4628ed0ac6ef18b0fcfa57a0311519543c000455
1\documentclass[a4paper]{article}
2\usepackage{multicol}
3\usepackage[cm]{fullpage}
4\usepackage{amsmath}
5\usepackage{amssymb}
6\setlength{\parindent}{0cm}
7\usepackage[nodisplayskipstretch]{setspace}
8\setstretch{1.3}
9\usepackage{graphicx}
10\usepackage{wrapfig}
11\usepackage{enumitem}
12\usepackage{supertabular}
13\usepackage{tabularx}
14\setitemize{noitemsep,topsep=0pt,parsep=0pt,partopsep=0pt,leftmargin=5pt}
15
16
17\begin{document}
18
19\pagenumbering{gobble}
20\begin{multicols}{3}
21
22% +++++++++++++++++++++++
23
24{\huge Physics}\hfill Andrew Lorimer\hspace{2em}
25
26% +++++++++++++++++++++++
27\section{Motion}
28
29 $\operatorname{m/s} \, \times \, 3.6 = \operatorname{km/h}$
30
31 \subsection*{Inclined planes}
32 $F = m g \sin\theta - F_{\text{frict}} = m a$
33
34% -----------------------
35 \subsection*{Banked tracks}
36
37 \includegraphics[height=4cm]{graphics/banked-track.png}
38
39 $\theta = \tan^{-1} {{v^2} \over rg}$
40
41 $\Sigma F$ always acts towards centre (horizontally)
42
43 $\Sigma F = F_{\operatorname{norm}} + F_{\operatorname{g}}={{mv^2} \over r} = mg \tan \theta$
44
45 Design speed $v = \sqrt{gr\tan\theta}$
46
47 $n\sin \theta = {mv^2 \div r}, \quad n\cos \theta = mg$
48
49% -----------------------
50 \subsection*{Work and energy}
51
52 $W=Fs=Fs \cos \theta=\Delta \Sigma E$
53
54 $E_K = {1 \over 2}mv^2$ (kinetic)
55
56 $E_G = mgh$ (potential)
57
58 $\Sigma E = {1 \over 2} mv^2 + mgh$ (energy transfer)
59
60% -----------------------
61 \subsection*{Horizontal circular motion}
62
63 $v = {{2 \pi r} \over T}$
64
65 $f = {1 \over T}, \quad T = {1 \over f}$
66
67 $a_{centrip} = {v^2 \over r} = {{4 \pi^2 r} \over T^2}$
68
69 $\Sigma F, a$ towards centre, $v$ tangential
70
71 $F_{centrip} = {{mv^2} \over r} = {{4 \pi^2 rm} \over T^2}$
72
73 \includegraphics[height=4cm]{graphics/circ-forces.png}
74
75% -----------------------
76 \subsection*{Vertical circular motion}
77
78 $T =$ tension, e.g. circular pendulum
79
80 $T+mg = {{mv^2}\over r}$ at highest point
81
82 $T-mg = {{mv^2} \over r}$ at lowest point
83
84% -----------------------
85 \subsection*{Projectile motion}
86 \begin{itemize}
87 \item $v_x$ is constant: $v_x = {s \over t}$
88 \item use suvat to find $t$ from $y$-component
89 \item vertical component gravity: $a_y = -g$
90 \end{itemize}
91
92 \begin{align*}
93 v=\sqrt{v^2_x + v^2_y} \tag{vectors} \\
94 h={{u^2\sin \theta ^2}\over 2g} \tag{max height}\\
95 x=ut\cos\theta \tag{$\Delta x$ at $t$} \\
96 y=ut \sin \theta-{1 \over 2}gt^2 \tag{height at $t$} \\
97 t={{2u\sin\theta}\over g} \tag{time of flight}\\
98 d={v^2 \over g}\sin \theta \tag{horiz. range} \\
99 \end{align*}
100
101 \includegraphics[height=3.2cm]{graphics/projectile-motion.png}
102
103% -----------------------
104 \subsection*{Pulley-mass system}
105
106 $a = {{m_2g} \over {m_1 + m_2}}$ where $m_2$ is suspended
107
108 $\Sigma F = m_2g-m_1g=\Sigma ma$ (solve)
109
110% -----------------------
111 \subsection*{Graphs}
112 \begin{itemize}
113 \item{Force-time: $A=\Delta \rho$}
114 \item{Force-disp: $A=W$}
115 \item{Force-ext: $m=k,\quad A=E_{spr}$}
116 \item{Force-dist: $A=\Delta \operatorname{gpe}$}
117 \item{Field-dist: $A=\Delta \operatorname{gpe} / \operatorname{kg}$}
