Organic Chemistry

Large number of compounds due to:

- 4 valence pairs
- single / double / triple bonds
- cyclic (ring) structures

Properties of hydrocarbons

- Saturated all C-C bonds are single
- Insoluble in water
- Almost non-polar (similar electronegativities)
- Only dispersion forces (valence e-)
- Dispersion forces increase with length
- Branched molecules have lower density

Linear (aliphatic)

Alkanes: $C_n H_{2n+2}$ Alkenes: $C_n H_{2n}$ Alkynes: $C_n H_{2n-2}$

Naming hydrocarbons

- Branches end with -yl
- Indicate number of branches with di-, tri- etc.
- Longest unbranched carbon chain includes function group

Functional groups

Alcohols
$$-OH$$
 $R-OH$

Esters $-OCO R-C \bigcirc O-R$

Aldehydes $-CHO$ $R-C \bigcirc H$

Ketones $-CO R \bigcirc C=O$

Carboxylic acids $-COOH$ $R-C \bigcirc O-H$

Ethers $-O O \bigcirc R$

Amines $-NH_2$ $R-N \bigcirc H$
 $O \bigcirc C$

Amides $-CONH_2$ R

Isomers

• Structural isomers - same molecular formula, different arrangement

- Stereoisomers same structural configuration, different orientation
 - Opotical isomers chiral centre, 4 groups bonded to C, non-superimposable mirror image
 - Geometric isomers C=C double bond, 2 groups bonded to carbon atoms
 - * Cis same horizontal plane
 - * Trans diagonal

cis trans $\begin{array}{ccc}
R & R & R & R \\
C = C & C = C \\
R' & R' & R' & R
\end{array}$

Reactions

Cracking - split moluecules with heat/pressure/catalyst

Alkanes

- Relatively inert
- Non-polar solvent
- Non-soluble in H_2O
- Combusts in O_2 (forms $CO_2 + H_2O$)
- Reacts with halogens (substitution of H)

Alkenes

- More reactive than alkanes
- Addition reactions: C=C bond is broken (energy released)
- Addition polymerisation

Alcohols

- Can be formed from haloalkane substitution reaction
- Oxidation (combustion)
- Oxidation state \propto no. of atoms connected to C
- Substitution of functional group, e.g. $ROH + NH_3 \longrightarrow RNH_2 + H_2O$
- Primary alcohols oxidise to aldehydes then carboxylic acids
- Secondary alcohols oxidise to ketones

Carboxylic acids

- Weak acids
- Hydrolysis: $RCOOH + H_2O \Longrightarrow RCOO^- + H_2O^+$
- Rxn with a mines - carboxylic acid + amine \rightarrow ammonium salt \rightarrow amide + water

Esterification

- Condensation reactions (esterification): $RCOOH + R'OH \longrightarrow RCOOR' + H_2O$
- This is reversed by **hydrolysis**: ester + water \rightarrow carboxylic acid + alcohol
- Polyesters