} \end{cases}$

If n is odd, it is an odd function

 $x^{\frac{p}{q}}$ where $p, q \in \mathbb{Z}^+$

$$x^{\frac{p}{q}} = \sqrt[q]{x^p}$$

- if p > q, the shape of x^p is dominant
- if p < q, the shape of $x^{\frac{1}{q}}$ is dominant
- points (0,0) and (1,1) will always lie on graph
- Domain is: $\begin{cases} \mathbb{R} & \text{if } q \text{ is odd} \\ \mathbb{R}^+ \cup \{0\} & \text{if } q \text{ is even} \end{cases}$

4 Exponentials & Logarithms

Logarithmic identities

$$\log_b(xy) = \log_b x + \log_b y$$
$$\log_b x^n = n \log_b x$$
$$\log_b y^{x^n} = x^n \log_b y$$
$$\log_a(\frac{m}{n}) = \log_a m - \log_a$$
$$\log_a(m^{-1}) = -\log_a m$$
$$\log_b c = \frac{\log_a c}{\log_a b}$$

Index identities

$$b^{m+n} = b^m \cdot b^n$$
$$(b^m)^n = b^{m \cdot n}$$
$$(b \cdot c)^n = b^n \cdot c^n$$
$$b^m \div a^n = b^{m-n}$$

Inverse functions

For $f: \mathbb{R} \to \mathbb{R}$, $f(x) = a^x$, inverse is:

$$f^{-1}: \mathbb{R}^+ \to \mathbb{R}, f^{-1} = \log_a x$$

Euler's number e

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Modelling

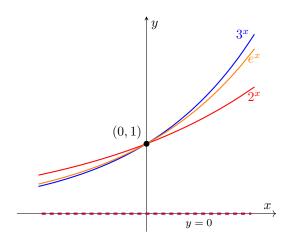
$$A = A_0 e^{kt}$$

- A_0 is initial value
- t is time taken
- k is a constant
- For continuous growth, k > 0
- For continuous decay, k < 0

Graphing exponential functions

$$f(x) = Aa^{k(x-b)} + c, \quad |a>1$$

- y-intercept at $(0, A \cdot a^{-kb} + c)$ as $x \to \infty$
- horizontal asymptote at y = c
- domain is \mathbb{R}
- range is (c, ∞)
- dilation of factor |A| from x-axis
- \bullet dilation of factor $\frac{1}{k}$ from y-axis



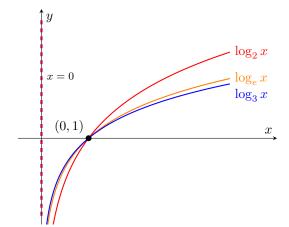
Graphing logarithmic functions

 $\log_e x$ is the inverse of e^x (reflection across y = x)

$$f(x) = A \log_a k(x - b) + c$$

where

- domain is (b, ∞)
- range is \mathbb{R}
- vertical asymptote at x = b
- y-intercept exists if b < 0
- dilation of factor |A| from x-axis
- dilation of factor $\frac{1}{k}$ from y-axis



Finding equations

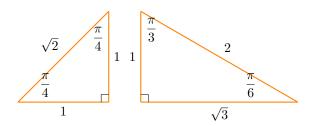
On CAS:
$$\begin{cases} f(3)=9 \\ g(3)=0 \end{cases}$$
 a,b

5 Circular functions

Radians and degrees

$$1 \text{ rad} = \frac{180 \deg}{\pi}$$

Exact values



Compound angle formulas

$$\cos(x \pm y) = \cos x + \cos y \mp \sin x \sin y$$
$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$
$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

Double angle formulas

$$\cos 2x = \cos^2 x - \sin^2 x$$
$$= 1 - 2\sin^2 x$$
$$= 2\cos^2 x - 1$$
$$\sin 2x = 2\sin x \cos x$$
$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

Symmetry

$$\sin(\theta + \frac{\pi}{2}) = \sin \theta$$
$$\sin(\theta + \pi) = -\sin \theta$$

$$\cos(\theta + \frac{\pi}{2}) = -\cos\theta$$
$$\cos(\theta + \pi) = -\cos(\theta + \frac{3\pi}{2})$$
$$= \cos(-\theta)$$