118 \end{itemize}
119
120% -----------------------
121 \subsection*{Hooke's law}
122
123 $F=-kx$
124
125 $\text{elastic potential energy} = {1 \over 2}kx^2$
126
127 $x={2mg \over k}$
128
129% -----------------------
130 \subsection*{Motion equations}
131
132 \begin{tabular}{ l r }
133 & no \\
134 $v=u+at$ & $x$ \\
135 $x = {1 \over 2}(v+u)t$ & $a$ \\
136 $x=ut+{1 \over 2}at^2$ & $v$ \\
137 $x=vt-{1 \over 2}at^2$ & $u$ \\
138 $v^2=u^2+2ax$ & $t$ \\
139 \end{tabular}
140
141% -----------------------
142 \subsection*{Momentum}
143
144 $\rho = mv$
145
146 $\operatorname{impulse} = \Delta \rho, \quad F \Delta t = m \Delta v$
147
148 $\Sigma (mv_0)=(\Sigma m)v_1$ (conservation)
149
150 % $\Sigma E_{K \operatorname{before}} = \Sigma E_{K \operatorname{after}}$ if elastic
151
152 % $\Sigma E_K = \Sigma ({1 \over 2} m v^2) = {1 \over 2} (\Sigma m)v_f$
153
154 if elastic:
155 $$\sum _{i{\mathop {=}}1}^{n}E_K (i)=\sum _{i{\mathop {=}}1}^{n}({1 \over 2}m_i v_{i0}^2)={1 \over 2}\sum _{i{\mathop {=}}1}^{n}(m_i) v_f^2$$
156
157 % $n$-body collisions: $\rho$ of each body is independent
158
159% ++++++++++++++++++++++
160\section{Relativity}
161
162 \subsection*{Postulates}
163 1. Laws of physics are constant in all intertial reference frames
164
165 2. Speed of light $c$ is the same to all observers (Michelson-Morley)
166
167 $\therefore \, t$ must dilate as speed changes
168
169 {\bf high-altitude particles:} $t$ dilation means more particles reach Earth than expected (half-life greater when obs. from Earth)
170
171 {\bf Inertial reference frame} $a=0$
172
173 {\bf Proper time $t_0$ $\vert$ length $l_0$} measured by observer in same frame as events
174
175% -----------------------
176 \subsection*{Lorentz factor}
177
178 $$\gamma = {1 \over {\sqrt{1-{v^2 \over c^2}}}}$$
179
180 $t=t_0 \gamma$ ($t$ longer in moving frame)
181
182 $l={l_0 \over \gamma}$ ($l$ contracts $\parallel v$: shorter in moving frame)
183
184 $m=m_0 \gamma$ (mass dilation)
185
186 $$v = c\sqrt{1-{1 \over \gamma^2}}$$
187
188% -----------------------
189 \subsection*{Energy and work}
190
191 $E_{\text{rest}} = mc^2, \quad E_K = (\gamma-1)mc^2$
192
193 $E_{\text{total}} = E_K + E_{\text{rest}} = \gamma mc^2$
194
195 $W = \Delta E = \Delta mc^2=(\gamma-1)m_{\text{rest}} c^2$
196
197% -----------------------
198 \subsection*{Relativistic momentum}
199
200 $$\rho = {mv \over \sqrt{1-{v^2 \over c^2}}}= {\gamma mv} = {\gamma \rho_0}$$
201
202 $\rho \rightarrow \infty$ as $v \rightarrow c$
203
204 $v=c$ is impossible (requires $E=\infty$)
205
206 $$v={\rho \over {m\sqrt{1+{p^2 \over {m^2 c^2}}}}}$$
207
208% -----------------------
209
210% +++++++++++++++++++++++
211\section{Fields and power}
212
213 \subsection*{Non-contact forces}
214 \begin{itemize}
215 {\item electric fields (dipoles \& monopoles)}
216 {\item magnetic fields (dipoles only)}
217 {\item gravitational fields (monopoles only)}
218 \end{itemize}
219
220 \vspace{1em}
221
222 \begin{itemize}
223 \item monopoles: lines towards centre
224 \item dipoles: field lines $+ \rightarrow -$ or $\operatorname{N} \rightarrow \operatorname{S}$ (or perpendicular to wire)
225 \item closer field lines means larger force
226 \item dot: out of page, cross: into page
