30f96dfee1868d8b2c9a5196590c9021fd0182c1
   1\documentclass[]{article}
   2\usepackage{lmodern}
   3\usepackage{amssymb,amsmath}
   4\usepackage{ifxetex,ifluatex}
   5\usepackage{fixltx2e} % provides \textsubscript
   6\ifnum 0\ifxetex 1\fi\ifluatex 1\fi=0 % if pdftex
   7  \usepackage[T1]{fontenc}
   8  \usepackage[utf8]{inputenc}
   9\else % if luatex or xelatex
  10  \ifxetex
  11    \usepackage{mathspec}
  12  \else
  13    \usepackage{fontspec}
  14  \fi
  15  \defaultfontfeatures{Ligatures=TeX,Scale=MatchLowercase}
  16\fi
  17% use upquote if available, for straight quotes in verbatim environments
  18\IfFileExists{upquote.sty}{\usepackage{upquote}}{}
  19% use microtype if available
  20\IfFileExists{microtype.sty}{%
  21\usepackage[]{microtype}
  22\UseMicrotypeSet[protrusion]{basicmath} % disable protrusion for tt fonts
  23}{}
  24\PassOptionsToPackage{hyphens}{url} % url is loaded by hyperref
  25\usepackage[unicode=true]{hyperref}
  26\hypersetup{
  27            pdfborder={0 0 0},
  28            breaklinks=true}
  29\urlstyle{same}  % don't use monospace font for urls
  30\usepackage{longtable,booktabs}
  31% Fix footnotes in tables (requires footnote package)
  32\IfFileExists{footnote.sty}{\usepackage{footnote}\makesavenoteenv{long table}}{}
  33\usepackage{graphicx,grffile}
  34\makeatletter
  35\def\maxwidth{\ifdim\Gin@nat@width>\linewidth\linewidth\else\Gin@nat@width\fi}
  36\def\maxheight{\ifdim\Gin@nat@height>\textheight\textheight\else\Gin@nat@height\fi}
  37\makeatother
  38% Scale images if necessary, so that they will not overflow the page
  39% margins by default, and it is still possible to overwrite the defaults
  40% using explicit options in \includegraphics[width, height, ...]{}
  41\setkeys{Gin}{width=\maxwidth,height=\maxheight,keepaspectratio}
  42\IfFileExists{parskip.sty}{%
  43\usepackage{parskip}
  44}{% else
  45\setlength{\parindent}{0pt}
  46\setlength{\parskip}{6pt plus 2pt minus 1pt}
  47}
  48\setlength{\emergencystretch}{3em}  % prevent overfull lines
  49\providecommand{\tightlist}{%
  50  \setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}
  51\setcounter{secnumdepth}{0}
  52% Redefines (sub)paragraphs to behave more like sections
  53\ifx\paragraph\undefined\else
  54\let\oldparagraph\paragraph
  55\renewcommand{\paragraph}[1]{\oldparagraph{#1}\mbox{}}
  56\fi
  57\ifx\subparagraph\undefined\else
  58\let\oldsubparagraph\subparagraph
  59\renewcommand{\subparagraph}[1]{\oldsubparagraph{#1}\mbox{}}
  60\fi
  61
  62% set default figure placement to htbp
  63\makeatletter
  64\def\fps@figure{htbp}
  65\makeatother
  66
  67\usepackage{harpoon}%
  68\pagenumbering{gobble}
  69\usepackage{fancyhdr}
  70
  71\title{Year 12 Specialist}
  72\author{Andrew Lorimer}
  73\date{2019}
  74
  75\begin{document}
  76
  77\pagestyle{fancy}
  78\fancyhead[LO,LE]{Year 12 Specialist}
  79\fancyhead[CO,CE]{Andrew Lorimmer}
  80\maketitle
  81
  82\section{Complex \& Imaginary Numbers}\label{complex-imaginary-numbers}
  83
  84\subsection{Imaginary numbers}\label{imaginary-numbers}
  85
  86\[i^2 = -1 \quad \therefore i = \sqrt {-1}\]
  87
  88\subsubsection{Simplifying negative
  89surds}\label{simplifying-negative-surds}
  90
  91\begin{equation}\begin{split}\sqrt{-2} & = \sqrt{-1 \times 2} \\ & = \sqrt{2}i\end{split}\end{equation}
  92
  93\subsection{Complex numbers}\label{complex-numbers}
  94
  95\[\mathbb{C} = \{a+bi : a, b \in \mathbb{R} \}\]
  96
  97General form: \(z=a+bi\)\\
  98\(\operatorname{Re}(z) = a, \quad \operatorname{Im}(z) = b\)
  99
 100\subsubsection{Addition}\label{addition}
 101
 102If \(z_1 = a+bi\) and \(z_2=c+di\), then
 103
 104\[z_1+z_2 = (a+c)+(b+d)i\]
 105
 106\subsubsection{Subtraction}\label{subtraction}
 107
 108If \(z_1=a+bi\) and \(z_2=c+di\), then
 109
 110\[z_1 - z_2=(a−c)+(b−d)i\]
 111
 112\subsubsection{Multiplication by a real
 113constant}\label{multiplication-by-a-real-constant}
 114
 115If \(z=a+bi\) and \(k \in \mathbb{R}\), then
 116
 117\[kz=ka+kbi\]
 118
 119\subsubsection{\texorpdfstring{Powers of
 120\(i\)}{Powers of i}}\label{powers-of-i}
 121
 122\begin{itemize}
 123\tightlist
 124\item
 125  \(i^{4n} = 1\)
 126\item
 127  \(i^{4n+1} = i\)
 128\item
 129  \(i^{4n+2} = -1\)
 130\item
 131  \(i^{4n+3} = -i\)
 132\end{itemize}
 133
 134For \(i^n\), find remainder \(r\) when \(n \div 4\). Then \(i^n = i^r\).
 135
 136\subsubsection{Multiplying complex
 137expressions}\label{multiplying-complex-expressions}
 138
 139If \(z_1 = a+bi\) and \(z_2=c+di\), then
 140
 141\[z_1 \times z_2 = (ac-bd)+(ad+bc)i\]
 142
 143\subsubsection{Conjugates}\label{conjugates}
 144
 145\[\overline{z} = a \mp bi\]
 146
 147\subparagraph{Properties}\label{properties}
 148
 149\begin{itemize}
 150\tightlist
 151\item
 152  \(\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}\)
 153\item
 154  \(\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}\)
 155\item
 156  \(\overline{kz} = k \overline{z}, \text{ for } k \in \mathbb{R}\)
 157\item
 158  \(z \overline{z} = = (a+bi)(a-bi) = a^2+b^2 = |z|^2\)
 159\item
 160  \(z + \overline{z} = 2 \operatorname{Re}(z)\)
 161\end{itemize}
 162
 163\subsubsection{Modulus}\label{modulus}
 164
 165Distance from origin.
