1 Statistics

Continuous random variables

A continuous random variable X has a pdf f such that:

- 1. $f(x) \ge 0 \forall x$
- $2. \int_{-\infty}^{\infty} f(x) dx = 1$

$$E(X) = \int_{\mathbf{X}} (x \cdot f(x)) dx$$

$$Var(X) = E\left[(X - \mu)^2 \right]$$

$$\Pr(X \le c) = \int_{-\infty}^{c} f(x) \, dx$$

Two random variables X, Y

If X and Y are independent:

$$E(aX + bY) = a E(X) + b E(Y)$$
$$Var(aX \pm bY \pm c) = a^{2} Var(X) + b^{2} Var(Y)$$

Linear functions $X \to aX + b$

$$\Pr(Y \le y) = \Pr(aX + b \le y)$$
$$= \Pr\left(X \le \frac{y - b}{a}\right)$$
$$= \int_{-\infty}^{\frac{y - b}{a}} f(x) dx$$

Mean: E(aX + b) = a E(X) + b

Variance: $Var(aX + b) = a^2 Var(X)$

Expectation theorems

For some non-linear function g, the expected value E(g(X)) is not equal to g(E(X)).

$$E(X^{2}) = \operatorname{Var}(X) - [E(X)]^{2}$$

$$E(X^{n}) = \Sigma x^{n} \cdot p(x) \qquad \text{(non-linear)}$$

$$\neq [E(X)]^{n}$$

$$E(aX \pm b) = aE(X) \pm b \qquad \text{(linear)}$$

$$E(b) = b \qquad (\forall b \in \mathbb{R})$$

$$E(X + Y) = E(X) + E(Y) \qquad \text{(two variables)}$$

Sample mean

Approximation of the **population mean** determined experimentally.

$$\overline{x} = \frac{\sum x}{n}$$

where

n is the size of the sample (number of sample points)

x is the value of a sample point

On CAS

- 1. Spreadsheet
- 2. In cell A1:
 mean(randNorm(sd, mean, sample size))
- 3. Edit \rightarrow Fill \rightarrow Fill Range
- 4. Input range as A1:An where n is the number of samples
- 5. Graph \rightarrow Histogram

Sample size of n

$$\overline{X} = \sum_{i=1}^{n} \frac{x_i}{n} = \frac{\sum x}{n}$$

Sample mean is distributed with mean μ and sd $\frac{\sigma}{\sqrt{n}}$ (approaches these values for increasing sample size n). For a new distribution with mean of n trials, $\mathrm{E}(X') = \mathrm{E}(X)$, $\mathrm{sd}(X') = \frac{\mathrm{sd}(X)}{\sqrt{n}}$

On CAS

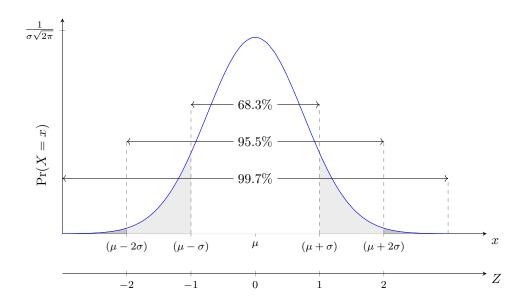
- Spreadsheet → Catalog → randNorm(sd, mean, n) where n is the number of samples. Show histogram with Histogram key in top left
- To calculate parameters of a dataset: Calc \rightarrow One-variable

Normal distributions

$$Z = \frac{X - \mu}{\sigma}$$

Normal distributions must have area (total prob.) of $1 \implies \int_{-\infty}^{\infty} f(x) dx = 1$ mean = mode = median

Always express z as +ve. Express confidence interval as ordered pair.



Central limit theorem

If X is randomly distributed with mean μ and sd σ , then with an adequate sample size n the distribution of the sample mean \overline{X} is approximately normal with mean $E(\overline{X})$ and $\operatorname{sd}(\overline{X}) = \frac{\sigma}{\sqrt{n}}$.

