1 Complex numbers

 $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$

Cartesian form: a + bi

Polar form: $r \operatorname{cis} \theta$

Operations

	Cartesian	Polar	
$z_1 \pm z_2$	$(a \pm c)(b \pm d)i$	convert to $a + bi$	
$+k \times z$	$ka \pm kbi$	$kr \operatorname{cis} \theta$	
$-k \times z$	$\kappa a \pm \kappa o i$	$kr\operatorname{cis}(\theta\pm\pi)$	
$z_1 \cdot z_2$	ac - bd + (ad + bc)i	$r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$	
$z_1 \div z_2$	$(z_1\overline{z_2}) \div z_2 ^2$	$\left(\frac{r_1}{r_2}\right)\operatorname{cis}(\theta_1-\theta_2)$	

Scalar multiplication in polar form

For $k \in \mathbb{R}^+$:

$$k(r\operatorname{cis}\theta) = kr\operatorname{cis}\theta$$

For $k \in \mathbb{R}^-$:

$$k(r\operatorname{cis}\theta) = kr\operatorname{cis}\left(\begin{cases} \theta - \pi & |0 < \operatorname{Arg}(z) \le \pi\\ \theta + \pi & |-\pi < \operatorname{Arg}(z) \le 0 \end{cases}\right)$$

Conjugate

$$\overline{z} = a \mp bi$$

$$= r\operatorname{cis}(-\theta)$$

On CAS: conjg(a+bi)

Properties

$$\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}$$

$$\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$$

$$\overline{kz} = k\overline{z} \quad | \quad k \in \mathbb{R}$$

$$z\overline{z} = (a + bi)(a - bi)$$

$$= a^2 + b^2$$

$$= |z|^2$$

Modulus

$$|z| = |\vec{Oz}| = \sqrt{a^2 + b^2}$$

Properties

$$|z_1 z_2| = |z_1||z_2|$$

$$\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$$

$$|z_1 + z_2| \le |z_1| + |z_2|$$

Multiplicative inverse

$$z^{-1} = \frac{a - bi}{a^2 + b^2}$$
$$= \frac{\overline{z}}{|z|^2} a$$
$$= r \operatorname{cis}(-\theta)$$

Dividing over $\mathbb C$

$$\begin{aligned} \frac{z_1}{z_2} &= z_1 z_2^{-1} \\ &= \frac{z_1 \overline{z_2}}{|z_2|^2} \\ &= \frac{(a+bi)(c-di)}{c^2+d^2} \\ &\qquad \text{(rationalise denominator)} \end{aligned}$$

Polar form

$$z = r \operatorname{cis} \theta$$
$$= r(\cos \theta + i \sin \theta)$$

•
$$r = |z| = \sqrt{\text{Re}(z)^2 + \text{Im}(z)^2}$$

- $\theta = \arg(z)$ On CAS: $\arg(a+bi)$
- $Arg(z) \in (-\pi, \pi)$ (principal argument)
- Convert on CAS:
 compToTrig(a+bi) ← cExpand{r·cisX}
- Multiple representations: $r \operatorname{cis} \theta = r \operatorname{cis} (\theta + 2n\pi) \text{ with } n \in \mathbb{Z} \text{ revolutions}$
- $cis \pi = -1$, cis 0 = 1

de Moivres' theorem

$$(r\operatorname{cis}\theta)^n = r^n\operatorname{cis}(n\theta)$$
 where $n \in \mathbb{Z}$

Complex polynomials

Include \pm for all solutions, incl. imaginary

merade ± 101 an solutions, mer. imaginary				
Sum of squares	$z^{2} + a^{2} = z^{2} - (ai)^{2}$ = $(z + ai)(z - ai)$			
Sum of cubes	$a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)$			
Division	P(z) = D(z)Q(z) + R(z)			
Remainder	Let $\alpha \in \mathbb{C}$. Remainder of			
theorem	$P(z) \div (z - \alpha)$ is $P(\alpha)$			
Factor theorem	$z - \alpha$ is a factor of $P(z) \iff$			
	$P(\alpha) = 0 \text{ for } \alpha \in \mathbb{C}$			
Conjugate root	$P(z) = 0$ at $z = a \pm bi$ (\Longrightarrow			
theorem	both z_1 and $\overline{z_1}$ are solutions)			

nth roots

*n*th roots of $z = r \operatorname{cis} \theta$ are:

$$z = r^{\frac{1}{n}} \operatorname{cis}\left(\frac{\theta + 2k\pi}{n}\right)$$

- Same modulus for all solutions
- Arguments separated by $\frac{2\pi}{n}$: there are n roots
- If one square root is a + bi, the other is -a bi
- Give one implicit *n*th root z_1 , function is $z = z_1^n$
- Solutions of $z^n=a$ where $a\in\mathbb{C}$ lie on the circle $x^2+y^2=\left(|a|^{\frac{1}{n}}\right)^2$ (intervals of $\frac{2\pi}{n}$)

For $0 = az^2 + bz + c$, use quadratic formula:

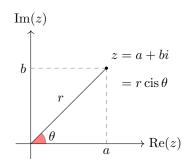
$$z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Fundamental theorem of algebra

A polynomial of degree n can be factorised into n linear factors in \mathbb{C} :

$$\implies P(z) = a_n(z - \alpha_1)(z - \alpha_2)(z - \alpha_3) \dots (z - \alpha_n)$$
where $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n \in \mathbb{C}$

Argand planes



- Multiplication by $i \implies \text{CCW rotation of } \frac{\pi}{2}$
- Addition: $z_1 + z_2 \equiv \overrightarrow{Oz_1} + \overrightarrow{Oz_2}$