 166
 167\[|{z}|=\sqrt{a^2+b^2} \quad  \therefore z \overline{z} = |z|^2\]
 168
 169Properties
 170
 171\begin{itemize}
 172\tightlist
 173\item
 174  \(|z_1 z_2| = |z_1| |z_2|\)
 175\item
 176  \(|{z_1 \over z_2}| = {|z_1| \over |z_2|}\)
 177\item
 178  \(|z_1 + z_2| \le |z_1 + |z_2|\)
 179\end{itemize}
 180
 181\subsubsection{Multiplicative inverse}\label{multiplicative-inverse}
 182
 183\begin{equation}\begin{split}z^{-1} & = {1 \over z} \\ & = {{a-bi} \over {a^2+B^2}} \\ & = {\overline{z} \over {|z|^2}}\end{split}\end{equation}
 184
 185\subsubsection{Dividing complex numbers}\label{dividing-complex-numbers}
 186
 187\[{{z_1} \over {z_2}} = {{z_1\ {z_2}^{-1}}} = {{z_1 \overline{z_2}} \over {{|z_2|}^2}} \quad \text{(multiplicative inverse)}\]
 188
 189In practice, rationalise denominator:
 190
 191\[{z_1 \over z_2} = {{(a+bi)(c-di)} \over {c^2+d^2}}\]
 192
 193\subsection{Argand planes}\label{argand-planes}
 194
 195\begin{itemize}
 196\tightlist
 197\item
 198  Geometric representation of \(\mathbb{C}\)
 199\item
 200  horizontal \(= \operatorname{Re}(z)\); vertical
 201  \(= \operatorname{Im}(z)\)
 202\item
 203  Multiplication by \(i\) results in an anticlockwise rotation of
 204  \(\pi \over 2\)
 205\end{itemize}
 206
 207\vfil \break
 208
 209\subsection{Complex polynomials}\label{complex-polynomials}
 210
 211\textbf{Include \(\pm\) for all solutions, including imaginary}
 212
 213\subsubsection{Sum of two squares
 214(quadratics)}\label{sum-of-two-squares-quadratics}
 215
 216\[z^2+a^2=z^2-(ai)^2=(z+ai)(z-ai)\]
 217
 218Complete the square to get to this point.
 219
 220\paragraph{Dividing complex
 221polynomials}\label{dividing-complex-polynomials}
 222
 223\(P(z) \div D(z)\) gives quotient \(Q(z)\) and remainder \(R(z)\):
 224
 225\[P(z) = D(z)Q(z) + R(z)\]
 226
 227\paragraph{Remainder theorem}\label{remainder-theorem}
 228
 229Let \(\alpha \in \mathbb{C}\). Remainder of \(P(z) \div (z - \alpha)\)
 230is \(P(\alpha)\)
 231
 232\paragraph{Factor theorem}\label{factor-theorem}
 233
 234If \(a+bi\) is a solution to \(P(z)=0\), then:
 235
 236\begin{itemize}
 237\tightlist
 238\item
 239  \(P(a+bi)=0\)
 240\item
 241  \(z-(a+bi)\) is a factor of \(P(z)\)
 242\end{itemize}
 243
 244\paragraph{Sum of two cubes}\label{sum-of-two-cubes}
 245
 246\[a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)\]
 247
 248\subsection{Conjugate root theorem}\label{conjugate-root-theorem}
 249
 250If \(a+bi\) is a solution to \(P(z)=0\), then the conjugate
 251\(\overline{z}=a-bi\) is also a solution.
 252
 253\subsection{Polar form}\label{polar-form}
 254
 255\begin{equation}\begin{split}z & =r \operatorname{cis} \theta \\ & = r(\operatorname{cos}\theta+i \operatorname{sin}\theta) \\ & = a + bi \end{split}\end{equation}
 256
 257\begin{itemize}
 258\tightlist
 259\item
 260  \(r=|z|=\sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}\)
 261\item
 262  \(\theta=\operatorname{arg}(z)\) (on CAS: \texttt{arg(a+bi)})
 263\item
 264  \textbf{principal argument} is
 265  \(\operatorname{Arg}(z) \in (-\pi, \pi]\) (note capital
 266  \(\operatorname{Arg}\))
 267\end{itemize}
 268
 269Each complex number has multiple polar representations:\\
 270\(z=r \operatorname{cis} \theta = r \operatorname{cis} (\theta+2 n\pi\))
 271with \(n \in \mathbb{Z}\) revolutions
 272
 273\subsubsection{Conjugate in polar form}\label{conjugate-in-polar-form}
 274
 275\[(r \operatorname{cis} \theta)^{-1} = r\operatorname{cis} (- \theta)\]
 276
 277Reflection of \(z\) across horizontal axis.
 278
 279\subsubsection{Multiplication and division in polar
 280form}\label{multiplication-and-division-in-polar-form}
 281
 282\[z_1z_2=r_1r_2\operatorname{cis}(\theta_1+\theta_2)\]
 283
 284\[{z_1 \over z_2} = {r_1 \over r_2} \operatorname{cis}(\theta_1-\theta_2)\]
 285
 286\subsection{de Moivres' Theorem}\label{de-moivres-theorem}
 287
 288\[(r\operatorname{cis}\theta)^n=r^n\operatorname{cis}(n\theta) \text{ where } n \in \mathbb{Z}\]
 289
 290\subsection{Roots of complex numbers}\label{roots-of-complex-numbers}
 291
 292\(n\)th roots of \(z = r \operatorname{cis} \theta\) are
 293
 294\[z={r^{1 \over n}} \operatorname{cis}({{\theta + 2 k \pi} \over n})\]
 295
 296Same modulus for all solutions. Arguments are separated by
 297\({2 \pi} \over n\)
 298
 299The solutions of \(z^n=a \text{ where } a \in \mathbb{C}\) lie on circle
 300
 301\[x^2 + y^2 = (|a|^{1 \over n})^2\]
 302
 303\subsection{Sketching complex graphs}\label{sketching-complex-graphs}
 304
 305\subsubsection{Straight line}\label{straight-line}
 306
 307\begin{itemize}
 308\tightlist
 309\item
 310  \(\operatorname{Re}(z) = c\) or \(\operatorname{Im}(z) = c\)
 311  (perpendicular bisector)
 312\item
 313  \(\operatorname{Arg}(z) = \theta\)
 314\item
 315  \(|z+a|=|z+bi|\) where \(m={a \over b}\)
 316\item
 317  \(|z+a|=|z+b| \longrightarrow 2(a-b)x=b^2-a^2\)
 318\end{itemize}
 319
 320\subsubsection{Circle}\label{circle}
 321
 322\(|z-z_1|^2 = c^2 |z_2+2|^2\) or \(|z-(a + bi)| = c\)
 323
 324\subsubsection{Locus}\label{locus}
 325
 326\(\operatorname{Arg}(z) < \theta\)
 327
 328\section{Vectors}\label{vectors}
 329
 330\begin{itemize}
 331\tightlist
 332\item
 333  \textbf{vector:} a directed line segment\\
 334\item
 335  arrow indicates direction
 336\item
 337  length indicates magnitude
 338\item
 339  column notation: \(\begin{bmatrix}  x \\ y  \end{bmatrix}\)
 340\item
 341  vectors with equal magnitude and direction are equivalent
 342\end{itemize}
 343
 344\begin{figure}
 345\centering
 346\includegraphics[width=0.20000\textwidth]{graphics/vectors-intro.png}
 347\caption{}\label{id}
 348\end{figure}
 349
 350\subsection{Vector addition}\label{vector-addition}
 351
 352\(\boldsymbol{u} + \boldsymbol{v}\) can be represented by drawing each
 353vector head to tail then joining the lines.\\
 354Addition is commutative (parallelogram)
 355
 356\subsection{Scalar multiplication}\label{scalar-multiplication}
 357
 358For \(k \in \mathbb{R}^+\), \(k\boldsymbol{u}\) has the same direction
 359as \(\boldsymbol{u}\) but length is multiplied by a factor of \(k\).
 360
 361When multiplied by \(k < 0\), direction is reversed and length is
 362multplied by \(k\).