227 \item +ve corresponds to N pole
228 \end{itemize}
229
230 \includegraphics[height=2cm]{graphics/field-lines.png}
231 % \includegraphics[height=2cm]{graphics/bar-magnet-fields-rotated.png}
232
233% -----------------------
234 \subsection*{Gravity}
235
236 \[F_g=G{{m_1m_2}\over r^2}\tag{grav. force}\]
237 \[g={F_g \over m_2}=G{m_{1} \over r^2}\tag{field of $m_1$}\]
238 \[E_g = mg \Delta h\tag{gpe}\]
239 \[W = \Delta E_g = Fx\tag{work}\]
240 \[w=m(g-a) \tag{app. weight}\]
241
242 % \columnbreak
243
244% -----------------------
245 \subsection*{Satellites}
246
247 \[v=\sqrt{Gm_{\operatorname{planet}} \over r} = \sqrt{gr} = {{2 \pi r} \over T}\]
248
249 \[T={\sqrt{4 \pi^2 r^3} \over {GM_\text{planet}}}\tag{period}\]
250
251 \[r = \sqrt[3]{{GMT^2}\over{4\pi^2}}\tag{radius}\]
252
253% -----------------------
254 \subsection*{Magnetic fields}
255 \begin{itemize}
256 \item field strength $B$ measured in tesla
257 \item magnetic flux $\Phi$ measured in weber
258 \item charge $q$ measured in coulombs
259 \item emf $\mathcal{E}$ measured in volts
260 \end{itemize}
261
262 % \[{E_1 \over E_2}={r_1 \over r_2}^2\]
263
264 \[F=qvB\tag{$F$ on moving $q$}\]
265 \[F=IlB\tag{$F$ of $B$ on $I$}\]
266 \[B={mv \over qr}\tag{field strength on e-}\]
267 \[r={mv \over qB} \tag{radius of $q$ in $B$}\]
268
269 if $B {\not \perp} A, \Phi \rightarrow 0$ \hspace{1em}, \hspace{1em} if $B \parallel A, \Phi = 0$
270
271% -----------------------
272 \subsection*{Electric fields}
273
274 \[F=qE \tag{$E$ = strength} \]
275 \[F=k{{q_1q_2}\over r^2}\tag{force between $q_{1,2}$} \]
276 \[E=k{q \over r^2} \tag{field on point charge} \]
277 \[E={V \over d} \tag{field between plates}\]
278 \[F=BInl \tag{force on a coil} \]
279 \[\Phi = B_{\perp}A\tag{magnetic flux} \]
280 \[\mathcal{E} = -N{{\Delta \Phi}\over{\Delta t}} \tag{induced emf} \]
281 \[{V_p \over V_s}={N_p \over N_s}={I_s \over I_p} \tag{xfmr coil ratios} \]
282
283 \textbf{Lenz's law:} $I_{\operatorname{emf}}$ opposes $\Delta \Phi$ \\
284 (emf creates $I$ with associated field that opposes $\Delta \phi$)
285
286 \textbf{Eddy currents:} counter movement within a field
287
288 \textbf{Right hand grip:} thumb points to $I$ (single wire) or N (solenoid / coil)
289
290 \includegraphics[height=2cm]{graphics/slap-2.jpeg}
291 \includegraphics[height=3cm]{graphics/grip.png}
292
293 % \textbf{Right hand slap:} $B \perp I \perp F$ \\
294 % ($I$ = thumb)
295
296 \includegraphics[width=\columnwidth]{graphics/lenz.png}
297
298 \textbf{Flux-time graphs:} $m \times n = \operatorname{emf}.$
299 If $f$ increases, ampl. \& $f$ of $\mathcal{E}$ increase
300
301 \textbf{Transformers:} core strengthens \& focuses $\Phi$
302
303% -----------------------
304 \subsection*{Particle acceleration}
305
306 $1 \operatorname{eV} = 1.6 \times 10^{-19} \operatorname{J}$
307
308 e- accelerated with $x$ V is given $x$ eV
309
310 \[W={1\over2}mv^2=qV \tag{field or points}\]
311 \[v=\sqrt{{2qV} \over {m}}\tag{velocity of particle}\]
312
313
314% -----------------------
315 \subsection*{Power transmission}
316
317 % \begin{align*}
318 \[V_{\operatorname{rms}}={V_{\operatorname{p\rightarrow p}}\over \sqrt{2}} \]
319 \[P_{\operatorname{loss}} = \Delta V I = I^2 R = {{\Delta V^2} \over R} \]
