4a0403a6248f93e03ae0378cc2e6c106cda9b30e
   1\documentclass[a4paper]{article}
   2\usepackage[dvipsnames, table]{xcolor}
   3\usepackage{adjustbox}
   4\usepackage{amsmath}
   5\usepackage{amssymb}
   6\usepackage{blindtext}
   7\usepackage{dblfloatfix}
   8\usepackage{enumitem}
   9\usepackage{fancyhdr}
  10\usepackage[a4paper,margin=2cm]{geometry}
  11\usepackage{graphicx}
  12\usepackage{harpoon}
  13\usepackage{listings}
  14\usepackage{makecell}
  15\usepackage{mathtools}
  16\usepackage{mathtools}
  17\usepackage{multicol}
  18\usepackage{multirow}
  19\usepackage{newclude}
  20\usepackage{pgfplots}
  21\usepackage{polynom}
  22\usepackage{pst-plot}
  23\usepackage{standalone}
  24\usepackage{subfiles}
  25\usepackage{tabularx}
  26\usepackage{tabu}
  27\usepackage{tcolorbox}
  28\usepackage{tikz-3dplot}
  29\usepackage{tikz}
  30\usepackage{tkz-fct}
  31\usepackage[obeyspaces]{url}
  32\usepackage{wrapfig}
  33
  34
  35\usetikzlibrary{%
  36  angles,
  37  arrows,
  38  arrows.meta,
  39  calc,
  40  datavisualization.formats.functions,
  41  decorations,
  42  decorations.markings,
  43  decorations.text,
  44  decorations.pathreplacing,
  45  decorations.text,
  46  patterns,
  47  scopes
  48}
  49
  50\newcommand{\midarrow}{\tikz \draw[-triangle 90] (0,0) -- +(.1,0);}
  51
  52\usepgflibrary{arrows.meta}
  53\pgfplotsset{compat=1.16}
  54\pgfplotsset{every axis/.append style={
  55  axis x line=middle,    % centre axes
  56  axis y line=middle,
  57  axis line style={->},  % arrows on axes
  58  xlabel={$x$},          % axes labels
  59  ylabel={$y$}
  60}}
  61
  62\psset{dimen=monkey,fillstyle=solid,opacity=.5}
  63\def\object{%
  64    \psframe[linestyle=none,fillcolor=blue](-2,-1)(2,1)
  65    \psaxes[linecolor=gray,labels=none,ticks=none]{->}(0,0)(-3,-3)(3,2)[$x$,0][$y$,90]
  66    \rput{*0}{%
  67        \psline{->}(0,-2)%
  68        \uput[-90]{*0}(0,-2){$\vec{w}$}}
  69}
  70
  71\pagestyle{fancy}
  72\fancyhead[LO,LE]{Year 12 Methods}
  73\fancyhead[CO,CE]{Andrew Lorimer}
  74\fancypagestyle{plain}{\fancyhead[LO,LE]{} \fancyhead[CO,CE]{}} % rm title & author for first page
  75
  76\newcommand{\tg}{\mathop{\mathrm{tg}}}
  77\newcommand{\cotg}{\mathop{\mathrm{cotg}}}
  78\newcommand{\arctg}{\mathop{\mathrm{arctg}}}
  79\newcommand{\arccotg}{\mathop{\mathrm{arccotg}}}
  80
  81\providecommand{\tightlist}{\setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}
  82\newcommand*\leftlap[3][\,]{#1\hphantom{#2}\mathllap{#3}}
  83\newcommand*\rightlap[2]{\mathrlap{#2}\hphantom{#1}}
  84\linespread{1.5}
  85\setlength{\parindent}{0cm}
  86\setlength\fboxsep{0pt} \setlength\fboxrule{.2pt} % for the \fboxes
  87
  88\newcolumntype{L}[1]{>{\hsize=#1\hsize\raggedright\arraybackslash}X}
  89\newcolumntype{R}[1]{>{\hsize=#1\hsize\raggedleft\arraybackslash}X}
  90\newcolumntype{Y}{>{\centering\arraybackslash}X}
  91
  92\definecolor{cas}{HTML}{e6f0fe}
  93\definecolor{important}{HTML}{fc9871}
  94\definecolor{highlight}{HTML}{ffb84d}
  95\definecolor{dark-gray}{gray}{0.2}
  96\definecolor{peach}{HTML}{e6beb2}
  97\definecolor{lblue}{HTML}{e5e9f0}
  98
  99\newtcolorbox{cas}{colframe=cas!75!black, title=On CAS, left*=3mm}
 100\newtcolorbox{warning}{colback=white!90!black, leftrule=3mm, colframe=important, coltext=important, fontupper=\sffamily\bfseries}