 363
 364\subsection{Vector subtraction}\label{vector-subtraction}
 365
 366To find \(\boldsymbol{u} - \boldsymbol{v}\), add \(\boldsymbol{-v}\) to
 367\(\boldsymbol{u}\)
 368
 369\subsection{Parallel vectors}\label{parallel-vectors}
 370
 371Same or opposite direction
 372
 373\[\boldsymbol{u} || \boldsymbol{v} \iff \boldsymbol{u} = k \boldsymbol{v} \text{ where } k \in \mathbb{R} \setminus \{0\}\]
 374
 375\subsection{Position vectors}\label{position-vectors}
 376
 377Vectors may describe a position relative to \(O\).
 378
 379For a point \(A\), the position vector is \overrightharp{OA}
 380
 381\vfill\eject
 382
 383\subsection{Linear combinations of non-parallel
 384vectors}\label{linear-combinations-of-non-parallel-vectors}
 385
 386If two non-zero vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are
 387not parallel, then:
 388
 389\[m\boldsymbol{a} + n\boldsymbol{b} = p \boldsymbol{a} + q \boldsymbol{b}\quad \therefore \quad m = p, \> n = q\]
 390
 391\includegraphics[width=0.20000\textwidth]{graphics/parallelogram-vectors.jpg}
 392\includegraphics[width=0.10000\textwidth]{graphics/vector-subtraction.jpg}
 393
 394\subsection{Column vector notation}\label{column-vector-notation}
 395
 396A vector between points \(A(x_1,y_1), \> B(x_2,y_2)\) can be represented
 397as \(\begin{bmatrix}x_2-x_1\\ y_2-y_1 \end{bmatrix}\)
 398
 399\subsection{Component notation}\label{component-notation}
 400
 401A vector \(\boldsymbol{u} = \begin{bmatrix}x\\ y \end{bmatrix}\) can be
 402written as \(\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}\).\\
 403\(\boldsymbol{u}\) is the sum of two components \(x\boldsymbol{i}\) and
 404\(y\boldsymbol{j}\)\\
 405Magnitude of vector
 406\(\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}\) is denoted by
 407\(|u|=\sqrt{x^2+y^2}\)
 408
 409Basic algebra applies:\\
 410\((x\boldsymbol{i} + y\boldsymbol{j}) + (m\boldsymbol{i} + n\boldsymbol{j}) = (x + m)\boldsymbol{i} + (y+n)\boldsymbol{j}\)\\
 411Two vectors equal if and only if their components are equal.
 412
 413\subsection{\texorpdfstring{Unit vector
 414\(|\hat{\boldsymbol{a}}|=1\)}{Unit vector \textbar{}\textbackslash{}hat\{\textbackslash{}boldsymbol\{a\}\}\textbar{}=1}}\label{unit-vector-hatboldsymbola1}
 415
 416\begin{equation}\begin{split}\hat{\boldsymbol{a}} & = {1 \over {|\boldsymbol{a}|}}\boldsymbol{a} \\ & = \boldsymbol{a} \cdot {|\boldsymbol{a}|}\end{split}\end{equation}
 417
 418\subsection{\texorpdfstring{Scalar/dot product
 419\(\boldsymbol{a} \cdot \boldsymbol{b}\)}{Scalar/dot product \textbackslash{}boldsymbol\{a\} \textbackslash{}cdot \textbackslash{}boldsymbol\{b\}}}\label{scalardot-product-boldsymbola-cdot-boldsymbolb}
 420
 421\[\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2\]
 422
 423\textbf{on CAS:} \texttt{dotP({[}a\ b\ c{]},\ {[}d\ e\ f{]})}
 424
 425\subsection{Scalar product properties}\label{scalar-product-properties}
 426
 427\begin{enumerate}
 428\def\labelenumi{\arabic{enumi}.}
 429\tightlist
 430\item
 431  \(k(\boldsymbol{a\cdot b})=(k\boldsymbol{a})\cdot \boldsymbol{b}=\boldsymbol{a}\cdot (k{b})\)
 432\item
 433  \(\boldsymbol{a \cdot 0}=0\)
 434\item
 435  \(\boldsymbol{a \cdot (b + c)}=\boldsymbol{a \cdot b + a \cdot c}\)
 436\item
 437  \(\boldsymbol{i \cdot i} = \boldsymbol{j \cdot j} = \boldsymbol{k \cdot k}= 1\)
 438\item
 439  If \(\boldsymbol{a} \cdot \boldsymbol{b} = 0\), \(\boldsymbol{a}\) and
 440  \(\boldsymbol{b}\) are perpendicular
 441\item
 442  \(\boldsymbol{a \cdot a} = |\boldsymbol{a}|^2 = a^2\)
 443\end{enumerate}
 444
 445For parallel vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\):\\
 446\[\boldsymbol{a \cdot b}=\begin{cases}
 447|\boldsymbol{a}||\boldsymbol{b}| \hspace{2.8em} \text{if same direction}\\
 448-|\boldsymbol{a}||\boldsymbol{b}| \hspace{2em} \text{if opposite directions}
 449\end{cases}\]
 450
 451\subsection{Geometric scalar products}\label{geometric-scalar-products}
 452
 453\[\boldsymbol{a} \cdot \boldsymbol{b} = |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta\]
 454
 455where \(0 \le \theta \le \pi\)
 456
 457\subsection{Perpendicular vectors}\label{perpendicular-vectors}
 458
 459If \(\boldsymbol{a} \cdot \boldsymbol{b} = 0\), then
 460\(\boldsymbol{a} \perp \boldsymbol{b}\) (since \(\cos 90 = 0\))
 461
 462\subsection{Finding angle between
 463vectors}\label{finding-angle-between-vectors}
 464
 465\textbf{positive direction}
 466
 467\[\cos \theta = {{\boldsymbol{a} \cdot \boldsymbol{b}} \over {|\boldsymbol{a}| |\boldsymbol{b}|}} = {{a_1 b_1 + a_2 b_2} \over {|\boldsymbol{a}| |\boldsymbol{b}|}}\]
 468
 469\textbf{on CAS:} \texttt{angle({[}a\ b\ c{]},\ {[}a\ b\ c{]})} (Action
 470-\textgreater{} Vector -\textgreater{} Angle)
 471
 472\subsection{Angle between vector and
 473axis}\label{angle-between-vector-and-axis}
 474
 475Direction of a vector can be given by the angles it makes with
 476\(\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}\) directions.
