
Year 12 Methods Andrew Lorimer POLYNOMIALS

Polynomials

Quadratics

General
form

x2 + bx + c = (x + m)(x + n)
where mn = c, m + n = b

Difference
of squares

a2 − b2 = (a− b)(a + b)

Perfect
squares

a2 ± 2ab + b2 = (a± b2)

Completing
the square

x2 + bx + c = (x + b
2 )2 + c− b2

4

ax2 +bx+c = a(x− b
2a )2 +c− b2

4a

Quadratic
formula

x = −b±
√

b2−4ac
2a where ∆ = b2 − 4ac

Cubics

Difference of cubes: a3− b3 = (a− b)(a2 + ab + b2)
Sum of cubes: a3 + b3 = (a + b)(a2 − ab + b2)
Perfect cubes: a3 ± 3a2b + 3ab2 ± b3 = (a± b)3

y = a(bx− h)3 + c

• m = 0 at stationary point of inflection
(i.e. (h

b , k))
• in form y = (x− a)2(x− b), local max at x = a,

local min at x = b

• in form y = a(x− b)(x− c)(x− d): x-intercepts
at b, c, d

• in form y = a(x− b)2(x− c), touches x-axis at
b, intercept at c

Linear and quadratic graphs

Forms of linear equations

y = mx + c where m is gradient and c is y-intercept
x
a + y

b = 1 where m is gradient and (x1, y1) lies on the
graph
y − y1 = m(x− x1) where (a, 0) and (0, b) are x- and
y-intercepts

Line properties

Parallel lines: m1 = m2

Perpendicular lines: m1 ×m2 = −1
Distance: | ~AB| =

√
(x2 − x1)2 + (y2 − y1)2

Quartic graphs

Forms of quadratic equations

y = ax4

y = a(x− b)(x− c)(x− d)(x− e)
y = ax4 + cd2(c ≥ 0)
y = ax2(x− b)(x− c)
y = a(x− b)2(x− c)2

y = a(x− b)(x− c)3

Simultaneous equations (linear)

• Unique solution - lines intersect at point
• Infinitely many solutions - lines are equal
• No solution - lines are parallel

Solving

px + qy = a

rx + sy = b
for {0, 1,∞} solutions

where all coefficients are known except for one, and
a, b are known

1. Write as matrices:

p q

r s


x

y

 =

a

b


2. Find determinant of first matrix: ∆ = ps− qr

3. Let ∆ = 0 for number of solutions 6= 1
or let ∆ 6= 0 for one unique solution.

4. Solve determinant equation to find variable
• — for infinite/no solutions: —

5. Substitute variable into both original equations
6. Rearrange equations so that LHS of each is the

same
7. RHS(1) = RHS(2) =⇒ (1) = (2) ∀x (∞ solns)

RHS(1) 6= RHS(2) =⇒ (1) 6= (2) ∀x (0 solns)

On CAS: Matrix → det

Solving


a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3

• Use elimination
• Generate two new equations with only two vari-

ables
• Rearrange & solve
• Substitute one variable into another equation to

find another variable
• etc.
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Inverse functions

Functions

• vertical line test
• each 𝑥 value produces only one 𝑦 value

One to one functions

• 𝑓(𝑥) is one to one if 𝑓(𝑎) ≠ 𝑓(𝑏) if 𝑎, 𝑏 ∈ dom(𝑓) and 𝑎 ≠ 𝑏
⟹ unique 𝑦 for each 𝑥 (sin 𝑥 is not 1:1, 𝑥3 is)

• horizontal line test
• if not one to one, it is many to one

Deriving 𝑓−1

• if 𝑓(𝑔(𝑥)) = 𝑥, then 𝑔 is the inverse of 𝑓
• reflection across 𝑦 − 𝑥
• ran 𝑓 = dom 𝑓−1, dom 𝑓 = ran 𝑓−1

• inverse ≠ inverse function (i.e. inverse must pass vertical line test)
⟹ 𝑓−1(𝑥) exists ⟺ 𝑓(𝑥) is one to one

• 𝑓−1(𝑥) = 𝑓(𝑥) intersections may lie on line 𝑦 = 𝑥

Requirements for showing working for 𝑓−1

1. start with “let 𝑦 = 𝑓(𝑥)”
2. must state “take inverse” for line where 𝑦 and 𝑥 are swapped
3. do all working in terms of 𝑦 = …
4. for square root, state ± solutions then show restricted
5. for inverse function, state in function notation
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Transformations

Order of operations: DRT

dilations — reflections — translations

Transforming xn to a(x− h)n + K

• dilation factor of |a| units parallel to y-axis or

from x-axis

• if a < 0, graph is reflected over x-axis

• translation of k units parallel to y-axis or from

x-axis

• translation of h units parallel to x-axis or from

y-axis

• for (ax)n, dilation factor is 1
a parallel to x-axis

or from y-axis

• when 0 < |a| < 1, graph becomes closer to axis

Transforming f(x) to y = Af [n(x + c)] + b

Applies to exponential, log, trig, ex, polynomials.