Complementary relationships

$$\sin \theta = \cos(\frac{\pi}{2} - \theta)$$

$$= -\cos(\theta + \frac{\pi}{2})$$

$$\cos \theta = \sin(\frac{\pi}{2} - \theta)$$

$$= \sin(\theta + \frac{\pi}{2})$$

Pythagorean identity

$$\cos^2 \theta + \sin^2 \theta = 1$$

sin and cos graphs

$$f(x) = a\sin(bx - c) + d$$

where:

Period =
$$\frac{2\pi}{n}$$

$$dom = \mathbb{R}$$

$$ran = [-b + c, b + c];$$

$$cos(x)$$
 starts at $(0,1)$, $sin(x)$ starts at $(0,0)$

$$0$$
 amplitidue \implies straight line

$$a < 0$$
 or $b < 0$ inverts phase (swap sin and cos)

$$c = T = \frac{2\pi}{b} \implies$$
 no net phase shift

tan graphs

$$y = a \tan(nx)$$

Period =
$$\frac{\pi}{n}$$

Range is \mathbb{R}

Roots at
$$x = \frac{k\pi}{n}$$
 where $k \in \mathbb{Z}$

Asymptotes at
$$x = \frac{(2k+1)\pi}{2n}$$

Asymptotes should always have equations

Solving trig equations

- 1. Solve domain for $n\theta$
- 2. Find solutions for $n\theta$
- 3. Divide solutions by n

$$\sin 2\theta = \frac{\sqrt{3}}{2}, \quad \theta \in [0, 2\pi] \quad (\because 2\theta \in [0, 4\pi])$$

$$2\theta = \sin^{-1} \frac{\sqrt{3}}{2}$$

$$2\theta = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{7\pi}{3}, \frac{8\pi}{3}$$

$$\therefore \theta = \frac{\pi}{6}, \frac{\pi}{3}, \frac{7\pi}{6}, \frac{4\pi}{3}$$

6 Calculus

Average rate of change

$$m \text{ of } x \in [a, b] = \frac{f(b) - f(a)}{b - a} = \frac{dy}{dx}$$

On CAS: Action \rightarrow Calculation \rightarrow diff

Average value

$$f_{\text{avg}} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

Instantaneous rate of change

Secant - line passing through two points on a curve

 \mathbf{Chord} - line segment joining two points on a curve

Limit theorems

- 1. For constant function f(x) = k, $\lim_{x\to a} f(x) = k$
- 2. $\lim_{x\to a} (f(x) \pm g(x)) = F \pm G$
- 3. $\lim_{x\to a} (f(x) \times g(x)) = F \times G$
- 4. $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{F}{G}, G \neq 0$

A function is continuous if $L^- = L^+ = f(x)$ for all values of x.

First principles derivative

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Not differentiable at:

- discontinuous points
- sharp point/cusp
- vertical tangents (∞ gradient)

Tangents & gradients

Tangent line - defined by y = mx + c where $m = \frac{dy}{dx}$ Normal line - \perp tangent $(m_{tan} \cdot m_{norm} = -1)$

Secant = $\frac{f(x+h)-f(x)}{h}$

On CAS

In main: Interactive \rightarrow Calculation \rightarrow Line

where p is the x-value of the coordinate

In graph: define function, then Analysis \rightarrow Sketch \rightarrow (Normal | Tan line). Type x value to solve for a point. Return to show equation for line.

• strictly increasing

where
$$f(x_2) > f(x_1)$$
 or $f'(x) > 0$

• strictly decreasing

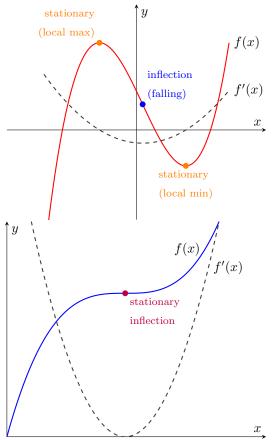
where
$$f(x_2) < f(x_1)$$
 or $f'(x) < 0$

• Endpoints are included, even where gradient = 0

Stationary points

Stationary point: f'(x) = 0

Point of inflection: f'' = 0



Strictly increasing/decreasing

For x_2 and x_1 where $x_2 > x_1$:

