46ae5ab144020570c99bf70aa836970064c51249
1\documentclass[a4paper]{article}
2\usepackage{multicol}
3\usepackage[cm]{fullpage}
4\usepackage{amsmath}
5\usepackage{amssymb}
6\setlength{\parindent}{0cm}
7\usepackage[nodisplayskipstretch]{setspace}
8\setstretch{1.3}
9\usepackage{graphicx}
10\usepackage{wrapfig}
11\usepackage{enumitem}
12\setitemize{noitemsep,topsep=0pt,parsep=0pt,partopsep=0pt,leftmargin=5pt}
13
14
15\begin{document}
16
17\pagenumbering{gobble}
18\begin{multicols}{3}
19{\huge Physics}\hfill Andrew Lorimer\hspace{2em}
20
21\section{Motion}
22 \subsection*{Unit conversion}
23 $\operatorname{m/s} \times 3.6 = \operatorname{km/h}$
24
25 \subsection*{Inclined planes}
26 $F = m g \sin\theta - F_{frict} = m a$
27
28 \subsection*{Banked tracks}
29 \includegraphics[height=4cm]{/mnt/andrew/graphics/banked-track.png}
30 $\theta = \tan^{-1} {{v^2} \over rg}$ (also for objects on string)
31
32 $\Sigma F$ always acts towards centre, but not necessarily horizontally
33
34 $\Sigma F = {{mv^2} \over r} = mg \tan \theta$
35
36 Design speed $v = \sqrt{gr\tan\theta}$
37
38 \subsection*{Work and energy}
39 $W=Fx=\Delta \Sigma E$ (work)
40
41 $E_K = {1 \over 2}mv^2$ (kinetic)
42
43 $E_G = mgh$ (potential)
44
45 $\Sigma E = {1 \over 2} mv^2 + mgh$ (energy transfer)
46
47 \subsection*{Horizontal motion}
48
49 $v = {{2 \pi r} \over T}$
50
51 $f = {1 \over T}, \quad T = {1 \over f}$
52
53 $a_{centrip} = {v^2 \over r} = {{4 \pi^2 r} \over T^2}$
54
55 $\Sigma F$ towards centre, $v$ tangential
56
57 $F_{centrip} = {{mv^2} \over r} = {{4 \pi^2 rm} \over T^2}$
58
59 \includegraphics[height=4cm]{/mnt/andrew/graphics/circ-forces.png}
60
61 \subsection*{Vertical circular motion}
62 $T =$ tension, e.g. circular pendulum
63
64 $T+mg = {{mv^2}\over r}$ at highest point
65 $T-mg = {{mv^2} \over r}$ at lowest point
66
67 \subsection*{Projectile motion}
68 \begin{itemize}
69 \item{horizontal component of velocity is constant if no air resistance}
70
71 \item{vertical component affected by gravity: $a_y = -g$}
72\end{itemize}
73
74$v=\sqrt{v^2_x + v^2_y}$ (vector addition)
75
76$h={{u^2\sin \theta ^2}\over 2g}$ (max height)
77
78$y=ut \sin \theta-{1 \over 2}gt^2$ (time of flight)
79
80$d={v^2 \over g}sin \theta$ (horizontal range)
81 \includegraphics[height=3.2cm]{/mnt/andrew/graphics/projectile-motion.png}
82
83 \subsection*{Pulley-mass system}
84
85 $a = {{m_2g} \over {m_1 + m_2}}$ where $m_2$ is suspended
86
87 \subsection*{Graphs}
88 \begin{itemize}
89 \item{Force-time: $A=\Delta \rho$}
90 \item{Force-disp: $A=W$}
91 \item{Force-ext: $m=k,\quad A=E_{spr}$}
92 \item{Force-dist: $A=\Delta \operatorname{gpe}$}
93 \item{Field-dist: $A=\Delta \operatorname{gpe} / \operatorname{kg}$}
94 \end{itemize}
95
96 \subsection*{Hooke's law}
97
98 $F=-kx$
99
100 $E_{elastic} = {1 \over 2}kx^2$
101
102 \subsection*{Motion equations}
103
104
105\begin{tabular}{ l r }
106 $v=u+at$ & $x$ \\
107 $x = {1 \over 2}(v+u)t$ & $a$ \\
108 $x=ut+{1 \over 2}at^2$ & $v$ \\
109 $x=vt-{1 \over 2}at^2$ & $u$ \\
110 $v^2=u^2+2ax$ & $t$ \\
111\end{tabular}
112
113\subsection*{Momentum}
114
115$\rho = mv$
116
117$\operatorname{impulse} = \Delta \rho, \quad F \Delta t = m \Delta v$
118
119Momentum is conserved.