Functions must be written in form y = Af [n(x+c)]+b

• dilation by factor |A| from x-axis (if A < 0,

reflection across y-axis)

• dilation by factor 1
n from y-axis (if n < 0, reflec-

tion across x-axis)

• translation of c units from y-axis (x-shift)

• translation of b units from x-axis (y-shift)

Dilations

Two pairs of equivalent processes for y = f(x):

1. • Dilating from x-axis: (x, y)→ (x, by)

• Replacing y with y
b to obtain y = bf(x)

2. • Dilating from y-axis: (x, y)→ (ax, y)

• Replacing x with x
a to obtain y = f( x

a )

For graph of y = 1
x , horizontal & vertical dilations

are equivalent (symmetrical). If y = a
x , graph is con-

tracted rather than dilated.

Matrix transformations

Find new point (x′, y′). Substitute these into original

equation to find image with original variables (x, y).

Reflections

• Reflection in axis = reflection over axis = re-

flection across axis

• Translations do not change

Translations

For y = f(x), these processes are equivalent:

• applying the translation (x, y)→ (x + h, y + k)

to the graph of y = f(x)

• replacing x with x−h and y with y−k to obtain

y − k = f(x− h)

Power functions

Strictly increasing: f(x2) > f(x1) where x2 > x1

(including x = 0)

Odd and even functions

Even when f(x) = −f(x)

Odd when −f(x) = f(−x)

Function is even if it can be reflected across y-axis

=⇒ f(x) = f(−x)

Function x±
p
q is odd if q is odd
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n is even n is odd

xn,

n ∈ Z+

xn,

n ∈ Z−

x
1
n ,

n ∈ Z+

x
−1
n where n ∈ Z+

Mostly only on CAS.

We can write x
−1
n = 1

x
1
n

= 1
n
√

x
n.

Domain is:


R \ {0} if n is odd

R+ if n is even

If n is odd, it is an odd function.

x
p
q where p, q ∈ Z+

x
p
q = q
√

xp

• if p > q, the shape of xp is dominant

• if p < q, the shape of x
1
q is dominant

• points (0, 0) and (1, 1) will always lie on graph

• Domain is:


R if q is odd

R+ ∪ {0} if q is even

Piecewise functions

e.g. f(x) =


x1/3, x ≤ 0

2, 0 < x < 2

x, x ≥ 2

Open circle: point included

Closed circle: point not included

Operations on functions

For f ± g and f × g: dom′ = dom(f) ∩ dom(g)

Addition of linear piecewise graphs: add y-values at

key points

Product functions:

• product will equal 0 if f = 0 or g = 0

• f ′(x) = 0 Y g′(x) = 0 6⇒ (f × g)′(x) = 0

Composite functions

(f ◦ g)(x) is defined iff ran(g) ⊆ dom(f)
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Exponentials & Logarithms

Index laws
am × an = am+n

am ÷ an = am−n

(am)n = amn

(ab)m = ambm

(a

b
)
m

= am

bm

n
√

x = x1/n

Logarithm laws

loga(mn) = loga m + loga n

loga(m

n
) = loga m− loga

loga(mp) = p loga m

loga(m−1) = − loga m

loga 1 = 0 and loga a = 1

logb c = loga c

loga b

Inverse functions

For f : R→ R, f(x) = ax, inverse is:

f−1 : R+ → R, f−1 = loga x

Exponentials

ex natural exponential function

e = lim
n→∞

(1 + 1
n

)n

Modelling

A = A0ekt

• A0 is initial value

• t is time taken

• k is a constant

• For continuous growth, k > 0

• For continuous decay, k < 0

Graphing exponential functions

f(x) = Aak(x−b) + c, | a > 1

• y-intercept at (0, A · a−kb + c) as x→∞

• horizontal asymptote at y = c

• domain is R

• range is (c,∞)

• dilation of factor |A| from x-axis

• dilation of factor 1
k from y-axis

Graphing logarithmic functions

loge x is the inverse of ex (reflection across y = x)

f(x) = A loga k(x− b) + c

where

• domain is (b,∞)

• range is R

• vertical asymptote at x = b

• y-intercept exists if b < 0

• dilation of factor |A| from x-axis

• dilation of factor 1
k from y-axis

Finding equations

On CAS:
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Circular functions

Exact values

1 rad = 180 deg
π

sin and cos graphs

f(x) = a sin(bx− c) + d

f(x) = a cos(bx− c) + d

where

• a is the y-dilation (amplitude)
• b is the x-dilation (period)
• c is the x-shift (phase)
• d is the y-shift (equilibrium position)

Domain is R

Range is [−b+ c, b+ c];

Graph of cos(x) starts at (0, 1). Graph of sin(x) starts
at (0, 0).