Derivatives

f(x)f'(x)

$$\sin x \quad \cos x$$

$$\sin ax \quad a\cos ax$$

$$\cos x - \sin x$$

$$\cos ax - a\sin ax$$

$$\tan f(x)$$
 $f^2(x) \sec^2 f(x)$

$$e^x$$
 e^x

$$e^{ax}$$
 ae^{ax}

$$ax^{nx}$$
 $an \cdot e^{nx}$

$$\log_e x \quad \frac{1}{x}$$

$$\log_e ax$$

$$\log_e f(x) = \frac{f'(x)}{f(x)}$$

$$\sin(f(x)) \quad f'(x) \cdot \cos(f(x))$$

$$\sin^{-1} x \frac{1}{\sqrt{1-x^2}}$$

$$\sin^{-1} x$$
 $\frac{1}{\sqrt{1-x^2}}$
 $\cos^{-1} x$ $\frac{-1}{\sqrt{1-x^2}}$
 $\tan^{-1} x$ $\frac{1}{1+x^2}$

$$\tan^{-1} x \quad \frac{1}{1 + x^2}$$

$$\frac{d}{dy}f(y)$$
 $\frac{1}{\frac{dx}{dx}}$

(reciprocal)

$$uv \quad u\frac{dv}{dx} + v\frac{du}{dx}$$
 (product rule)

$$\frac{u}{v} \quad \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} \qquad \text{(quotient rule)}$$

$$f(g(x))$$
 $f'(g(x)) \cdot g'(x)$

Antiderivatives

$$f(x) \int f(x) \cdot dx$$

$$k \text{ (constant)} \quad kx + c$$

$$x^n$$
 $\frac{1}{n+1}x^{n+1}$

$$ax^{-n}$$
 $a \cdot \log_e |x| + c$

$$\frac{1}{ax+b} \quad \frac{1}{a}\log_e(ax+b) + c$$

$$ax + b a$$

$$(ax + b)^{n} \frac{1}{a(n+1)}(ax + b)^{n-1} + c \mid n \neq 1$$

$$(ax + b)^{-1} \frac{1}{a}\log_{e}|ax + b| + c$$

$$e^{kx} \frac{1}{k}e^{kx} + c$$

$$(ax+b)^{-1} \quad \frac{1}{a}\log_e|ax+b| + c$$

$$e^{kx}$$
 $\frac{1}{k}e^{kx} + c$

$$e^k e^k x + c$$

$$\sin kx \quad \frac{-1}{k}\cos(kx) + c$$

$$\cos kx = \frac{1}{k}\sin(kx) + c$$

$$\cos kx = \frac{1}{k}\sin(kx) + c$$

$$\sec^2 kx = \frac{1}{k}\tan(kx) + c$$

$$\frac{1}{\sqrt{a^2-x^2}}$$
 $\sin^{-1}\frac{x}{a}+c\mid a>0$

$$\frac{1}{\sqrt{a^2 - x^2}} \quad \sin^{-1} \frac{x}{a} + c \mid a > 0$$

$$\frac{-1}{\sqrt{a^2 - x^2}} \quad \cos^{-1} \frac{x}{a} + c \mid a > 0$$

$$\frac{a}{a^2 - x^2} \quad \tan^{-1} \frac{x}{a} + c$$

$$\frac{f'(x)}{f(x)}$$
 $\log_e f(x) + c$

$$\int f(u) \cdot \frac{du}{dx} \cdot dx \quad \int f(u) \cdot du \qquad \text{(substitution)}$$

$$f(x) \cdot g(x) \quad \int [f'(x) \cdot g(x)] dx + \int [g'(x)f(x)] dx$$

Note
$$\sin^{-1}\left(\frac{x}{a}\right) + \cos^{-1}\left(\frac{x}{a}\right)$$
 is constant $\forall x \in (-a, a)$

Index identities

$$b^{m+n} = b^m \cdot b^n$$

$$(b^m)^n = b^{m \cdot n}$$

$$(b \cdot c)^n = b^n \cdot c^n$$

$$a^m \div a^n = a^{m-n}$$

Logarithmic identities

$$\log_b(xy) = \log_b x + \log_b y$$

$$\log_b x^n = n \log_b x$$

$$\log_b y^{x^n} = x^n \log_b y$$

7 Statistics

Probability

$$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$$

$$Pr(A \cap B) = Pr(A|B) \times Pr(B)$$

$$\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}$$

$$\Pr(A) = \Pr(A|B) \cdot \Pr(B) + \Pr(A|B') \cdot \Pr(B')$$

Mutually exclusive: $Pr(A \cap B) = 0$

Independent events:

$$\Pr(A \cap B) = \Pr(A) \times \Pr(B)$$

$$Pr(A|B) = Pr(A)$$

$$\Pr(B|A) = \Pr(B)$$

Combinatorics

Arrangements
$$\binom{n}{k} = \frac{1}{(n-1)^n}$$

Combinations

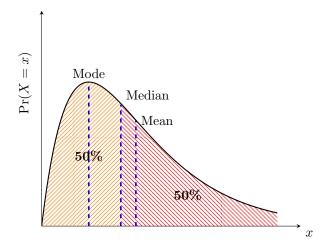
$$\binom{n}{k} = \frac{n!}{(n-k)}$$
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Note
$$\binom{n}{k} = \binom{n}{k-1}$$

On CAS

Keyboard
$$\rightarrow$$
 Advance \rightarrow \boxed{nCr} / \boxed{nPr} $nCr(n, r)$ or $nPr(n, r)$

Distributions



Mean μ

$$E(X) = \frac{\sum [x \cdot f(x)]}{\sum f} \qquad (f = \text{absolute frequency})$$

$$= \sum_{i=1}^{n} [x_i \cdot \Pr(X = x_i)] \qquad (\text{discrete})$$

$$= \int_{\mathbf{X}} (x \cdot f(x)) dx$$

Mode

Value of X which has the highest probability

- Most popular value in discrete distributions
- Must exist in distribution
- Represented by local max in pdf
- Multiple modes exist when > 1X value have equalhighest probability

Median

Value separating lower and upper half of distribution area

Continuous:

$$m = X$$
 such that $\int_{-\infty}^{m} f(x) dx = 0.5$

Discrete: (not in course)

- Does not have to exist in distribution
- Add values of X smallest to largest until sum is > 0.5
- If $X_1 < 0.5 < X_2$, then median is the average of X_1 and X_2
 - If m > 0.5, then value of X that is reached is the median of X

Variance σ^2

$$\operatorname{Var}(x) = \sum_{i=1}^{n} p_i (x_i - \mu)^2$$

$$= \sum_{i=1}^{n} (x - \mu)^2 \times \Pr(X = x)$$

$$= \sum_{i=1}^{n} x^2 \times \Pr(X = x)$$

$$= \sum_{i=1}^{n} p_i (x_i - \mu)^2$$

Standard deviation σ

$$\sigma = \operatorname{sd}(X)$$
$$= \sqrt{\operatorname{Var}(X)}$$

Binomial distributions

Conditions for a binomial distribution:

- 1. Two possible outcomes: success or failure
- 2. Pr(success) (=p) is constant across trials
- 3. Finite number n of independent trials

Properties of $X \sim \text{Bi}(n, p)$

$$\mu(X) = np$$

$$\operatorname{Var}(X) = np(1-p)$$

$$\sigma(X) = \sqrt{np(1-p)}$$

$$\operatorname{Pr}(X = x) = \binom{n}{x} \cdot p^x \cdot (1-p)^{n-x}$$

On CAS

 $Interactive \rightarrow Distribution \rightarrow binomialPdf$

x: no. of successes

numtrial: no. of trials

pos: probability of success

Continuous random variables

A continuous random variable X has a pdf f such that:

1.
$$f(x) \ge 0 \forall x$$

$$2. \int_{-\infty}^{\infty} f(x) dx = 1$$

$$E(X) = \int_{\mathbf{X}} (x \cdot f(x)) dx$$
$$Var(X) = E \left[(X - \mu)^2 \right]$$

$$\Pr(X \le c) = \int_{-\infty}^{c} f(x) \, dx$$

Two random variables X, Y

If X and Y are independent:

$$E(aX + bY) = a E(X) + b E(Y)$$
$$Var(aX \pm bY \pm c) = a^{2} Var(X) + b^{2} Var(Y)$$

Linear functions $X \to aX + b$

$$\Pr(Y \le y) = \Pr(aX + b \le y)$$
$$= \Pr\left(X \le \frac{y - b}{a}\right)$$
$$= \int_{-\infty}^{\frac{y - b}{a}} f(x) dx$$

Mean: E(aX + b) = a E(X) + b

Variance: $Var(aX + b) = a^2 Var(X)$

Expectation theorems

For some non-linear function g, the expected value E(g(X)) is not equal to g(E(X)).