 477
 478For
 479\(\boldsymbol{a} = a_1 \boldsymbol{i} + a_2 \boldsymbol{j} + a_3 \boldsymbol{k}\)
 480which makes angles \(\alpha, \beta, \gamma\) with positive direction of
 481\(x, y, z\) axes:
 482\[\cos \alpha = {a_1 \over |\boldsymbol{a}|}, \quad \cos \beta = {a_2 \over |\boldsymbol{a}|}, \quad \cos \gamma = {a_3 \over |\boldsymbol{a}|}\]
 483
 484\textbf{on CAS:} \texttt{angle({[}a\ b\ c{]},\ {[}1\ 0\ 0{]})} for angle
 485between \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) and
 486\(x\)-axis
 487
 488\subsection{Vector projections}\label{vector-projections}
 489
 490Vector resolute of \(\boldsymbol{a}\) in direction of \(\boldsymbol{b}\)
 491is magnitude of \(\boldsymbol{a}\) in direction of \(\boldsymbol{b}\):
 492
 493\[\boldsymbol{u}={{\boldsymbol{a}\cdot\boldsymbol{b}}\over |\boldsymbol{b}|^2}\boldsymbol{b}=\left({\boldsymbol{a}\cdot{\boldsymbol{b} \over |\boldsymbol{b}|}}\right)\left({\boldsymbol{b} \over |\boldsymbol{b}|}\right)=(\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}\]
 494
 495\subsection{\texorpdfstring{Scalar resolute of \(\boldsymbol{a}\) on
 496\(\boldsymbol{b}\)}{Scalar resolute of \textbackslash{}boldsymbol\{a\} on \textbackslash{}boldsymbol\{b\}}}\label{scalar-resolute-of-boldsymbola-on-boldsymbolb}
 497
 498\[r_s = |\boldsymbol{u}| = \boldsymbol{a} \cdot \hat{\boldsymbol{b}}\]
 499
 500\subsection{\texorpdfstring{Vector resolute of
 501\(\boldsymbol{a} \perp \boldsymbol{b}\)}{Vector resolute of \textbackslash{}boldsymbol\{a\} \textbackslash{}perp \textbackslash{}boldsymbol\{b\}}}\label{vector-resolute-of-boldsymbola-perp-boldsymbolb}
 502
 503\[\boldsymbol{w} = \boldsymbol{a} - \boldsymbol{u} \> \text{ where } \boldsymbol{u} \text{ is projection } \boldsymbol{a} \text{ on } \boldsymbol{b}\]
 504
 505\subsection{Vector proofs}\label{vector-proofs}
 506
 507\subsubsection{Concurrent lines}\label{concurrent-lines}
 508
 509\(\ge\) 3 lines intersect at a single point
 510
 511\subsubsection{Collinear points}\label{collinear-points}
 512
 513\(\ge\) 3 points lie on the same line\\
 514\(\implies \vec{OC} = \lambda \vec{OA} + \mu \vec{OB}\) where
 515\(\lambda + \mu = 1\). If \(C\) is between \(\vec{AB}\), then
 516\(0 < \mu < 1\)\\
 517Points \(A, B, C\) are collinear iff
 518\(\vec{AC}=m\vec{AB} \text{ where } m \ne 0\)
 519
 520\subsubsection{Useful vector properties}\label{useful-vector-properties}
 521
 522\begin{itemize}
 523\tightlist
 524\item
 525  If \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are parallel, then
 526  \(\boldsymbol{b}=k\boldsymbol{a}\) for some
 527  \(k \in \mathbb{R} \setminus \{0\}\)
 528\item
 529  If \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are parallel with at
 530  least one point in common, then they lie on the same straight line
 531\item
 532  Two vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are
 533  perpendicular if \(\boldsymbol{a} \cdot \boldsymbol{b}=0\)
 534\item
 535  \(\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2\)
 536\end{itemize}
 537
 538\subsection{Linear dependence}\label{linear-dependence}
 539
 540Vectors \(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\) are linearly
 541dependent if they are non-parallel and:
 542
 543\[k\boldsymbol{a}+l\boldsymbol{b}+m\boldsymbol{c} = 0\]
 544\[\therefore \boldsymbol{c} = m\boldsymbol{a} + n\boldsymbol{b} \quad \text{(simultaneous)}\]
 545
 546\(\boldsymbol{a}, \boldsymbol{b},\) and \(\boldsymbol{c}\) are linearly
 547independent if no vector in the set is expressible as a linear
 548combination of other vectors in set, or if they are parallel.
 549
 550Vector \(\boldsymbol{w}\) is a linear combination of vectors
 551\(\boldsymbol{v_1}, \boldsymbol{v_2}, \boldsymbol{v_3}\)
 552
 553\subsection{Three-dimensional vectors}\label{three-dimensional-vectors}
 554
 555Right-hand rule for axes: \(z\) is up or out of page.
 556
 557i\includegraphics{graphics/vectors-3d.png}
 558
 559\subsection{Parametric vectors}\label{parametric-vectors}
 560
 561Parametric equation of line through point \((x_0, y_0, z_0)\) and
 562parallel to \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) is:
 563
 564\begin{equation}\begin{cases}x = x_o + a \cdot t \\ y = y_0 + b \cdot t \\ z = z_0 + c \cdot t\end{cases}\end{equation}
 565
 566\section{Circular functions}\label{circular-functions}
 567
 568Period of \(a\sin(bx)\) is \({2\pi} \over b\)
 569
 570Period of \(a\tan(nx)\) is \(\pi \over n\)\\
 571Asymptotes at \(x={2k+1)\pi \over 2n} \> \vert \> k \in \mathbb{Z}\)
 572
 573\subsection{Reciprocal functions}\label{reciprocal-functions}
 574
 575\subsubsection{Cosecant}\label{cosecant}
 576
 577\begin{figure}
 578\centering
 579\includegraphics{graphics/csc.png}
 580\caption{}
 581\end{figure}
 582
 583\[\operatorname{cosec} \theta = {1 \over \sin \theta} \> \vert \> \sin \theta \ne 0\]
 584
 585\begin{itemize}
 586\tightlist
 587\item
 588  \textbf{Domain} \(= \mathbb{R} \setminus {n\pi : n \in \mathbb{Z}}\)
 589\item
 590  \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\)
 591\item
 592  \textbf{Turning points} at
 593  \(\theta = {{(2n + 1)\pi} \over 2} \> \vert \> n \in \mathbb{Z}\)
 594\item
 595  \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
 596\end{itemize}
 597
 598\subsubsection{Secant}\label{secant}
 599
 600\begin{figure}
 601\centering
 602\includegraphics{graphics/sec.png}
 603\caption{}
 604\end{figure}
 605
 606\[\operatorname{sec} \theta = {1 \over \cos \theta} \> \vert \> \cos \theta \ne 0\]
 607
 608\begin{itemize}
 609\tightlist
 610\item
 611  \textbf{Domain}
 612  \(= \mathbb{R} \setminus \{{{(2n + 1) \pi} \over 2 } : n \in \mathbb{Z}\}\)
 613\item
 614  \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\)
 615\item
 616  \textbf{Turning points} at
 617  \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
 618\item
 619  \textbf{Asymptotes} at
 620  \(\theta = {{(2n + 1) \pi} \over 2} \> \vert \> n \in \mathbb{Z}\)
 621\end{itemize}
 622
 623\subsubsection{Cotangent}\label{cotangent}
 624
 625\begin{figure}
 626\centering
 627\includegraphics{graphics/cot.png}
 628\caption{}
 629\end{figure}
 630
 631\[\operatorname{cot} \theta = {{\cos \theta} \over {\sin \theta}} \> \vert \> \sin \theta \ne 0\]
 632
 633\begin{itemize}
 634\tightlist
 635\item
 636  \textbf{Domain} \(= \mathbb{R} \setminus \{n \pi: n \in \mathbb{Z}\}\)
 637\item
 638  \textbf{Range} \(= \mathbb{R}\)
 639\item
 640  \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
 641\end{itemize}
 642
 643\subsubsection{Symmetry properties}\label{symmetry-properties}
 644
 645\begin{equation}\begin{split}
 646  \operatorname{sec} (\pi \pm x) & = -\operatorname{sec} x \\
 647  \operatorname{sec} (-x) & = \operatorname{sec} x \\
 648  \operatorname{cosec} (\pi \pm x) & = \mp \operatorname{cosec} x \\
 649  \operatorname{cosec} (-x) & = - \operatorname{cosec} x \\
 650  \operatorname{cot} (\pi \pm x) & = \pm \operatorname{cot} x \\
 651  \operatorname{cot} (-x) & = - \operatorname{cot} x
 652\end{split}\end{equation}
 653
 654\subsubsection{Complementary properties}\label{complementary-properties}
 655
 656\begin{equation}\begin{split}
 657  \operatorname{sec} \left({\pi \over 2} - x\right) & = \operatorname{cosec} x \\
 658  \operatorname{cosec} \left({\pi \over 2} - x\right) & = \operatorname{sec} x \\
 659  \operatorname{cot} \left({\pi \over 2} - x\right) & = \tan x \\
 660  \tan \left({\pi \over 2} - x\right) & = \operatorname{cot} x
 661\end{split}\end{equation}
 662
 663\subsubsection{Pythagorean identities}\label{pythagorean-identities}
 664
 665\begin{equation}\begin{split}
 666  1 + \operatorname{cot}^2 x & = \operatorname{cosec}^2 x, \quad \text{where } \sin x \ne 0 \\
 667  1 + \tan^2 x & = \operatorname{sec}^2 x, \quad \text{where } \cos x \ne 0
 668\end{split}\end{equation}
 669
 670\subsection{Compound angle formulas}\label{compound-angle-formulas}
 671
 672\[\cos(x \pm y) = \cos x + \cos y \mp \sin x \sin y\]
 673\[\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y\]
 674\[\tan(x \pm y) = {{\tan x \pm \tan y} \over {1 \mp \tan x \tan y}}\]
 675
 676\subsection{Double angle formulas}\label{double-angle-formulas}
 677
 678\begin{equation}\begin{split}
 679  \cos 2x &= \cos^2 x - \sin^2 x \\
 680  & = 1 - 2\sin^2 x \\
 681  & = 2 \cos^2 x -1
 682\end{split}\end{equation}
 683
 684\[\sin 2x = 2 \sin x \cos x\]
 685
 686\[\tan 2x = {{2 \tan x} \over {1 - \tan^2 x}}\]
 687
 688\subsection{Inverse circular
 689functions}\label{inverse-circular-functions}
 690
 691Inverse functions: \(f(f^{-1}(x)) = x, \quad f(f^{-1}(x)) = x\)\\
 692Must be 1:1 to find inverse (reflection in \(y=x\)
 693
 694Domain is restricted to make functions 1:1.