Sketching complex graphs

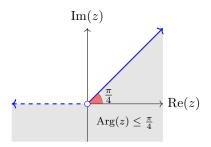
Linear

- $\operatorname{Re}(z) = c$ or $\operatorname{Im}(z) = c$ (perpendicular bisector)
- $\operatorname{Im}(z) = m \operatorname{Re}(z)$
- $|z + a| = |z + b| \implies 2(a b)x = b^2 a^2$ Geometric: equidistant from a, b

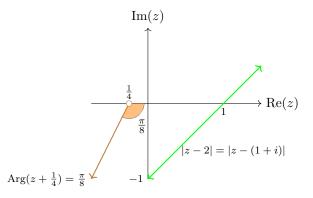
Circles

- $|z z_1|^2 = c^2 |z_2 + 2|^2$
- $|z (a + bi)| = c \implies (x a)^2 + (y b)^2 = c^2$

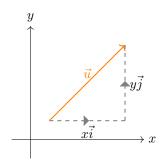
Loci $Arg(z) < \theta$



Rays $Arg(z - b) = \theta$



2 Vectors



Column notation

$$\begin{bmatrix} x \\ y \end{bmatrix} \iff x\mathbf{i} + y\mathbf{j}$$

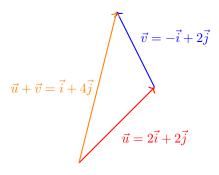
$$\begin{bmatrix} x_2 - x_1 \\ y_2 - y_1 \end{bmatrix}$$
 between $A(x_1, y_1), B(x_2, y_2)$

Scalar multiplication

$$k \cdot (x\mathbf{i} + y\mathbf{j}) = kx\mathbf{i} + ky\mathbf{j}$$

For $k \in \mathbb{R}^-$, direction is reversed

Vector addition



$$(x\mathbf{i} + y\mathbf{j}) \pm (a\mathbf{i} + b\mathbf{j}) = (x \pm a)\mathbf{i} + (y \pm b)\mathbf{j}$$

- Draw each vector head to tail then join lines
- Addition is commutative (parallelogram)

•
$$u - v = u + (-v) \implies \overrightarrow{AB} = b - a$$

Magnitude

$$|(x\mathbf{i} + y\mathbf{j})| = \sqrt{x^2 + y^2}$$

Parallel vectors

$$\boldsymbol{u}||\boldsymbol{v}\iff\boldsymbol{u}=k\boldsymbol{v} \text{ where } k\in\mathbb{R}\setminus\{0\}$$

For parallel vectors \boldsymbol{a} and \boldsymbol{b} :

$$m{a} \cdot m{b} = egin{cases} |m{a}| |m{b}| & ext{if same direction} \\ -|m{a}| |m{b}| & ext{if opposite directions} \end{cases}$$

Perpendicular vectors

$$\mathbf{a} \perp \mathbf{b} \iff \mathbf{a} \cdot \mathbf{b} = 0 \quad \text{(since } \cos 90 = 0\text{)}$$

Unit vector
$$|\hat{a}| = 1$$

$$\hat{a} = \frac{1}{|a|}a$$

$$= \boldsymbol{a} \cdot |\boldsymbol{a}|$$

Scalar product $a \cdot b$

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2$$
$$= |\mathbf{a}| |\mathbf{b}| \cos \theta$$

$$(0 \le \theta \le \pi)$$
 - from cosine rule

On CAS: dotP([a b c], [d e f])

Properties

1.
$$k(\boldsymbol{a} \cdot \boldsymbol{b}) = (k\boldsymbol{a}) \cdot \boldsymbol{b} = \boldsymbol{a} \cdot (k\boldsymbol{b})$$

2.
$$\mathbf{a} \cdot \mathbf{0} = 0$$

3.
$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$$

4.
$$\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1$$

5.
$$\mathbf{a} \cdot \mathbf{b} = 0 \implies \mathbf{a} \perp \mathbf{b}$$

6.
$$\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 = a^2$$

Angle between vectors

$$\cos \theta = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|} = \frac{a_1 b_1 + a_2 b_2}{|\boldsymbol{a}||\boldsymbol{b}|}$$

On CAS: angle([a b c], [a b c])

$$(Action \rightarrow Vector \rightarrow Angle)$$

Angle between vector and axis

For $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ which makes angles α, β, γ with positive side of x, y, z axes:

$$\cos \alpha = \frac{a_1}{|\boldsymbol{a}|}, \quad \cos \beta = \frac{a_2}{|\boldsymbol{a}|}, \quad \cos \gamma = \frac{a_3}{|\boldsymbol{a}|}$$

On CAS: angle([a b c], [1 0 0])

for angle between $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ and x-axis

Projections & resolutes

 $\parallel b$ (vector projection/resolute)

$$egin{aligned} oldsymbol{u} &= rac{oldsymbol{a} \cdot oldsymbol{b}}{|oldsymbol{b}|^2} oldsymbol{b} \ &= \left(rac{oldsymbol{a} \cdot oldsymbol{b}}{|oldsymbol{b}|}
ight) \left(rac{oldsymbol{b}}{|oldsymbol{b}|}
ight) \ &= (oldsymbol{a} \cdot \hat{oldsymbol{b}}) \hat{oldsymbol{b}} \end{aligned}$$

 $\perp b$ (perpendicular projection)

$$w = a - u$$

|u| (scalar projection/resolute)

$$s = |\mathbf{u}|$$

$$= \mathbf{a} \cdot \hat{\mathbf{b}}$$

$$= \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|}$$

$$= |\mathbf{a}| \cos \theta$$

Rectangular (\parallel,\perp) components

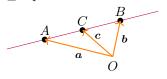
$$a = rac{a \cdot b}{b \cdot b} b + \left(a - rac{a \cdot b}{b \cdot b} b
ight)$$