$$E(X^{2}) = \operatorname{Var}(X) - [E(X)]^{2}$$

$$E(X^{n}) = \Sigma x^{n} \cdot p(x) \qquad \text{(non-linear)}$$

$$\neq [E(X)]^{n}$$

$$E(aX \pm b) = aE(X) \pm b$$
 (linear)

$$E(b) = b (\forall b \in \mathbb{R})$$

$$E(X + Y) = E(X) + E(Y)$$
 (two variables)

Sample mean

Approximation of the **population mean** determined experimentally.

$$\overline{x} = \frac{\sum x}{n}$$

where

n is the size of the sample (number of sample points) x is the value of a sample point

On CAS

- 1. Spreadsheet
- 2. In cell A1:
 mean(randNorm(sd, mean, sample size))
- 3. Edit \rightarrow Fill \rightarrow Fill Range
- 4. Input range as A1:An where n is the number of samples
- 5. Graph \rightarrow Histogram

Sample size of n

$$\overline{X} = \sum_{i=1}^{n} \frac{x_i}{n} = \frac{\sum x}{n}$$

Sample mean is distributed with mean μ and sd $\frac{\sigma}{\sqrt{n}}$ (approaches these values for increasing sample size n).

For a new distribution with mean of n trials, $\mathrm{E}(X') = \mathrm{E}(X)$, $\mathrm{sd}(X') = \frac{\mathrm{sd}(X)}{\sqrt{n}}$

On CAS

- Spreadsheet → Catalog → randNorm(sd, mean, n) where n is the number of samples. Show histogram with Histogram key in top left

Population sampling

Population proportion

$$p = \frac{n \text{ with attribute in population}}{\text{population size}}$$

Constant for a given population.

Sample proportion

$$\hat{p} = \frac{n \text{ with attribute in sample}}{\text{sample size}}$$

Varies with each sample.

Normal distributions

$$Z = \frac{X - \mu}{\sigma}$$

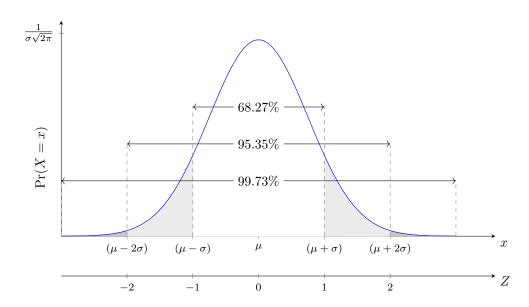
Normal distributions must have area (total prob.) of 1 $\Longrightarrow \int_{-\infty}^{\infty} f(x) \, dx = 1$

mean = mode = median

Always express z as +ve. Express confidence interval as ordered pair.

Confidence intervals

- Point estimate: single-valued estimate of the population mean from the value of the sample mean \overline{x}
- Interval estimate: confidence interval for population mean μ
- C% confidence interval $\implies C\%$ of samples will contain population mean μ



On CAS

Menu \rightarrow Stats \rightarrow Calc \rightarrow Interval Set $Type = One\text{-}Sample\ Z\ Int$ and select Variable

95% confidence interval

For 95% c.i. of population mean μ :

$$x \in \left(\overline{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}\right)$$

where:

 \overline{x} is the sample mean

 σ is the population sd

n is the sample size from which \overline{x} was calculated

Confidence interval of p from \hat{p}

$$x \in \left(\hat{p} \pm Z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$$

Margin of error

For 95% confidence interval of μ :

$$\begin{split} M &= 1.96 \times \frac{\sigma}{\sqrt{n}} \\ &= \frac{1}{2} \times \text{width of c.i.} \\ \Longrightarrow n &= \left(\frac{1.96\sigma}{M}\right)^2 \end{split}$$

Always round n up to a whole number of samples.

General case

For C% c.i. of population mean μ :

$$x \in \left(\overline{x} \pm k \frac{\sigma}{\sqrt{n}}\right)$$

where k is such that $Pr(-k < Z < k) = \frac{C}{100}$

On CAS

 $\mathrm{Menu} \to \mathrm{Stats} \to \mathrm{Calc} \to \mathrm{Interval}$

Set Type = One-Prop Z Int

Input $x = \hat{p} * n$

Confidence interval for multiple trials

For a set of n confidence intervals (samples), there is 0.95^n chance that all n intervals contain the population mean μ .