 695
 696\subsubsection{\texorpdfstring{\(\arcsin\)}{\textbackslash{}arcsin}}\label{arcsin}
 697
 698\[\sin^{-1}: [-1, 1] \rightarrow \mathbb{R}, \quad \sin^{-1} x = y, \quad \text{where } \sin y = x \text{ and } y \in [{-\pi \over 2}, {\pi \over 2}]\]
 699
 700\subsubsection{\texorpdfstring{\(\arcos\)}{\textbackslash{}arcos}}\label{arcos}
 701
 702\[\cos^{-1} \rightarrow \mathbb{R}, \quad \cos^{-1} x = y, \quad \text{where } \cos y = x \text{ and } y \in [0, \pi]\]
 703
 704\subsubsection{\texorpdfstring{\(\arctan\)}{\textbackslash{}arctan}}\label{arctan}
 705
 706\[\tan^{-1}: \mathbb{R} \rightarrow \mathbb{R}, \quad \tan^{-1} x = y, \quad \text{where } \tan y = x \text{ and } y \in \left(-{\pi \over 2}, {\pi \over 2}\right)\]
 707\# Differential calculus
 708
 709\subsection{Limits}\label{limits}
 710
 711\[\lim_{x \rightarrow a}f(x)\]
 712
 713\(L^-\) - limit from below
 714
 715\(L^+\) - limit from above
 716
 717\(\lim_{x \to a} f(x)\) - limit of a point
 718
 719\begin{itemize}
 720\tightlist
 721\item
 722  Limit exists if \(L^-=L^+\)
 723\item
 724  If limit exists, point does not.
 725\end{itemize}
 726
 727Limits can be solved using normal techniques (if div 0, factorise)
 728
 729\subsection{Limit theorems}\label{limit-theorems}
 730
 731\begin{enumerate}
 732\def\labelenumi{\arabic{enumi}.}
 733\tightlist
 734\item
 735  For constant function \(f(x)=k\), \(\lim_{x \rightarrow a} f(x) = k\)
 736\item
 737  \(\lim_{x \rightarrow a} (f(x) \pm g(x)) = F \pm G\)
 738\item
 739  \(\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G\)
 740\item
 741  \({\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0\)
 742\end{enumerate}
 743
 744Corollary: \(\lim_{x \rightarrow a} c \times f(x)=cF\) where \(c=\)
 745constant
 746
 747\subsection{\texorpdfstring{Solving limits for
 748\(x\rightarrow\infty\)}{Solving limits for x\textbackslash{}rightarrow\textbackslash{}infty}}\label{solving-limits-for-xrightarrowinfty}
 749
 750Factorise so that all values of \(x\) are in denominators.
 751
 752e.g.
 753
 754\[\lim_{x \rightarrow \infty}{{2x+3} \over {x-2}}={{2+{3 \over x}} \over {1-{2 \over x}}}={2 \over 1} = 2\]
 755
 756\subsection{Continuous functions}\label{continuous-functions}
 757
 758A function is continuous if \(L^-=L^+=f(x)\) for all values of \(x\).
 759
 760\subsection{Gradients of secants and
 761tangents}\label{gradients-of-secants-and-tangents}
 762
 763Secant (chord) - line joining two points on curve
 764
 765Tangent - line that intersects curve at one point
 766
 767given \(P(x,y) \quad Q(x+\delta x, y + \delta y)\): gradient of chord
 768joining \(P\) and \(Q\) is
 769\({m_{PQ}}={\operatorname{rise} \over \operatorname{run}} = {\delta y \over \delta x}\)
 770
 771As \(Q \rightarrow P, \delta x \rightarrow 0\). Chord becomes tangent
 772(two infinitesimal points are equal).
 773
 774Can also be used with functions, where \(h=\delta x\).
 775
 776\subsection{First principles
 777derivative}\label{first-principles-derivative}
 778
 779\[f^\prime(x) = \lim_{\delta x \rightarrow 0}{\delta y \over \delta x}={dy \over dx}\]
 780
 781\[m_{\tan}=\lim_{h \rightarrow 0}f^\prime(x)\]
 782
 783\[m_{\vec{PQ}}=f^\prime(x)\]
 784
 785first principles derivative:
 786\[{m_{\text{tangent at }P} =\lim_{h \rightarrow 0}}{{f(x+h)-f(x)}\over h}\]
 787
 788\subsection{Gradient at a point}\label{gradient-at-a-point}
 789
 790Given point \(P(a, b)\) and function \(f(x)\), the gradient is
 791\(f^\prime(a)\)
 792
 793\subsection{\texorpdfstring{Derivatives of
 794\(x^n\)}{Derivatives of x\^{}n}}\label{derivatives-of-xn}
 795
 796\[{d(ax^n) \over dx}=anx^{n-1}\]
 797
 798If \(x=\) constant, derivative is \(0\)
 799
 800If \(y=ax^n\), derivative is \(a\times nx^{n-1}\)
 801
 802If
 803\(f(x)={1 \over x}=x^{-1}, \quad f^\prime(x)=-1x^{-2}={-1 \over x^2}\)
 804
 805If
 806\(f(x)=^5\sqrt{x}=x^{1 \over 5}, \quad f^\prime(x)={1 \over 5}x^{-4/5}={1 \over 5 \times ^5\sqrt{x^4}}\)
 807
 808If \(f(x)=(x-b)^2, \quad f^\prime(x)=2(x-b)\)
 809
 810\[f^\prime(x)=\lim_{h \rightarrow 0}{{f(x+h)-f(x)} \over h}\]
 811
 812\subsection{\texorpdfstring{Derivatives of
 813\(u \pm v\)}{Derivatives of u \textbackslash{}pm v}}\label{derivatives-of-u-pm-v}
 814
 815\[{dy \over dx}={du \over dx} \pm {dv \over dx}\] where \(u\) and \(v\)
 816are functions of \(x\)
 817
 818\subsection{Euler's number as a limit}\label{eulers-number-as-a-limit}
 819
 820\[\lim_{h \rightarrow 0} {{e^h-1} \over h}=1\]
 821
 822\subsection{\texorpdfstring{Chain rule for
 823\((f\circ g)\)}{Chain rule for (f\textbackslash{}circ g)}}\label{chain-rule-for-fcirc-g}
 824
 825If \(f(x) = h(g(x)) = (h \circ g)(x)\):
 826
 827\[f^\prime(x) = h^\prime(g(x)) \cdot g^\prime(x)\]
 828
 829If \(y=h(u)\) and \(u=g(x)\):
 830
 831\[{dy \over dx} = {dy \over du} \cdot {du \over dx}\]
 832\[{d((ax+b)^n) \over dx} = {d(ax+b) \over dx} \cdot n \cdot (ax+b)^{n-1}\]
 833
 834Used with only one expression.