Vector proofs

Concurrent: intersection of ≥ 3 lines

Collinear points

 \geq 3 points lie on the same line



e.g. Prove that

$$\overrightarrow{AC} = m\overrightarrow{AB} \iff \mathbf{c} = (1 - m)\mathbf{a} + m\mathbf{b}$$

$$\implies \mathbf{c} = \overrightarrow{OA} + \overrightarrow{AC}$$

$$= \overrightarrow{OA} + m\overrightarrow{AB}$$

$$= \mathbf{a} + m(\mathbf{b} - \mathbf{a})$$

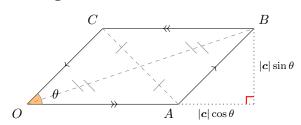
$$= \mathbf{a} + m\mathbf{b} - m\mathbf{a}$$

$$= (1 - m)\mathbf{a} + m\mathbf{b}$$

Also,
$$\Longrightarrow \overrightarrow{OC} = \lambda \overrightarrow{OA} + \mu \overrightarrow{OB}$$

where $\lambda + \mu = 1$
If C lies along \overrightarrow{AB} , $\Longrightarrow 0 < \mu < 1$

Parallelograms



- Diagonals \overrightarrow{OB} , \overrightarrow{AC} bisect each other
- If diagonals are equal length, it is a rectangle
- $\bullet \ \ |\overrightarrow{OB}|^2 + |\overrightarrow{CA}|^2 = |\overrightarrow{OA}|^2 + |\overrightarrow{AB}|^2 + |\overrightarrow{CB}|^2 + |\overrightarrow{OC}|^2$
- Area = $\mathbf{c} \cdot \mathbf{a}$

Useful vector properties

- $a \parallel b \implies b = ka$ for some $k \in \mathbb{R} \setminus \{0\}$
- If *a* and *b* are parallel with at least one point in common, then they lie on the same straight line
- $\mathbf{a} \perp \mathbf{b} \iff \mathbf{a} \cdot \mathbf{b} = 0$
- $\bullet \ \boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2$

Linear dependence

a, b, c are linearly dependent if they are $\not\parallel$ and:

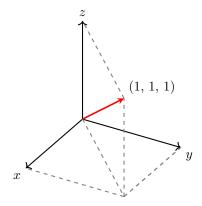
$$0 = k\mathbf{a} + l\mathbf{b} + m\mathbf{c}$$

$$\therefore \mathbf{c} = m\mathbf{a} + n\mathbf{b}$$
 (simultaneous)

a, b, and c are linearly independent if no vector in the set is expressible as a linear combination of other vectors in set, or if they are parallel.

Three-dimensional vectors

Right-hand rule for axes: z is up or out of page.



Parametric vectors

Parametric equation of line through point (x_0, y_0, z_0) and parallel to $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ is:

$$\begin{cases} x = x_o + a \cdot t \\ y = y_0 + b \cdot t \\ z = z_0 + c \cdot t \end{cases}$$

3 Circular functions

 $\sin(bx)$ or $\cos(bx)$: period = $\frac{2\pi}{b}$

 $\tan(nx)$: period = $\frac{\pi}{n}$

asymptotes at $x = \frac{(2k+1)\pi}{2n} \mid k \in \mathbb{Z}$

Reciprocal functions

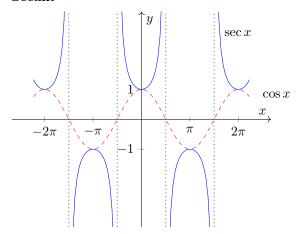
Cosecant

$$\csc\theta = \frac{1}{\sin\theta} \mid \sin\theta \neq 0$$

• Domain = $\mathbb{R} \setminus n\pi : n \in \mathbb{Z}$

- Range = $\mathbb{R} \setminus (-1, 1)$
- Turning points at $\theta = \frac{(2n+1)\pi}{2} \mid n \in \mathbb{Z}$
- Asymptotes at $\theta = n\pi \mid n \in \mathbb{Z}$

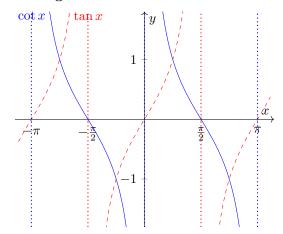
Secant



$$\sec \theta = \frac{1}{\cos \theta} \mid \cos \theta \neq 0$$

- Domain = $\mathbb{R} \setminus \frac{(2n+1)\pi}{2} : n \in \mathbb{Z}$ }
- Range = $\mathbb{R} \setminus (-1, 1)$
- Turning points at $\theta = n\pi \mid n \in \mathbb{Z}$
- Asymptotes at $\theta = \frac{(2n+1)\pi}{2} \mid n \in \mathbb{Z}$

Cotangent



$$\cot \theta = \frac{\cos \theta}{\sin \theta} \mid \sin \theta \neq 0$$

- Domain = $\mathbb{R} \setminus \{n\pi : n \in \mathbb{Z}\}$
- Range = \mathbb{R}
- Asymptotes at $\theta = n\pi \mid n \in \mathbb{Z}$

Symmetry properties

$$\sec(\pi \pm x) = -\sec x$$
$$\sec(-x) = \sec x$$
$$\csc(\pi \pm x) = \mp \csc x$$
$$\csc(-x) = -\csc x$$
$$\cot(\pi \pm x) = \pm \cot x$$
$$\cot(-x) = -\cot x$$

Complementary properties

$$\sec\left(\frac{\pi}{2} - x\right) = \csc x$$
$$\csc\left(\frac{\pi}{2} - x\right) = \sec x$$
$$\cot\left(\frac{\pi}{2} - x\right) = \tan x$$
$$\tan\left(\frac{\pi}{2} - x\right) = \cot x$$