320 \[V_{\operatorname{loss}}=IR \]
321 % \end{align*}
322
323 Use high-$V$ side for correct $|V_{drop}|$
324
325 \begin{itemize}
326 {\item Parallel $V$ is constant}
327 {\item Series $V$ shared within branch}
328 \end{itemize}
329
330 \includegraphics[height=4cm]{graphics/ac-generator.png}
331
332% -----------------------
333 \subsection*{Motors}
334% \begin{wrapfigure}{r}{-0.1\textwidth}
335
336 \includegraphics[height=4cm]{graphics/dc-motor-2.png}
337 \includegraphics[height=3cm]{graphics/ac-motor.png} \\
338
339 Force on current-carying wire, not copper \\
340 $F=0$ for front & back of coil (parallel) \\
341 Any angle $> 0$ will produce force \\
342% \end{wrapfigure}
343 \textbf{DC:} split ring (two halves)
344
345% \begin{wrapfigure}{r}{0.3\textwidth}
346
347% \end{wrapfigure}
348 \textbf{AC:} slip ring (separate rings with constant contact)
349
350% \pagebreak
351
352% +++++++++++++++++++++++
353\section{Waves}
354
355 \textbf{nodes:} fixed on graph \\
356 \textbf{amplitude:} max disp. from $y=0$ \\
357 \textbf{rarefactions} and \textbf{compressions} \\
358 \textbf{mechanical:} transfer of energy without net transfer of matter \\
359
360
361 \textbf{Longitudinal (motion $||$ wave)}
362 \includegraphics[width=6cm]{graphics/longitudinal-waves.png}
363
364 \textbf{Transverse (motion $\perp$ wave)}
365 \includegraphics[width=6cm]{graphics/transverse-waves.png}
366
367 % -----------------------
368 $T={1 \over f}\quad$(period: time for one cycle)
369 $v=f \lambda \quad$(speed: displacement / sec)
370 $f={c \over \lambda}\quad\hspace{0.7em}$(for $v=c$)
371
372 % -----------------------
373 \subsection*{Doppler effect}
374
375 When $P_1$ approaches $P_2$, each wave $w_n$ has slightly less distance to travel than $w_{n-1}$. $w_n$ reaches observer sooner than $w_{n-1}$ ("apparent" $\lambda$).
376
377 % -----------------------
378 \subsection*{Interference}
379
380 \includegraphics[width=4.5cm]{graphics/poissons-spot.png} \\
381 Poissons's spot supports wave theory (circular diffraction)
382
383 \textbf{Standing waves} - constructive int. at resonant freq
384
385 \textbf{Coherent } - identical frequency, phase, direction (ie strong & directional). e.g. laser
386
387 \textbf{Incoherent} - e.g. incandescent/LED
388
389
390
391
392
393 % -----------------------
394 \subsection*{Harmonics}
395
396 1st harmonic = fundamental
397
398 \textbf{for nodes at both ends:} \\
399 \(\hspace{2em} \lambda = {{2l} \div n}\)
400 \(\hspace{2em} f = {nv \div 2l} \)
401
402 \textbf{for node at one end ($n$ is odd):} \\
403 \(\hspace{2em} \lambda = {{4l} \div n}\)
404 \(\hspace{2em} f = {nv \div 4l} \) \\
405 alternatively, $\lambda = {4l \over {2n-1}}$ where $n\in \mathbb{Z}$ and $n+1$ is the next possible harmonic
406
407
408 % \(a=2\) for nodes at both ends, \\ \(a=4\) for node at one end
409
410 % -----------------------
411 \subsection*{Polarisation}
412 \includegraphics[height=3.5cm]{graphics/polarisation.png}
413
414 % -----------------------
415 \subsection*{Diffraction}
416 \includegraphics[width=6cm]{graphics/diffraction.jpg}
417 \includegraphics[width=6cm]{graphics/diffraction-2.png}
418 \begin{itemize}
419 % \item \(pd = |S_1P-S_2P|\) for \(p\) on screen
420 \item Constructive: \(pd = n\lambda, n \in \mathbb{Z}\)