 835
 836e.g. \(y=(x^2+5)^7\) - Cannot reasonably expand\\
 837Let \(u-x^2+5\) (inner expression)\\
 838\({du \over dx} = 2x\)\\
 839\(y=u^7\)\\
 840\({dy \over du} = 7u^6\)
 841
 842\subsection{\texorpdfstring{Product rule for
 843\(y=uv\)}{Product rule for y=uv}}\label{product-rule-for-yuv}
 844
 845\[{dy \over dx} = u{dv \over dx} + v{du \over dx}\]
 846
 847\subsection{\texorpdfstring{Quotient rule for
 848\(y={u \over v}\)}{Quotient rule for y=\{u \textbackslash{}over v\}}}\label{quotient-rule-for-yu-over-v}
 849
 850\[{dy \over dx} = {{v{du \over dx} - u{dv \over dx}} \over v^2}\]
 851
 852\[f^\prime(x)={{v(x)u^\prime(x)-u(x)v^\prime(x)} \over [v(x)]^2}\]
 853
 854\subsection{Logarithms}\label{logarithms}
 855
 856\[\log_b (x) = n \quad \operatorname{where} \hspace{0.5em} b^n=x\]
 857
 858Wikipedia:
 859
 860\begin{quote}
 861the logarithm of a given number \(x\) is the exponent to which another
 862fixed number, the base \(b\), must be raised, to produce that number
 863\(x\)
 864\end{quote}
 865
 866\subsubsection{Logarithmic identities}\label{logarithmic-identities}
 867
 868\(\log_b (xy)=\log_b x + \log_b y\)\\
 869\(\log_b x^n = n \log_b x\)\\
 870\(\log_b y^{x^n} = x^n \log_b y\)
 871
 872\subsubsection{Index identities}\label{index-identities}
 873
 874\(b^{m+n}=b^m \cdot b^n\)\\
 875\((b^m)^n=b^{m \cdot n}\)\\
 876\((b \cdot c)^n = b^n \cdot c^n\)\\
 877\({a^m \div a^n} = {a^{m-n}}\)
 878
 879\subsubsection{\texorpdfstring{\(e\) as a
 880logarithm}{e as a logarithm}}\label{e-as-a-logarithm}
 881
 882\[\operatorname{if} y=e^x, \quad \operatorname{then} x=\log_e y\]
 883\[\ln x = \log_e x\]
 884
 885\subsubsection{Differentiating
 886logarithms}\label{differentiating-logarithms}
 887
 888\[{d(\log_e x)\over dx} = x^{-1} = {1 \over x}\]
 889
 890\subsection{Derivative rules}\label{derivative-rules}
 891
 892\begin{longtable}[]{@{}ll@{}}
 893\toprule
 894\(f(x)\) & \(f^\prime(x)\)\tabularnewline
 895\midrule
 896\endhead
 897\(\sin x\) & \(\cos x\)\tabularnewline
 898\(\sin ax\) & \(a\cos ax\)\tabularnewline
 899\(\cos x\) & \(-\sin x\)\tabularnewline
 900\(\cos ax\) & \(-a \sin ax\)\tabularnewline
 901\(\tan f(x)\) & \(f^2(x) \sec^2f(x)\)\tabularnewline
 902\(e^x\) & \(e^x\)\tabularnewline
 903\(e^{ax}\) & \(ae^{ax}\)\tabularnewline
 904\(ax^{nx}\) & \(an \cdot e^{nx}\)\tabularnewline
 905\(\log_e x\) & \(1 \over x\)\tabularnewline
 906\(\log_e {ax}\) & \(1 \over x\)\tabularnewline
 907\(\log_e f(x)\) & \(f^\prime (x) \over f(x)\)\tabularnewline
 908\(\sin(f(x))\) & \(f^\prime(x) \cdot \cos(f(x))\)\tabularnewline
 909\(\sin^{-1} x\) & \(1 \over {\sqrt{1-x^2}}\)\tabularnewline
 910\(\cos^{-1} x\) & \(-1 \over {sqrt{1-x^2}}\)\tabularnewline
 911\(\tan^{-1} x\) & \(1 \over {1 + x^2}\)\tabularnewline
 912\bottomrule
 913\end{longtable}
 914
 915\subsection{Reciprocal derivatives}\label{reciprocal-derivatives}
 916
 917\[{1 \over {dy \over dx}} = {dx \over dy}\]
 918
 919\subsection{\texorpdfstring{Differentiating
 920\(x=f(y)\)}{Differentiating x=f(y)}}\label{differentiating-xfy}
 921
 922Find \(dx \over dy\). Then
 923\({dx \over dy} = {1 \over {dy \over dx}} \implies {dy \over dx} = {1 \over {dx \over dy}}\).
 924
 925\[{dy \over dx} = {1 \over {dx \over dy}}\]
 926
 927\subsection{Second derivative}\label{second-derivative}
 928
 929\[f(x) \longrightarrow f^\prime (x) \longrightarrow f^{\prime\prime}(x)\]
 930
 931\[\therefore y \longrightarrow {dy \over dx} \longrightarrow {d({dy \over dx}) \over dx} \longrightarrow {d^2 y \over dx^2}\]
 932
 933Order of polynomial \(n\)th derivative decrements each time the
 934derivative is taken
 935
 936\subsubsection{Points of Inflection}\label{points-of-inflection}
 937
 938\emph{Stationary point} - point of zero gradient (i.e.
 939\(f^\prime(x)=0\))\\
 940\emph{Point of inflection} - point of maximum \(|\)gradient\(|\) (i.e.
 941\(f^{\prime\prime} = 0\))
 942
 943\begin{itemize}
 944\tightlist
 945\item
 946  if \(f^\prime (a) = 0\) and \(f^{\prime\prime}(a) > 0\), then point
 947  \((a, f(a))\) is a local min (curve is concave up)
 948\item
 949  if \(f^\prime (a) = 0\) and \(f^{\prime\prime} (a) < 0\), then point
 950  \((a, f(a))\) is local max (curve is concave down)
 951\item
 952  if \(f^{\prime\prime}(a) = 0\), then point \((a, f(a))\) is a point of
 953  inflection
 954\item
 955  if also \(f^\prime(a)=0\), then it is a stationary point of inflection
 956\end{itemize}
 957
 958\begin{figure}
 959\centering
 960\includegraphics{graphics/second-derivatives.png}
 961\caption{}
 962\end{figure}
 963
 964\subsection{Implicit Differentiation}\label{implicit-differentiation}
 965
 966\textbf{On CAS:} Action \(\rightarrow\) Calculation \(\rightarrow\)
 967\texttt{impDiff(y\^{}2+ax=5,\ x,\ y)}. Returns \(y^\prime= \dots\).