Confidence intervals

- Point estimate: single-valued estimate of the population mean from the value of the sample mean \overline{x}
- Interval estimate: confidence interval for population mean μ
- C% confidence interval $\implies C\%$ of samples will contain population mean μ

95% confidence interval

For 95% c.i. of population mean μ :

$$x \in \left(\overline{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}\right)$$

where:

 \overline{x} is the sample mean

 σ is the population sd

n is the sample size from which \overline{x} was calculated

On CAS

 $\begin{aligned} & \text{Menu} \rightarrow \text{Stats} \rightarrow \text{Calc} \rightarrow \text{Interval} \\ & \text{Set } \textit{Type} = \textit{One-Sample Z Int} \end{aligned}$

and select Variable

Margin of error

For 95% confidence interval of μ :

$$M = 1.96 \times \frac{\sigma}{\sqrt{n}}$$

$$\implies n = \left(\frac{1.96\sigma}{M}\right)^2$$

Always round n up to a whole number of samples.

General case

For C% c.i. of population mean μ :

$$x \in \left(\overline{x} \pm k \frac{\sigma}{\sqrt{n}}\right)$$

where k is such that $Pr(-k < Z < k) = \frac{C}{100}$

Confidence interval for multiple trials

For a set of n confidence intervals (samples), there is 0.95^n chance that all n intervals contain the population mean μ .

2 Hypothesis testing

Note hypotheses are always expressed in terms of population parameters

Null hypothesis H₀

Sample drawn from population has same mean as control population, and any difference can be explained by sample variations.

Alternative hypothesis H₁

Amount of variation from control is significant, despite standard sample variations.

p-value

$$p\text{-value} = \Pr\left(\overline{X} \leq \mu(\mathbf{H}_1) \mid \mu = \mu(\mathbf{H}_0)\right)$$
$$= \Pr\left(Z \leq \frac{(\mu(\mathbf{H}_1) - \mu(\mathbf{H}_0)) \cdot \sqrt{n}}{\operatorname{sd}(X)}\right)$$

then use normCdf with std. norm.

Probability of observing a value of the sample statistic as significant as the one observed, assuming null hypothesis is true.

p	Conclusion
> 0.05	insufficient evidence against \mathbf{H}_0
< 0.05 (5%)	good evidence against \mathbf{H}_0
< 0.01 (1%)	strong evidence against \mathbf{H}_0
< 0.001 (0.1%)	very strong evidence against \mathbf{H}_0

Significance level α

The condition for rejecting the null hypothesis.

If $p < \alpha$, null hypothesis is **rejected**

If $p > \alpha$, null hypothesis is **accepted**

z-test

Hypothesis test for a mean of a sample drawn from a normally distributed population with a known standard deviation.

On CAS

 $Menu \to Statistics \to Calc \to Test.$

Select One-Sample Z-Test and Variable, then input:

 μ cond: same operator as \mathbf{H}_1

 μ_0 : expected sample mean (null hypothesis)

 σ : standard deviation (null hypothesis)

 \overline{x} : sample mean

n: sample size

One-tail and two-tail tests

$$p$$
-value (two-tail) = $2 \times p$ -value (one-tail)

One tail

- μ has changed in one direction
- State " $\mathbf{H}_1: \mu \leq \text{known population mean}$ "

Two tail

- Direction of $\Delta \mu$ is ambiguous
- State " $\mathbf{H}_1: \mu \neq$ known population mean"

$$p\text{-value} = \Pr(|\overline{X} - \mu| \ge |\overline{x}_0 - \mu|)$$
$$= \left(|Z| \ge \left| \frac{\overline{x}_0 - \mu}{\sigma \div \sqrt{n}} \right| \right)$$

where

 μ is the population mean under \mathbf{H}_0

 \overline{x}_0 is the observed sample mean

 σ is the population s.d.

n is the sample size

Modulus notation for two tail

 $\Pr(|\overline{X} - \mu| \ge a) \implies$ "the probability that the distance between $\overline{\mu}$ and μ is $\ge a$ "

Inverse normal

On CAS

invNormCdf("L", α , $\frac{\sigma}{n^{\alpha}}$, μ)

Errors

Type I error H_0 is rejected when it is true

Type II error H_0 is not rejected when it is false

	Actual result	
z-test	\mathbf{H}_0 true	\mathbf{H}_0 false
Reject \mathbf{H}_0	Type I error	Correct
Do not reject \mathbf{H}_0	Correct	Type II error