Mean / equilibrium: line that the graph oscillates
around (y = d)

Amplitude

Graph oscillates between +a and −a in y-axis

a = 0 produces straight line

a < 0 inverts the phase (sin becomes cos, vice vera)

Period

Period T is 2π
b

b = 0 produces straight line

b < 0 inverts the phase

Phase

c moves the graph left-right in the x axis.

If c = T = 2π
b , the graph has no actual phase shift.

Symmetry

sin(θ + π

2 ) = sin θ

sin(θ + π) = − sin θ

cos(θ + π

2 ) = − cos θ

cos(θ + π) = −cos(θ + 3π
2 ) = cos(−θ)

Pythagorean identity

cos2 θ + sin2 θ = 1

Complementary relationships

sin(π2 − θ) = cos θ

cos(π2 − θ) = sin θ

sin θ = − cos(θ + π

2 )

cos θ = sin(θ + π

2 )

tan graph

y = a tan(nx)

where

• a is x-dilation (period)
• n is y-dilation (≡ amplitude)
• period T is π

n

• range is R
• roots at x = kπ

n

• asymptotes at x = (2k+1)π
2n , k ∈ Z

Asymptotes should always have equations and
arrow pointing up

Solving trig equations

1. Solve domain for nθ
2. Find solutions for nθ
3. Divide solutions by n

sin 2θ =
√

3
2 , θ ∈ [0, 2π] (∴ 2θ ∈ [0, 4π])

2θ = sin−1
√

3
2

2θ = π
3 ,

2π
3 ,

7π
3 ,

8π
3

∴ θ = π
6 ,

π
3 ,

7π
6 ,

4π
3
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Calculus

Average rate of change

m of x ∈ [a, b] = f(b)− f(a)
b− a

= dy

dx

On CAS: Action → Calculation → diff

Instantaneous rate of change
Secant - line passing through two points on a curve
Chord - line segment joining two points on a curve

Limit theorems
1. For constant function f(x) = k, limx→a f(x) = k
2. limx→a(f(x)± g(x)) = F ±G
3. limx→a(f(x)× g(x)) = F ×G

4. limx→a
f(x)
g(x) = F

G , G 6= 0

A function is continuous if L− = L+ = f(x) for all
values of x.

First principles derivative

f ′(x) = lim
h→0

f(x + h)− f(x)
h

Not differentiable at:

• discontinuous points
• sharp point/cusp
• vertical tangents (∞ gradient)

Tangents & gradients
Tangent line - defined by y = mx + c where m = dy

dx
Normal line - ⊥ tangent (mtan ·mnorm = −1)
Secant = f(x+h)−f(x)

h

Strictly increasing/decreasing
For x2 and x1 where x2 > x1:

• strictly increasing where f(x2) > f(x1)
or f ′(x) > 0

• strictly decreasing where f(x2) < f(x1)
or f ′(x) < 0

• Endpoints are included, even where gradient = 0

Solving on CAS

In main : type function. Interactive → Calculation
→ Line → (Normal | Tan line)
In graph : define function. Analysis → Sketch →
(Normal | Tan line). Type x value to solve for a point.
Return to show equation for line.

Stationary points

Stationary where m = 0.
Find derivative, solve for dy

dx = 0

Local maximum at point A

• f ′(x) > 0 left of A
• f ′(x) < 0 right of A

Local minimum at point B

• f ′(x) < 0 left of B
• f ′(x) > 0 right of B

Stationary point of inflection at C

Function derivatives

f(x) f ′(x)
kxn knxn−1

g(x)± h(x) g′(x)± h′(x)
c 0
u
v (v du

dx − u dv
dx )÷ v2

uv u dv
dx + v du

dx

f ◦ g dy
du ·

du
dx

sin ax a cos ax

sin(f(x)) f ′(x) · cos(f(x))
cos ax −a sin ax

cos(f(x)) f ′(x)(− sin(f(x)))
eax aeax

loge ax 1
x

loge f(x) f ′(x)
f(x)
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