120
121$\Sigma E_{K \operatorname{before}} = \Sigma E_{K \operatorname{after}}$ if elastic
122
123\section{Relativity}
124
125\subsection*{Postulates}
1261. Laws of physics are constant in all intertial reference frames
127
1282. Speed of light $c$ is the same to all observers (Michelson-Morley)
129
130$\therefore , t$ must dilate as speed changes
131
132{\bf Inertial reference frame} - $a=0$
133
134{\bf Proper time $t_0$ $\vert$ length $l_0$} - measured by observer in same frame as events
135
136\subsection*{Lorentz factor}
137
138$$\gamma = {1 \over {\sqrt{1-{v^2 \over c^2}}}}$$
139
140$t=t_0 \gamma$ ($t$ longer in moving frame)
141
142$l={l_0 \over \gamma}$ ($l$ contracts $\parallel v$: shorter in moving frame)
143
144$m=m_0 \gamma$ (mass dilation)
145
146$$v = c\sqrt{1-{1 \over \gamma^2}}$$
147
148\subsection*{Energy and work}
149
150$E_0 = mc^2$ (rest)
151
152$E_{total} = E_K + E_{rest} = \gamma mc^2$
153
154$E_K = (\gamma - 1)mc^2$
155
156$W = \Delta E = \Delta mc^2$
157
158\subsection*{Relativistic momentum}
159
160$$\rho = {mv \over \sqrt{1-{v^2 \over c^2}}}= {\gamma mv} = {\gamma \rho_0}$$
161
162$\rho \rightarrow \infty$ as $v \rightarrow c$
163
164$v=c$ is impossible (requires $E=\infty$)
165
166$$v={\rho \over {m\sqrt{1+{p^2 \over {m^2 c^2}}}}}$$
167
168\subsection*{Fusion and fission}
169
170$1 \operatorname{eV} = 1.6 \times 10^{-19} \operatorname{J}$
171
172e- accelerated with $x$ V is given $x$ eV
173\subsection*{High-altitude muons}
174\begin{itemize}
175 {\item $t$ dilation - more muons reach Earth than expected}
176 {\item normal half-life is $2.2 \operatorname{\mu s}$ in stationary frame}
177 {\item at $v \approx c$, muons observed from Earth have halflife $> 2.2 \operatorname{\mu s}$}
178 {\item slower time - more time to travel, so muons reach surface}
179\end{itemize}
180
181\section{Fields and power}
182
183
184\subsection*{Non-contact forces}
185\begin{itemize}
186 {\item electric fields (dipoles \& monopoles)}
187 {\item magnetic fields (dipoles only)}
188 {\item gravitational fields (monopoles only)}
189\end{itemize}
190
191\begin{itemize}
192\item monopoles: field lines radiate towards central object
193\item dipoles - field lines $+ \rightarrow -$ or $\operatorname{N} \rightarrow \operatorname{S}$ (opposite in solenoid)
194\item closer field lines means larger force
195\item dot means out of page, cross means into page
196\end{itemize}
197
198\subsection*{Gravity}
199\[
200F_g=G{{m_1m_2}\over r^2}\tag{grav. force}
201\]
202
203\[
204g={F_g \over m}=G{M_{\operatorname{planet}} \over r^2}\tag{grav. acc.}
205\]
206
207\[
208E_g = mg \Delta h\tag{gpe}
209\]
210
211\[
212W = \Delta E_g = Fx\tag{work}