 968
 969Used for differentiating circles etc.
 970
 971If \(p\) and \(q\) are expressions in \(x\) and \(y\) such that \(p=q\),
 972for all \(x\) nd \(y\), then:
 973
 974\[{dp \over dx} = {dq \over dx} \quad \text{and} \quad {dp \over dy} = {dq \over dy}\]
 975
 976\subsection{Integration}\label{integration}
 977
 978\[\int f(x) \cdot dx = F(x) + c \quad \text{where } F^\prime(x) = f(x)\]
 979
 980\[\int x^n \cdot dx = {x^{n+1} \over n+1} + c\]
 981
 982\begin{itemize}
 983\tightlist
 984\item
 985  area enclosed by curves
 986\item
 987  \(+c\) should be shown on each step without \(\int\)
 988\end{itemize}
 989
 990\subsubsection{Integral laws}\label{integral-laws}
 991
 992\(\int f(x) + g(x) dx = \int f(x) dx + \int g(x) dx\)\\
 993\(\int k f(x) dx = k \int f(x) dx\)
 994
 995\begin{longtable}[]{@{}ll@{}}
 996\toprule
 997\begin{minipage}[b]{0.42\columnwidth}\raggedright\strut
 998\(f(x)\)\strut
 999\end{minipage} & \begin{minipage}[b]{0.38\columnwidth}\raggedright\strut
1000\(\int f(x) \cdot dx\)\strut
1001\end{minipage}\tabularnewline
1002\midrule
1003\endhead
1004\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
1005\(k\) (constant)\strut
1006\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
1007\(kx + c\)\strut
1008\end{minipage}\tabularnewline
1009\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
1010\(x^n\)\strut
1011\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
1012\({x^{n+1} \over {n+1}} + c\)\strut
1013\end{minipage}\tabularnewline
1014\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
1015\(a x^{-n}\)\strut
1016\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
1017\(a \cdot \log_e x + c\)\strut
1018\end{minipage}\tabularnewline
1019\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
1020\({1 \over {ax+b}}\)\strut
1021\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
1022\({1 \over a} \log_e (ax+b) + c\)\strut
1023\end{minipage}\tabularnewline
1024\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
1025\((ax+b)^n\)\strut
1026\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
1027\({1 \over {a(n+1)}}(ax+b)^{n-1} + c\)\strut
1028\end{minipage}\tabularnewline
1029\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
1030\(e^{kx}\)\strut
1031\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
1032\({1 \over k} e^{kx} + c\)\strut
1033\end{minipage}\tabularnewline
1034\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
1035\(e^k\)\strut
1036\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
1037\(e^kx + c\)\strut
1038\end{minipage}\tabularnewline
1039\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
1040\(\sin kx\)\strut
1041\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
1042\(-{1 \over k} \cos (kx) + c\)\strut
1043\end{minipage}\tabularnewline
1044\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
1045\(\cos kx\)\strut
1046\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
1047\({1 \over k} \sin (kx) + c\)\strut
1048\end{minipage}\tabularnewline
1049\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
1050\(\sec^2 kx\)\strut
1051\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
1052\({1 \over k} \tan(kx) + c\)\strut
1053\end{minipage}\tabularnewline
1054\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
1055\(1 \over \sqrt{a^2-x^2}\)\strut
1056\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
1057\(\sin^{-1} {x \over a} + c \>\vert\> a>0\)\strut
1058\end{minipage}\tabularnewline
1059\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
1060\(-1 \over \sqrt{a^2-x^2}\)\strut
1061\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
1062\(\cos^{-1} {x \over a} + c \>\vert\> a>0\)\strut
1063\end{minipage}\tabularnewline
1064\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
1065\(a \over {a^2-x^2}\)\strut
1066\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
1067\(\tan^{-1} {x \over a} + c\)\strut
1068\end{minipage}\tabularnewline
1069\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
1070\({f^\prime (x)} \over {f(x)}\)\strut
1071\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
1072\(\log_e f(x) + c\)\strut
1073\end{minipage}\tabularnewline
1074\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
1075\(g^\prime(x)\cdot f^\prime(g(x)\)\strut
1076\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
1077\(f(g(x))\) (chain rule)\strut
1078\end{minipage}\tabularnewline
1079\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
1080\(f(x) \cdot g(x)\)\strut
1081\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
1082\(\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx\)\strut
1083\end{minipage}\tabularnewline
1084\bottomrule
1085\end{longtable}
1086
1087Note \(\sin^{-1} {x \over a} + \cos^{-1} {x \over a}\) is constant for
1088all \(x \in (-a, a)\).
1089
1090\subsubsection{Definite integrals}\label{definite-integrals}
1091
1092\[\int_a^b f(x) \cdot dx = [F(x)]_a^b=F(b)-F(a)\]
1093
1094\begin{itemize}
1095\tightlist
1096\item
1097  Signed area enclosed by:
1098  \(\> y=f(x), \quad y=0, \quad x=a, \quad x=b\).
1099\item
1100  \emph{Integrand} is \(f\).
1101\item
1102  \(F(x)\) may be any integral, i.e. \(c\) is inconsequential
1103\end{itemize}
1104
1105\paragraph{Properties}\label{properties-2}
1106
1107\[\int^b_a f(x) \> dx = \int^c_a f(x) \> dx + \int^b_c f(x) \> dx\]
1108
1109\[\int^a_a f(x) \> dx = 0\]
1110
1111\[\int^b_a k \cdot f(x) \> dx = k \int^b_a f(x) \> dx\]
1112
1113\[\int^b_a f(x) \pm g(x) \> dx = \int^b_a f(x) \> dx \pm \int^b_a g(x) \> dx\]
1114
1115\[\int^b_a f(x) \> dx = - \int^a_b f(x) \> dx\]
1116
1117\subsubsection{Integration by
1118substitution}\label{integration-by-substitution}
1119
1120\[\int f(u) {du \over dx} \cdot dx = \int f(u) \cdot du\]
1121
1122Note \(f(u)\) must be one-to-one \(\implies\) one \(x\) value for each
1123\(y\) value
1124
1125e.g.~for \(y=\int(2x+1)\sqrt{x+4} \cdot dx\):\\
1126let \(u=x+4\)\\
1127\(\implies {du \over dx} = 1\)\\
1128\(\implies x = u - 4\)\\
1129then \(y=\int (2(u-4)+1)u^{1 \over 2} \cdot du\)\\
1130Solve as a normal integral
1131
1132\paragraph{Definite integrals by
1133substitution}\label{definite-integrals-by-substitution}
1134
1135For \(\int^b_a f(x) {du \over dx} \cdot dx\), evaluate new \(a\) and
1136\(b\) for \(f(u) \cdot du\).