Pythagorean identities

$$1 + \cot^2 x = \csc^2 x$$
, where $\sin x \neq 0$
 $1 + \tan^2 x = \sec^2 x$, where $\cos x \neq 0$

Compound angle formulas

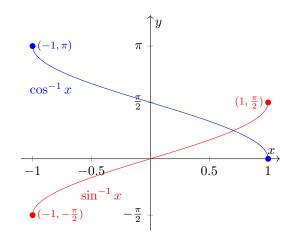
$$\cos(x \pm y) = \cos x + \cos y \mp \sin x \sin y$$
$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$
$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

Double angle formulas

$$\cos 2x = \cos^2 x - \sin^2 x$$
$$= 1 - 2\sin^2 x$$
$$= 2\cos^2 x - 1$$
$$\sin 2x = 2\sin x \cos x$$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

Inverse circular functions



Inverse functions: $f(f^{-1}(x)) = x$ (restrict domain)

$$\sin^{-1}: [-1,1] \to \mathbb{R}, \quad \sin^{-1} x = y$$

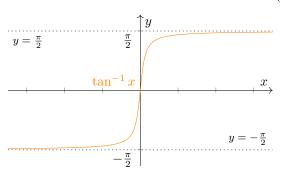
where $\sin y = x, \ y \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$

$$\cos^{-1}: [-1,1] \to \mathbb{R}, \quad \cos^{-1} x = y$$

where $\cos y = x, y \in [0, \pi]$

$$\tan^{-1}: \mathbb{R} \to \mathbb{R}, \quad \tan^{-1} x = y$$

where $\tan y = x, y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$



4 Differential calculus

Limits

$$\lim_{x \to a} f(x)$$

 $L^-, \quad L^+$ limit from below/above $\lim_{x\to a} f(x)$ limit of a point

For solving $x \to \infty$, put all x terms in denominators e.g.

$$\lim_{x \to \infty} \frac{2x+3}{x-2} = \frac{2+\frac{3}{x}}{1-\frac{2}{x}} = \frac{2}{1} = 2$$

Limit theorems

- 1. For constant function f(x) = k, $\lim_{x\to a} f(x) = k$
- 2. $\lim_{x\to a} (f(x) \pm g(x)) = F \pm G$
- 3. $\lim_{x\to a} (f(x) \times g(x)) = F \times G$
- 4. $\therefore \lim_{x\to a} c \times f(x) = cF$ where c = constant
- 5. $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{F}{G}, G \neq 0$
- 6. f(x) is continuous $\iff L^- = L^+ = f(x) \forall x$

Gradients of secants and tangents

Secant (chord) - line joining two points on curveTangent - line that intersects curve at one point

First principles derivative

$$f'(x) = \lim_{\delta x \to 0} \frac{\delta y}{\delta x} = \frac{dy}{dx}$$

Logarithmic identities

$$\log_b(xy) = \log_b x + \log_b y$$
$$\log_b x^n = n \log_b x$$

$$\log_b y^{x^n} = x^n \log_b y$$

Index identities

$$b^{m+n} = b^m \cdot b^n$$

$$(b^m)^n = b^{m \cdot n}$$

$$(b \cdot c)^n = b^n \cdot c^n$$

$$a^m \div a^n = a^{m-n}$$

Reciprocal derivatives

$$\frac{1}{\frac{dy}{dx}} = \frac{dx}{dy}$$

Differentiating x = f(y)

Find
$$\frac{dx}{dy}$$
, then $\frac{dy}{dx} = \frac{1}{\left(\frac{dx}{dy}\right)}$

Second derivative

$$f(x) \longrightarrow f'(x) \longrightarrow f''(x)$$

 $\implies y \longrightarrow \frac{dy}{dx} \longrightarrow \frac{d^2y}{dx^2}$

Order of polynomial nth derivative decrements each time the derivative is taken

Points of Inflection

Stationary point - i.e. f'(x) = 0Point of inflection - max |gradient| (i.e. f'' = 0)

- if f'(a) = 0 and f''(a) > 0, then point (a, f(a)) is a local min (curve is concave up)
- if f'(a) = 0 and f''(a) < 0, then point (a, f(a)) is local max (curve is concave down)
- if f''(a) = 0, then point (a, f(a)) is a point of inflection
- if also f'(a) = 0, then it is a stationary point of inflection

Implicit Differentiation

Used for differentiating circles etc.

If p and q are expressions in x and y such that p = q, for all x and y, then:

$$\frac{dp}{dx} = \frac{dq}{dx}$$
 and $\frac{dp}{dy} = \frac{dq}{dy}$

On CAS

 $Action \rightarrow Calculation$

impDiff(
$$y^2+ax=5$$
, x, y) (returns $y'=...$)

$$\frac{d^2y}{dx^2} > 0$$

$$\frac{d^2y}{dx^2} < 0$$

$$\frac{d^2y}{dx^2} = 0 \text{ (inflection)}$$

$$\frac{dy}{dx} > 0$$

Rising (concave up)

Rising (concave down)

Rising inflection point

Falling (concave up)

Falling (concave down)

Falling inflection point

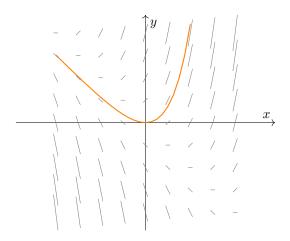
$$\frac{dy}{dx} = 0$$

Local minimum

Local maximum

Stationary inflection point

Slope fields



Integration

$$\int f(x) \cdot dx = F(x) + c \quad \text{where } F'(x) = f(x)$$

Definite integrals

$$\int_{a}^{b} f(x) \cdot dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

• Signed area enclosed by

$$y = f(x), \quad y = 0, \quad x = a, \quad x = b.$$

• Integrand is f.