421 \item Destructive: \(pd = (n-{1 \over 2})\lambda, n \in \mathbb{Z}\)
422 \item Path difference: \(\Delta x = {{\lambda l }\over d}\) where \\
423 % \(\Delta x\) = fringe spacing \\
424 \(l\) = distance from source to observer\\
425 \(d\) = separation between each wave source (e.g. slit) \(=S_1-S_2\)
426 \item diffraction $\propto {\lambda \over d}$
427 \item significant diffraction when ${\lambda \over \Delta x} \ge 1$
428 \item diffraction creates distortion (electron $>$ optical microscopes)
429 \end{itemize}
430
431
432 % -----------------------
433 \subsection*{Refraction}
434 \includegraphics[height=3.5cm]{graphics/refraction.png}
435
436 When a medium changes character, energy is \emph{reflected}, \emph{absorbed}, and \emph{transmitted}
437
438 angle of incidence $\theta_i =$ angle of reflection $\theta_r$
439
440 Critical angle $\theta_c = \sin^{-1}{n_2 \over n_1}$
441
442 Snell's law $n_1 \sin \theta_1=n_2 \sin \theta_2$
443
444 ${v_1 \div v_2} = {\sin\theta_1 \div \sin\theta_2}$
445
446 $n_1 v_1 = n_2 v_2$
447
448
449% +++++++++++++++++++++++
450\section{Light and Matter}
451
452 % -----------------------
453 \subsection*{Planck's equation}
454
455 \[ \quad E=hf={hc \over \lambda}=\rho c = qV\]
456 \[ h=6.63 \times 10^{-34}\operatorname{J s}=4.14 \times 10^{-15} \operatorname{eV s} \]
457 \[ 1 \operatorname{eV} = 1.6 \times 10^{-19} \operatorname{J} \]
458
459 \subsection*{De Broglie's theory}
460
461 \[ \lambda = {h \over \rho} = {h \over mv} \]
462 \[ \rho = {hf \over c} = {h \over \lambda} = mv, \quad E = \rho c \]
463 \[ v = \sqrt{2E_K \div m} \]
464 \begin{itemize}
465 \item cannot confirm with double-slit (slit $< r_{\operatorname{proton}}$)
466 \item confirmed by e- and x-ray patterns
467 \end{itemize}
468
469 \subsection*{Force of electrons}
470 \[ F={2P_{\text{in}}\over c} \]
471 % \begin{align*}
472 \[ \text{photons / sec} = {\text{total energy} \over \text{energy / photon}} \]
473 \[ ={{P_{\text{in}} \lambda} \over hc}={P_{\text{in}} \over hf} \]
474 % ={P_{\text{in}} \lambda} \over hc}={P_{\text{in}} \over hf}
475 % \end{align*}
476
477 \subsection*{X-ray electron interaction}
478
479 \begin{itemize}
480 \item e- stable if $mvr = n{h \over 2\pi}$ where $n \in \mathbb{Z}$ and $r$ is radius of orbit
481 \item $\therefore 2\pi r = n{h \over mv} = n \lambda$ (circumference)
482 \item if $2\pi r \ne n{h \over mv}$, no standing wave
483 \item if e- = x-ray diff patterns, $E_{\text{e-}}={\rho^2 \over 2m}={({h \over \lambda})^2 \div 2m}$
484 % \item calculating $h$: $\lambda = {h \over \rho}$
485 \end{itemize}
486
487 \subsection*{Photoelectric effect}
488
489 \begin{itemize}
490 \item $V_{\operatorname{supply}}$ does not affect photocurrent
491 \item $V_{\operatorname{sup}} > 0$: attracted to +ve
492 \item $V_{\operatorname{sup}} < 0$: attracted to -ve, $I\rightarrow 0$
493 \item $v$ of e- depends on shell
494 \item max $I$ (not $V$) depends on intensity
495 \end{itemize}
496
497 \subsubsection*{Threshold frequency $f_0$}
498
499 min $f$ for photoelectron release. if $f < f_0$, no photoelectrons.
500
501 \subsubsection*{Work function $\phi=hf_0$}
502
503 min $E$ for photoelectron release. determined by strength of bonding. Units: eV or J.