1137
1138\subsubsection{Trigonometric
1139integration}\label{trigonometric-integration}
1140
1141\[\sin^m x \cos^n x \cdot dx\]
1142
1143\textbf{\(m\) is odd:}\\
1144\(m=2k+1\) where \(k \in \mathbb{Z}\)\\
1145\(\implies \sin^{2k+1} x = (\sin^2 z)^k \sin x = (1 - \cos^2 x)^k \sin x\)\\
1146Substitute \(u=\cos x\)
1147
1148\textbf{\(n\) is odd:}\\
1149\(n=2k+1\) where \(k \in \mathbb{Z}\)\\
1150\(\implies \cos^{2k+1} x = (\cos^2 x)^k \cos x = (1-\sin^2 x)^k \cos x\)\\
1151Subbstitute \(u=\sin x\)
1152
1153\textbf{\(m\) and \(n\) are even:}\\
1154Use identities:
1155
1156\begin{itemize}
1157\tightlist
1158\item
1159  \(\sin^2x={1 \over 2}(1-\cos 2x)\)
1160\item
1161  \(\cos^2x={1 \over 2}(1+\cos 2x)\)
1162\item
1163  \(\sin 2x = 2 \sin x \cos x\)
1164\end{itemize}
1165
1166\subsection{Partial fractions}\label{partial-fractions}
1167
1168On CAS: Action \(\rightarrow\) Transformation \(\rightarrow\)
1169\texttt{expand/combine}\\
1170or Interactive \(\rightarrow\) Transformation \(\rightarrow\)
1171\texttt{expand} \(\rightarrow\) Partial
1172
1173\subsection{Graphing integrals on CAS}\label{graphing-integrals-on-cas}
1174
1175In main: Interactive \(\rightarrow\) Calculation \(\rightarrow\)
1176\(\int\) (\(\rightarrow\) Definite)\\
1177Restrictions: \texttt{Define\ f(x)=...} \(\rightarrow\)
1178\texttt{f(x)\textbar{}x\textgreater{}1} (e.g.)
1179
1180\subsection{Applications of
1181antidifferentiation}\label{applications-of-antidifferentiation}
1182
1183\begin{itemize}
1184\tightlist
1185\item
1186  \(x\)-intercepts of \(y=f(x)\) identify \(x\)-coordinates of
1187  stationary points on \(y=F(x)\)
1188\item
1189  nature of stationary points is determined by sign of \(y=f(x)\) on
1190  either side of its \(x\)-intercepts
1191\item
1192  if \(f(x)\) is a polynomial of degree \(n\), then \(F(x)\) has degree
1193  \(n+1\)
1194\end{itemize}
1195
1196To find stationary points of a function, substitute \(x\) value of given
1197point into derivative. Solve for \({dy \over dx}=0\). Integrate to find
1198original function.
1199
1200\subsection{Solids of revolution}\label{solids-of-revolution}
1201
1202Approximate as sum of infinitesimally-thick cylinders
1203
1204\subsubsection{\texorpdfstring{Rotation about
1205\(x\)-axis}{Rotation about x-axis}}\label{rotation-about-x-axis}
1206
1207\begin{align*}
1208  V &= \int^{x=b}_{x-a} \pi y^2 \> dx \\
1209    &= \pi \int^b_a (f(x))^2 \> dx
1210\end{align*}
1211
1212\subsubsection{\texorpdfstring{Rotation about
1213\(y\)-axis}{Rotation about y-axis}}\label{rotation-about-y-axis}
1214
1215\begin{align*}
1216  V &= \int^{y=b}_{y=a} \pi x^2 \> dy \\
1217    &= \pi \int^b_a (f(y))^2 \> dy
1218\end{align*}
1219
1220\subsubsection{\texorpdfstring{Regions not bound by
1221\(y=0\)}{Regions not bound by y=0}}\label{regions-not-bound-by-y0}
1222
1223\[V = \pi \int^b_a f(x)^2 - g(x)^2 \> dx\]\\
1224where \(f(x) > g(x)\)
1225
1226\subsection{Length of a curve}\label{length-of-a-curve}
1227
1228\[L = \int^b_a \sqrt{1 + ({dy \over dx})^2} \> dx \quad \text{(Cartesian)}\]
1229
1230\[L = \int^b_a \sqrt{{dx \over dt} + ({dy \over dt})^2} \> dt \quad \text{(parametric)}\]
1231
1232Evaluate on CAS. Or use Interactive \(\rightarrow\) Calculation
1233\(\rightarrow\) Line \(\rightarrow\) \texttt{arcLen}.
1234
1235\subsection{Rates}\label{rates}
1236
1237\subsubsection{Related rates}\label{related-rates}
1238
1239\[{da \over db} \quad \text{(change in } a \text{ with respect to } b)\]
1240
1241\subsubsection{Gradient at a point on parametric
1242curve}\label{gradient-at-a-point-on-parametric-curve}
1243
1244\[{dy \over dx} = {{dy \over dt} \div {dx \over dt}} \> \vert \> {dx \over dt} \ne 0\]
1245
1246\[{d^2 \over dx^2} = {d(y^\prime) \over dx} = {{dy^\prime \over dt} \div {dx \over dt}} \> \vert \> y^\prime = {dy \over dx}\]
1247
1248\subsection{Rational functions}\label{rational-functions}
1249
1250\[f(x) = {P(x) \over Q(x)} \quad \text{where } P, Q \text{ are polynomial functions}\]
1251
1252\subsubsection{Addition of ordinates}\label{addition-of-ordinates}
1253
1254\begin{itemize}
1255\tightlist
1256\item
1257  when two graphs have the same ordinate, \(y\)-coordinate is double the
1258  ordinate
1259\item
1260  when two graphs have opposite ordinates, \(y\)-coordinate is 0 i.e.
1261  (\(x\)-intercept)
1262\item
1263  when one of the ordinates is 0, the resulting ordinate is equal to the
1264  other ordinate
1265\end{itemize}
1266
1267\subsection{Fundamental theorem of
1268calculus}\label{fundamental-theorem-of-calculus}
1269
1270If \(f\) is continuous on \([a, b]\), then
1271
1272\[\int^b_a f(x) \> dx = F(b) - F(a)\]
1273
1274where \(F\) is any antiderivative of \(f\)
1275
1276\subsection{Differential equations}\label{differential-equations}
1277
1278One or more derivatives
1279
1280\textbf{Order} - highest power inside derivative\\
1281\textbf{Degree} - highest power of highest derivative\\
1282e.g. \({\left(dy^2 \over d^2 x\right)}^3\): order 2, degree 3
1283
1284\subsubsection{Verifying solutions}\label{verifying-solutions}
1285
1286Start with \(y=\dots\), and differentiate. Substitute into original
1287equation.
1288
1289\subsubsection{Function of the dependent
1290variable}\label{function-of-the-dependent-variable}
1291
1292If \({dy \over dx}=g(y)\), then
1293\({dx \over dy} = 1 \div {dy \over dx} = {1 \over g(y)}\). Integrate
1294both sides to solve equation. Only add \(c\) on one side. Express
1295\(e^c\) as \(A\).
1296
1297\subsubsection{Mixing problems}\label{mixing-problems}
1298
1299\[\left({dm \over dt}\right)_\Sigma = \left({dm \over dt}\right)_{\text{in}} - \left({dm \over dt}\right)_{\text{out}}\]
1300
1301\subsubsection{Separation of variables}\label{separation-of-variables}
1302
1303If \({dy \over dx}=f(x)g(y)\), then:
1304
1305\[\int f(x) \> dx = \int {1 \over g(y)} \> dy\]
1306
1307\subsubsection{Using definite integrals to solve
1308DEs}\label{using-definite-integrals-to-solve-des}
1309
1310Used for situations where solutions to \({dy \over dx} = f(x)\) is not
1311required.
1312
1313In some cases, it may not be possible to obtain an exact solution.
1314
1315Approximate solutions can be found by numerically evaluating a definite
1316integral.
1317
1318\subsubsection{Using Euler's method to solve a differential
1319equation}\label{using-eulers-method-to-solve-a-differential-equation}
1320
1321\[{{f(x+h) - f(x)} \over h } \approx f^\prime (x) \quad \text{for small } h\]
1322
1323\[\implies f(x+h) \approx f(x) + hf^\prime(x)\]
1324
1325\end{document}