213\]
214
215\subsection*{Satellites}
216\[
217v=\sqrt{GM \over r} = \sqrt{gr} = {{2 \pi r} \over T}
218\]
219
220\[
221T={\sqrt{4 \pi^2 r^2} \over {GM}}\tag{period}
222\]
223
224\[
225\sqrt[3]{{GMT^2}\over{4\pi^2}}\tag{radius}
226\]
227
228
229
230\subsection*{Magnetic fields}
231% \begin{itemize}
232% \item field strength $B$ measured in tesla
233% \item magnetic flux $\Phi$ measured in weber
234% \item charge $q$ measured in coulombs
235% \item emf $\mathcal{E}$ measured in volts
236% \end{itemize}
237
238% \[
239% {E_1 \over E_2}={r_1 \over r_2}^2
240% \]
241
242\[
243F=qvB\tag{force on moving charged particles}
244\]
245
246if $B {\not \perp} A, \Phi \rightarrow 0$ \hspace{1em}, \hspace{1em} if $B \parallel A, \Phi = 0$
247
248
249\includegraphics[height=2cm]{/mnt/andrew/graphics/field-lines.png}
250
251\subsection*{Electric fields}
252
253\begin{align*}
254F=qE \tag{$E$ = strength} \\
255W=q_{\operatorname{point}}\Delta V \tag{in field or points} \\
256F=k{{q_1q_2}\over r^2}\tag{force between $q_{1,2}$} \\
257E=k{Q \over r^2} \tag{$r=||EQ||$} \\
258F=BInl \tag{force on a coil} \\
259\Phi = B_{\perp}A\tag{magnetic flux} \\
260\mathcal{E} = -N{{\Delta \Phi}\over{\Delta t}} \tag{induced emf} \\
261{V_p \over V_s}={N_p \over N_s}={I_s \over I_p} \tag{xfmr coil ratios} \\
262\end{align*}
263
264
265\textbf{Lenz's law:} ``$-n$'' in Faraday - emf opposes $\Delta \Phi$
266
267\textbf{Eddy currents:} counter movement within a field
268
269\textbf{Right hand grip:} thumb points to north or $I$
270
271\textbf{Right hand slap:} field, current, force are $\perp$
272
273\textbf{Flux-time graphs:} gradient $\times n = \operatorname{emf}$
274
275\textbf{Transformers:} core strengthens \& focuses $\Phi$
276
277% \columnbreak
278
279\subsection*{Power transmission}
280
281\begin{align*}
282 V_{\operatorname{rms}}={V_{\operatorname{p\rightarrow p}}\over \sqrt{2}} \tag
283 P_{\operatorname{loss}} = \Delta V I = I^2 R = {{\Delta V^2} \over R}
284\end{align*}
285
286\begin{itemize}
287 {\item Parallel - voltage is constant}
288 {\item Series - voltage is shared within branch}
289\end{itemize}
290
291\includegraphics[height=4cm]{/mnt/andrew/graphics/ac-generator.png}
292
293\subsection*{Motors}
294% \begin{wrapfigure}{r}{-0.1\textwidth}
295
296\includegraphics[height=4cm]{/mnt/andrew/graphics/dc-motor-2.png}
297\includegraphics[height=3cm]{/mnt/andrew/graphics/ac-motor.png} \\
298% \end{wrapfigure}
299\textbf{DC:} split ring (one ring split into two halves)
300
301% \begin{wrapfigure}{r}{0.3\textwidth}
302
303% \end{wrapfigure}
304\textbf{AC:} slip ring (separate rings with constant contact)
305
306
307\end{multicols}
308\end{document}