Parametric equations

For each point on (f(t), g(t)):

$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$$

$$\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} \text{ provided } \frac{dx}{dt} \neq 0$$

Also...

$$\frac{d^2y}{dx^2} = \frac{\left(\frac{dy'}{dt}\right)}{\left(\frac{dx}{dt}\right)} \text{ where } y' = \frac{dy}{dx}$$

Properties

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

$$\int_{a}^{a} f(x) dx = 0$$

$$\int_{a}^{b} k \cdot f(x) dx = k \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} f(x) \pm g(x) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

Integration by substitution

$$\int f(u)\frac{du}{dx}\cdot dx = \int f(u)\cdot du$$

f(u) must be 1:1 \implies one x for each y

e.g. for
$$y = \int (2x+1)\sqrt{x+4} \cdot dx$$

let $u = x+4$
 $\Rightarrow \frac{du}{dx} = 1$
 $\Rightarrow x = u-4$
then $y = \int (2(u-4)+1)u^{\frac{1}{2}} \cdot du$
(solve as normal integral)

Definite integrals by substitution

For $\int_a^b f(x) \frac{du}{dx} \cdot dx$, evaluate new a and b for $f(u) \cdot du$.

Trigonometric integration

$$\sin^m x \cos^n x \cdot dx$$

m is odd: m = 2k + 1 where $k \in \mathbb{Z}$ $\implies \sin^{2k+1} x = (\sin^2 z)^k \sin x = (1 - \cos^2 x)^k \sin x$ Substitute $u = \cos x$

n is odd: n = 2k + 1 where $k \in \mathbb{Z}$ $\implies \cos^{2k+1} x = (\cos^2 x)^k \cos x = (1 - \sin^2 x)^k \cos x$ Substitute $u = \sin x$

m and n are even: use identities...

- $\bullet \sin^2 x = \frac{1}{2}(1 \cos 2x)$
- $\cos^2 x = \frac{1}{2}(1 + \cos 2x)$
- $\sin 2x = 2\sin x \cos x$

Partial fractions

To factorise $f(x) = \frac{\delta}{\alpha \cdot \beta}$:

$$\frac{\delta}{\alpha \cdot \beta \cdot \gamma} = \frac{A}{\alpha} + \frac{B}{\beta} + \frac{C}{\gamma} \tag{}$$

Multiply by $(\alpha \cdot \beta \cdot \gamma)$:

$$\delta = \beta \gamma A + \alpha \gamma B + \alpha \beta C \tag{2}$$

Substitute $x = \{\alpha, \beta, \gamma\}$ into (2) to find denominators

Repeated linear factors

$$\frac{p(x)}{(x-a)^n} = \frac{A_1}{(x-a)} + \frac{A_2}{(x-a)^2} + \dots + \frac{A_n}{(x-a)^n}$$

Irreducible quadratic factors

e.g.
$$\frac{3x-4}{(2x-3)(x^2+5)} = \frac{A}{2x-3} + \frac{Bx+C}{x^2+5}$$

On CAS

Action \rightarrow Transformation:

expand(..., x)

To reverse, use combine(...)

Graphing integrals on CAS

On CAS

In main: Interactive \rightarrow Calculation $\rightarrow \int$

Restrictions: Define f(x) = ... then f(x)|x>...

Applications of antidifferentiation

- x-intercepts of y = f(x) identify x-coordinates of stationary points on y = F(x)
- nature of stationary points is determined by sign of y = f(x) on either side of its x-intercepts
- if f(x) is a polynomial of degree n, then F(x) has degree n + 1

To find stationary points of a function, substitute x value of given point into derivative. Solve for $\frac{dy}{dx} = 0$. Integrate to find original function.

Solids of revolution

Approximate as sum of infinitesimally-thick cylinders

Rotation about x-axis

$$V = \pi \int_{x=a}^{x=b} f(x)^2 dx$$

Rotation about y-axis

$$V = \pi \int_{y=a}^{y=b} x^2 dy$$
$$= \pi \int_{y=a}^{y=b} (f(y))^2 dy$$

Regions not bound by y = 0

$$V = \pi \int_a^b f(x)^2 - g(x)^2 \, dx$$
 where $f(x) > g(x)$

Length of a curve

$$L = \int_{a}^{b} \sqrt{1 + (\frac{dy}{dx})^2} \, dx \quad \text{(Cartesian)}$$

$$L = \int_{a}^{b} \sqrt{\frac{dx}{dt} + (\frac{dy}{dt})^2} dt \quad \text{(parametric)}$$

On CAS

- a) Evaluate formula
- b) Interactive \rightarrow Calculation \rightarrow Line \rightarrow arcLen

Rates

Gradient at a point on parametric curve

$$\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt} \mid \frac{dx}{dt} \neq 0 \text{ (chain rule)}$$

$$\frac{d^2}{dx^2} = \frac{d(y')}{dx} = \frac{dy'}{dt} \div \frac{dx}{dt} \mid y' = \frac{dy}{dx}$$

Rational functions

$$f(x) = \frac{P(x)}{Q(x)}$$
 where P, Q are polynomial functions

Addition of ordinates

- when two graphs have the same ordinate, ycoordinate is double the ordinate
- when two graphs have opposite ordinates, y-coordinate is 0 i.e. (x-intercept)
- when one of the ordinates is 0, the resulting ordinate is equal to the other ordinate

Fundamental theorem of calculus

If f is continuous on [a, b], then

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$
 where $F = \int f dx$

Differential equations

Order - highest power inside derivative

Degree - highest power of highest derivative

e.g.
$$\left(\frac{dy^2}{d^2}x\right)^3$$
 order 2, degree 3

Verifying solutions

Start with $y = \dots$, and differentiate. Substitute into original equation.

