Circular functions

Exact values

sin and cos graphs

$$
\begin{aligned}
& f(x)=a \sin (b x-c)+d \\
& f(x)=a \cos (b x-c)+d
\end{aligned}
$$

where

- a is the y-dilation (amplitude)
- b is the x-dilation (period)
- c is the x-shift (phase)
- d is the y-shift (equilibrium position)

Domain is \mathbb{R}
Range is $[-b+c, b+c]$;
Graph of $\cos (x)$ starts at $(0,1)$. Graph of $\sin (x)$ starts at $(0,0)$.
Mean / equilibrium: line that the graph oscillates around $(y=d)$

Amplitude

Graph oscillates between $+a$ and $-a$ in y-axis
$a=0$ produces straight line
$a<0$ inverts the phase (sin becomes cos, vice vera)

Period

Period T is $\frac{2 \pi}{b}$
$b=0$ produces straight line
$b<0$ inverts the phase

Phase
c moves the graph left-right in the x axis.
If $c=T=\frac{2 \pi}{b}$, the graph has no actual phase shift.

Symmetry

$$
\begin{gathered}
\sin \left(\theta+\frac{\pi}{2}\right)=\sin \theta \\
\sin (\theta+\pi)=-\sin \theta \\
\cos \left(\theta+\frac{\pi}{2}\right)=-\cos \theta \\
\cos (\theta+\pi)=-\cos \left(\theta+\frac{3 \pi}{2}\right)=\cos (-\theta)
\end{gathered}
$$

Pythagorean identity

$$
\cos ^{2} \theta+\sin ^{2} \theta=1
$$

Complementary relationships

$$
\begin{aligned}
& \sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta \\
& \cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta \\
& \sin \theta=-\cos \left(\theta+\frac{\pi}{2}\right) \\
& \cos \theta=\sin \left(\theta+\frac{\pi}{2}\right)
\end{aligned}
$$

tan graph

$$
y=a \tan (n x)
$$

where

- a is x-dilation (period)
- n is y-dilation (\equiv amplitude)
- period T is $\frac{\pi}{n}$
- range is R
- roots at $x=\frac{k \pi}{n}$
- asymptotes at $x=\frac{(2 k+1) \pi}{2 n}, \quad k \in \mathbb{Z}$

Asymptotes should always have equations and arrow pointing up

Solving trig equations

1. Solve domain for $n \theta$
2. Find solutions for $n \theta$
3. Divide solutions by n

$$
\sin 2 \theta=\frac{\sqrt{3}}{2}, \quad \theta \in[0,2 \pi] \quad(\therefore 2 \theta \in[0,4 \pi])
$$

$2 \theta=\sin ^{-1} \frac{\sqrt{3}}{2}$
$2 \theta=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{7 \pi}{3}, \frac{8 \pi}{3}$
$\therefore \theta=\frac{\pi}{6}, \frac{\pi}{3}, \frac{7 \pi}{6}, \frac{4 \pi}{3}$