504
505 \subsubsection*{Kinetic energy E_K=hf - \phi = qV_0}
506
507
508 $V_0 = E_K$ in eV \\
509 % $E_K = x$-int of $V\cdot I$ graph (in eV) \\
510 dashed line below $E_K=0$
511
512
513 \subsubsection*{Stopping potential $V_0$ for min $I$}
514
515 $$V_0=h_{\text{eV}}(f-f_0)$$
516
517 \subsubsection*{Graph features}
518
519 \newcolumntype{b}{>{\hsize=.75\hsize}X}
520\newcolumntype{s}{>{\hsize=.3\hsize}X}
521
522 \begin{tabularx}{\columnwidth}{bbbb}
523\hline
524&$m$&$x$-int&$y$-int \\
525\hline
526\hline
527$f \cdot E_K$ & $h$ & $f_0$ & $-\phi$ \\
528$V \cdot I$ & & $V_0$ & intensity\\
529$f \cdot V$ & ${h \over q}$ & $f_0$ & $-\phi \over q$ &
530\hline
531\end{tabularx}
532
533
534
535 \subsection*{Spectral analysis}
536
537 \begin{itemize}
538 \item $\Delta E = hf = {hc \over \lambda}$ between ground / excited state
539 \item $E$ and $f$ of photon: $E_2 - E_1 = hf = {hc \over \lambda}$
540 \item Ionisation energy - min $E$ required to remove e-
541 \item EMR is absorbed/emitted when $E_{\operatorname{K-in}}=\Delta E_{\operatorname{shells}}$ (i.e. $\lambda = {hc \over \Delta E_{\operatorname{shells}}}$)
542 \item No. of lines - include all possible states
543 \end{itemize}
544
545 \subsection*{Uncertainty principle}
546
547 measuring location of an e- requires hitting it with a photon, but this causes $\rho$ to be transferred to electron, moving it.
548
549 \subsection*{Wave-particle duality}
550
551 \subsubsection*{wave model}
552 \begin{itemize}
553 \item cannot explain photoelectric effect
554 \item $f$ is irrelevant to photocurrent
555 \item predicts delay between incidence and ejection
556 \item speed depends on medium
557 \item supported by bright spot in centre
558 \end{itemize}
559
560 \subsubsection*{particle model}
561
562 \begin{itemize}
563 \item explains photoelectric effect
564 \item rate of photoelectron release $\propto$ intensity
565 \item no time delay - one photon releases one electron
566 \item double slit: photons interact. interference pattern still appears when a dim light source is used so that only one photon can pass at a time
567 \item light exerts force
568 \item light bent by gravity
569 \item quantised energy
570 \end{itemize}
571
572 % +++++++++++++++++++++++
573 \section{Experimental \\ design}
574
575 \textbf{Absolute uncertainty} $\Delta$ \\
576 (same units as quantity)
577 \[ \Delta(m) = {{\mathcal{E}(m)} \over 100} \cdot m \]
578 \[ (A \pm \Delta A) + (B \pm \Delta A) = (A+B) \pm (\Delta A + \Delta B) \]
579 \[ (A \pm \Delta A) - (B \pm \Delta A) = (A-B) \pm (\Delta A + \Delta B) \]
580 \[ c(A \pm \Delta A) = cA \pm c \Delta A \]
581
582 \textbf{Relative uncertainty} $\mathcal{E}$ (unitless)
583 \[ \mathcal{E}(m) = {{\Delta(m)} \over m} \cdot 100 \]
584 \[ (A \pm \mathcal{E} A) \cdot (B \pm \mathcal{E} B) = (A \cdot B) \pm (\mathcal{E} A + \mathcal{E} B) \]
585 \[ (A \pm \mathcal{E} A) \div (B \pm \mathcal{E} B) = (A \div B) \pm (\mathcal{E} A + \mathcal{E} B) \]
586 \[ (A \pm \mathcal{E} A)^n = (A^n \pm n \mathcal{E} A) \]
587 \[ c(A \pm \mathcal{E} A)=cA \pm \mathcal{E} A \]
588
589 Uncertainty of a measurement is $1 \over 2$ the smallest division
590
591 \textbf{Precision} - concordance of values \\
592 \textbf{Accuracy} - closeness to actual value\\
593 \textbf{Random errors} - unpredictable, reduced by more tests \\
594 \textbf{Systematic errors} - not reduced by more tests \\
595 \textbf{Uncertainty} - margin of potential error \\
596 \textbf{Error} - actual difference \\
597 \textbf{Hypothesis} - can be tested experimentally \\
598 \textbf{Model} - evidence-based but indirect representation
599
600\end{multicols}
601
602\end{document}