Function of the dependent variable

If $\frac{dy}{dx} = g(y)$, then $\frac{dx}{dy} = 1 \div \frac{dy}{dx} = \frac{1}{g(y)}$. Integrate both sides to solve equation. Only add c on one side. Express e^c as A.

Mixing problems

$$\left(\frac{dm}{dt}\right)_{\Sigma} = \left(\frac{dm}{dt}\right)_{\rm in} - \left(\frac{dm}{dt}_{\rm out}\right)$$

Separation of variables

If
$$\frac{dy}{dx} = f(x)g(y)$$
, then:

$$\int f(x) \, dx = \int \frac{1}{a(y)} \, dy$$

Euler's method for solving DEs

$$\frac{f(x+h)-f(x)}{h} \approx f'(x)$$
 for small h

$$\implies f(x+h) \approx f(x) + hf'(x)$$

Derivatives

f'(x)f(x)

$$\sin x \quad \cos x$$

$$\sin ax \quad a\cos ax$$

$$\cos x - \sin x$$

$$\cos ax - a \sin ax$$

$$\tan f(x) = f^2(x) \sec^2 f(x)$$

$$e^x e^x$$

$$e^{ax}$$
 ae^{ax}

$$ax^{nx}$$
 $an \cdot e^{nx}$

$$\log_e x$$

$$\log_e ax = \frac{1}{x}$$

$$\log_e f(x) = \frac{f'(x)}{f(x)}$$

$$\sin(f(x)) \quad f'(x) \cdot \cos(f(x))$$

$$\sin^{-1} x \quad \frac{1}{\sqrt{1-x^2}}$$

$$\cos^{-1} x = \frac{-1}{\sqrt{1 - x^2}}$$
$$\tan^{-1} x = \frac{1}{1 + x^2}$$

$$\tan^{-1}x$$
 $\frac{1}{1+x^2}$

$$\frac{d}{dy}f(y) = \frac{1}{\frac{dx}{dy}}$$
 (reciprocal)

$$uv \quad u\frac{dv}{dx} + v\frac{du}{dx}$$
 (product rule)

$$\frac{u}{v} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$
 (quotient rule)

$$f(g(x)) \quad f'(g(x)) \cdot g'(x)$$

Antiderivatives

$$f(x) \int f(x) \cdot dx$$

$$k ext{ (constant)} ext{ } kx + c$$

$$x^n$$
 $\frac{1}{n+1}x^{n+1}$

$$ax^{-n}$$
 $a \cdot \log_e |x| + c$

$$\frac{1}{ax+b}$$
 $\frac{1}{a}\log_e(ax+b)+c$

$$\frac{1}{ax+b} - \frac{1}{a} \log_e(ax+b) + c$$
$$(ax+b)^n - \frac{1}{a(n+1)} (ax+b)^{n-1} + c \mid n \neq 1$$

$$(ax+b)^{-1} \quad \frac{1}{a}\log_e|ax+b|+c$$

$$e^{kx}$$
 $\frac{1}{k}e^{kx} + c$

$$e^k e^k x + c$$

$$\sin kx \quad \frac{-1}{k}\cos(kx) + c$$

$$\cos kx \quad \frac{1}{k}\sin(kx) + c$$

$$\sec^2 kx \quad \frac{1}{k}\tan(kx) + c$$

$$\frac{1}{\sqrt{a^2 - x^2}} \quad \sin^{-1} \frac{x}{a} + c \mid a > 0$$

$$\frac{-1}{\sqrt{a^2 - x^2}} \quad \cos^{-1} \frac{x}{a} + c \mid a > 0$$

$$\frac{a}{a^2 - x^2} \quad \tan^{-1} \frac{x}{a} + c$$

$$\frac{f'(x)}{f(x)}$$
 $\log_e f(x) + c$

$$\int f(u) \cdot \frac{du}{dx} \cdot dx \quad \int f(u) \cdot du \qquad \text{(substitution)}$$

$$f(x) \cdot g(x) \quad \int [f'(x) \cdot g(x)] dx + \int [g'(x)f(x)] dx$$

Note
$$\sin^{-1}\left(\frac{x}{a}\right) + \cos^{-1}\left(\frac{x}{a}\right)$$
 is constant $\forall x \in (-a, a)$

5 Kinematics & Mechanics

Constant acceleration

- Position relative to origin
- Displacement relative to starting point

Velocity-time graphs

- Displacement: *signed* area between graph and t axis
- Distance travelled: *total* area between graph and t axis

acceleration =
$$\frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$

no
x
t
a
v
u

$$v_{\text{avg}} = \frac{\Delta \text{position}}{\Delta t}$$

$$\begin{aligned} \text{speed} &= |\text{velocity}| \\ &= \sqrt{v_x^2 + v_y^2 + v_z^2} \end{aligned}$$

Distance travelled between $t = a \rightarrow t = b$:

$$= \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} \cdot dt$$

Shortest distance between $r(t_0)$ and $r(t_1)$:

$$= |\boldsymbol{r}(t_1) - \boldsymbol{r}(t_2)|$$

Vector functions

$$\mathbf{r}(t) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

- If $r(t) \equiv$ position with time, then the graph of endpoints of $r(t) \equiv$ Cartesian path
- Domain of r(t) is the range of x(t)
- Range of r(t) is the range of y(t)

Vector calculus

Derivative

Let r(t) = x(t)i + y(t)(j). If both x(t) and y(t) are differentiable, then:

$$r(t) = x(t)i + y(t)j$$

6 Dynamics

Resolution of forces

Resultant force is sum of force vectors

In angle-magnitude form

Cosine rule:
$$c^2 = a^2 + b^2 - 2ab\cos\theta$$
 Sine rule:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

In i-j form

Vector of a N at θ to x axis is equal to $a\cos\theta i + a\sin\theta j$. Convert all force vectors then add.

To find angle of an $a\mathbf{i} + b\mathbf{j}$ vector, use $\theta = \tan^{-1} \frac{b}{a}$

Resolving in a given direction

The resolved part of a force P at angle θ is has magnitude $P\cos\theta$

To convert force $||\vec{OA}|$ to angle-magnitude form, find component $\perp \vec{OA}$ then:

$$|\mathbf{r}| = \sqrt{\left(||\vec{OA}|^2 + \left(\perp \vec{OA}\right)^2}$$
$$\theta = \tan^{-1} \frac{\perp \vec{OA}}{||\vec{OA}|}$$

Newton's laws

- 1. Velocity is constant without ΣF
- 2. $\frac{d}{dt}\rho \propto \Sigma F \implies \mathbf{F} = m\mathbf{a}$
- 3. Equal and opposite forces

Weight

A mass of m kg has force of mg acting on it

Momentum ρ

 $\rho = mv$ (units kg m/s or Ns)

Reaction force R

- With no vertical velocity, R = mg
- With vertical acceleration, |R| = m|a| mg
- With force F at angle θ , then $R = mg F \sin \theta$

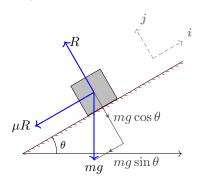
Friction

 $F_R = \mu R$ (friction coefficient)

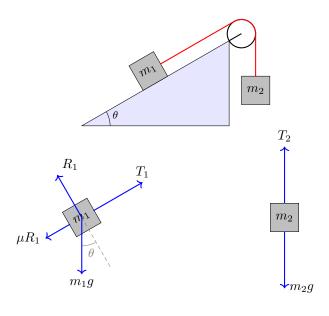
Inclined planes

$$F = |F| \cos \theta i + |F| \sin \theta j$$

- \bullet Normal force R is at right angles to plane
- ullet Let direction up the plane be i and perpendicular to plane j



Connected particles



• Suspended pulley: tension in both sections of rope are equal

 $|a| = g \frac{m_1 - m_2}{m_1 + m_2}$ where m_1 accelerates down With tension:

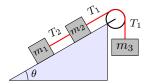
$$\begin{cases} m_1g - T = m_1a \\ T - m_2g = m_2a \end{cases} \implies m_1g - m_2g = m_1a + m_2a$$

• String pulling mass on inclined pane: Resolve parallel to plane

$$T - mg\sin\theta = ma$$

- Linear connection: find acceleration of system first
- Pulley on right angle: $a = \frac{m_2 g}{m_1 + m_2}$ where m_2 is suspended (frictionless on both surfaces)
- Pulley on edge of incline: find downwards force W₂ and components of mass on plane

In this example, note $T_1 \neq T_2$:



Equilibrium

$$\frac{A}{\sin a} = \frac{B}{\sin b} = \frac{C}{\sin c}$$
 (Lami's theorem)
$$c^2 = a^2 + b^2 - 2ab\cos\theta$$
 (cosine rule)

Three methods:

- 1. Lami's theorem (sine rule)
- 2. Triangle of forces (cosine rule)
- 3. Resolution of forces ($\Sigma F = 0$ simultaneous)

On CAS

To verify: Geometry tab, then select points with normal cursor. Click right arrow at end of toolbar and input point, then lock known constants.

Variable forces (DEs)

$$a = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$

7 Statistics

Continuous random variables

A continuous random variable X has a pdf f such that:

1.
$$f(x) \ge 0 \forall x$$

$$2. \int_{-\infty}^{\infty} f(x) dx = 1$$

$$E(X) = \int_{\mathbf{X}} (x \cdot f(x)) dx$$
$$Var(X) = E \left[(X - \mu)^2 \right]$$

$$\Pr(X \le c) = \int_{-\infty}^{c} f(x) \, dx$$

Two random variables X, Y

If X and Y are independent:

$$E(aX + bY) = a E(X) + b E(Y)$$
$$Var(aX \pm bY \pm c) = a^{2} Var(X) + b^{2} Var(Y)$$

Linear functions $X \to aX + b$

$$\Pr(Y \le y) = \Pr(aX + b \le y)$$
$$= \Pr\left(X \le \frac{y - b}{a}\right)$$
$$= \int_{-a}^{\frac{y - b}{a}} f(x) dx$$

Mean: E(aX + b) = a E(X) + b

Variance: $Var(aX + b) = a^2 Var(X)$

Expectation theorems

For some non-linear function g, the expected value E(g(X)) is not equal to g(E(X)).

$$E(X^2) = \text{Var}(X) - [E(X)]^2$$

 $E(X^n) = \Sigma x^n \cdot p(x)$ (non-linear)
 $\neq [E(X)]^n$

$$E(aX \pm b) = aE(X) \pm b$$
 (linear)

$$E(b) = b (\forall b \in \mathbb{R})$$

$$E(X + Y) = E(X) + E(Y)$$
 (two variables)

Sample mean

Approximation of the **population mean** determined experimentally.

$$\overline{x} = \frac{\sum x}{n}$$

where

n is the size of the sample (number of sample points)

x is the value of a sample point

On CAS

- 1. Spreadsheet
- 2. In cell A1:

mean(randNorm(sd, mean, sample size))

- 3. Edit \rightarrow Fill \rightarrow Fill Range
- 4. Input range as A1:An where n is the number of samples
- 5. Graph \rightarrow Histogram

Sample size of n

$$\overline{X} = \sum_{i=1}^{n} \frac{x_i}{n} = \frac{\sum x}{n}$$

Sample mean is distributed with mean μ and sd $\frac{\sigma}{\sqrt{n}}$ (approaches these values for increasing sample size n).

For a new distribution with mean of n trials, $E(X') = \gcd(X)$

$$E(X)$$
, $sd(X') = \frac{sd(X)}{\sqrt{n}}$

On CAS

- Spreadsheet → Catalog → randNorm(sd, mean, n) where n is the number of samples. Show histogram with Histogram key in top left

 \overline{x} is the sample mean

 σ is the population sd

n is the sample size from which \overline{x} was calculated

On CAS

 $Menu \rightarrow Stats \rightarrow Calc \rightarrow Interval$

Set $Type = One\text{-}Sample\ Z\ Int$

and select Variable

Normal distributions

$$Z = \frac{X - \mu}{\sigma}$$

Normal distributions must have area (total prob.) of 1 $\implies \int_{-\infty}^{\infty} f(x) \ dx = 1$

mean = mode = median

Always express z as +ve. Express confidence interval as ordered pair.

Central limit theorem

If X is randomly distributed with mean μ and sd σ , then with an adequate sample size n the distribution of the sample mean \overline{X} is approximately normal with mean $E(\overline{X})$ and $\operatorname{sd}(\overline{X}) = \frac{\sigma}{\sqrt{n}}$.

Confidence intervals

- Point estimate: single-valued estimate of the population mean from the value of the sample mean \overline{x}
- Interval estimate: confidence interval for population mean μ
- C% confidence interval $\implies C\%$ of samples will contain population mean μ

95% confidence interval

For 95% c.i. of population mean μ :

$$x \in \left(\overline{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}\right)$$

where:

Margin of error

For 95% confidence interval of μ :

$$M = 1.96 \times \frac{\sigma}{\sqrt{n}}$$

$$\implies n = \left(\frac{1.96\sigma}{M}\right)^2$$

Always round n up to a whole number of samples.

General case

For C% c.i. of population mean μ :

$$x \in \left(\overline{x} \pm k \frac{\sigma}{\sqrt{n}}\right)$$

where k is such that $\Pr(-k < Z < k) = \frac{C}{100}$

Confidence interval for multiple trials

For a set of n confidence intervals (samples), there is 0.95^n chance that all n intervals contain the population mean μ .

8 Hypothesis testing

Note hypotheses are always expressed in terms of population parameters

Null hypothesis H_0

Sample drawn from population has same mean as control population, and any difference can be explained by sample variations.

Alternative hypothesis H₁

Amount of variation from control is significant, despite standard sample variations.

p-value

Probability of observing a value of the sample statistic as significant as the one observed, assuming null hypothesis is true.

For one-tail tests:

$$p\text{-value} = \Pr\left(\overline{X} \leq \mu(\mathbf{H}_1) \mid \mu = \mu(\mathbf{H}_0)\right)$$
$$= \Pr\left(Z \leq \frac{(\mu(\mathbf{H}_1) - \mu(\mathbf{H}_0)) \cdot \sqrt{n}}{\operatorname{sd}(X)}\right)$$

then use normCdf with std. norm.

p	Conclusion
> 0.05	insufficient evidence against \mathbf{H}_0
< 0.05 (5%)	good evidence against \mathbf{H}_0
< 0.01 (1%)	strong evidence against \mathbf{H}_0
< 0.001 (0.1%)	very strong evidence against \mathbf{H}_0

Significance level α

The condition for rejecting the null hypothesis.

If $p < \alpha$, null hypothesis is **rejected** If $p > \alpha$, null hypothesis is **accepted**

z-test

Hypothesis test for a mean of a sample drawn from a normally distributed population with a known standard deviation.

On CAS

 $Menu \rightarrow Statistics \rightarrow Calc \rightarrow Test.$

Select *One-Sample Z-Test* and *Variable*, then input:

 μ cond: same operator as \mathbf{H}_1

 μ_0 : expected sample mean (null hypoth-

esis)

 σ : standard deviation (null hypothesis)

 \overline{x} : sample mean

n: sample size

One-tail and two-tail tests

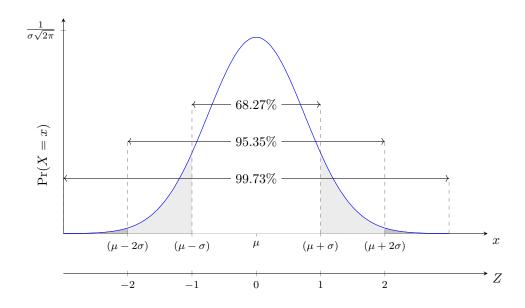
p-value (two-tail) = $2 \times p$ -value (one-tail)

One tail

- μ has changed in one direction
- State " $\mathbf{H}_1: \mu \leq \text{known population mean}$ "

Two tail

- Direction of $\Delta \mu$ is ambiguous
- State " $\mathbf{H}_1: \mu \neq \text{known population mean}$ "



$$p\text{-value} = \Pr(|\overline{X} - \mu| \ge |\overline{x}_0 - \mu|)$$
$$= \left(|Z| \ge \left| \frac{\overline{x}_0 - \mu}{\sigma \div \sqrt{n}} \right| \right)$$

where

 μ is the population mean under \mathbf{H}_0

 \overline{x}_0 is the observed sample mean

 σ is the population s.d.

n is the sample size

Modulus notation for two tail

 $\Pr(|\overline{X} - \mu| \ge a) \implies$ "the probability that the distance between $\overline{\mu}$ and μ is $\geq a$ "

Inverse normal

On CAS invNormCdf("L", α , $\frac{\sigma}{n^{\alpha}}$, μ)

Errors

Type I error H_0 is rejected when it is true

Type II error H_0 is not rejected when it is false

	Actual result	
z-test	\mathbf{H}_0 true	\mathbf{H}_0 false
Reject \mathbf{H}_0	Type I error	Correct
Do not reject \mathbf{H}_0	Correct	Type II error