 101\newtcolorbox{theorembox}[1]{colback=green!10!white, colframe=blue!20!white, coltitle=black, fontupper=\sffamily, fonttitle=\sffamily, #1}
 102
 103
 104\begin{document}
 105
 106\title{\vspace{-20mm}Year 12 Methods}
 107\author{Andrew Lorimer}
 108\date{}
 109\maketitle
 110
 111\begin{multicols}{2}
 112
 113
 114\section{Functions}
 115
 116\begin{itemize} \tightlist
 117  \item vertical line test
 118  \item each \(x\) value produces only one \(y\) value
 119\end{itemize}
 120
 121\subsection*{One to one functions}
 122
 123\begin{itemize} \tightlist
 124  \item
 125    \(f(x)\) is \emph{one to one} if \(f(a) \ne f(b)\) if
 126    \(a, b \in \operatorname{dom}(f)\) and \(a \ne b\)\\
 127    \(\implies\) unique \(y\) for each \(x\) (\(\sin x\) is not 1:1,
 128    \(x^3\) is)
 129  \item
 130    horizontal line test
 131  \item
 132    if not one to one, it is many to one
 133\end{itemize}
 134
 135\subsection*{Odd and even functions}
 136
 137\begin{align*}
 138  \text{Even:}&& f(x)  &= f(-x) \\
 139  \text{Odd:} && -f(x) &= f(-x)
 140\end{align*}
 141
 142Even \(\implies\) symmetrical across \(y\)-axis \\
 143\(x^{\pm {p \over q}}\) is odd if \(q\) is odd\\
 144For \(x^n\), parity of \(n \equiv\) parity of function
 145
 146\begin{tabularx}{\columnwidth}{XX}
 147  \textbf{Even:} & \textbf{Odd:} \\
 148  \begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3,  xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^2)};  \end{axis}\end{tikzpicture} &
 149    \begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3,  xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^3)};  \end{axis}\end{tikzpicture}
 150\end{tabularx}
 151
 152\subsection*{Inverse functions}
 153
 154\begin{itemize} \tightlist
 155  \item Inverse of \(f(x)\) is denoted \(f^{-1}(x)\)
 156  \item \(f\) must be one to one
 157  \item If \(f(g(x)) = x\), then \(g\) is the inverse of \(f\)
 158  \item Represents reflection across \(y=x\)
 159  \item \(\implies f^{-1}(x)=f(x)\) intersections lie on \(y=x\)
 160  \item \(\operatorname{ran} \> f = \operatorname{dom} \> f^{-1} \\
 161    \operatorname{dom} \> f = \operatorname{ran} \> f^{-1}\)
 162  \item ``Inverse'' \(\ne\) ``inverse \emph{function}'' (functions must pass vertical line test)\\
 163\end{itemize}
 164
 165\subsubsection*{Finding \(f^{-1}\)}
 166
 167\begin{enumerate} \tightlist
 168  \item Let \(y=f(x)\)
 169  \item Swap \(x\) and \(y\) (``take inverse''
 170  \item Solve for \(y\) \\
 171    Sqrt: state \(\pm\) solutions then restrict
 172  \item State rule as \(f^{-1}(x)=\dots\)
 173  \item For inverse \emph{function}, state in function notation
 174\end{enumerate}
 175
 176\subsection*{Simultaneous equations (linear)}
 177
 178\begin{itemize} \tightlist
 179  \item \textbf{Unique solution} - lines intersect at point
 180  \item \textbf{Infinitely many solutions} - lines are equal
 181  \item \textbf{No solution} - lines are parallel
 182\end{itemize}
 183
 184\subsubsection*{Solving \(\protect\begin{cases}px + qy = a \\ rx + sy = b\protect\end{cases} \>\) for \(\{0,1,\infty\}\) solutions}
 185  where all coefficients are known except for one, and \(a, b\) are known
 186
 187  \begin{enumerate} \tightlist
 188    \item Write as matrices: \(\begin{bmatrix}p & q \\ r & s \end{bmatrix}  \begin{bmatrix} x \\ y \end{bmatrix}  =  \begin{bmatrix} a \\ b \end{bmatrix}\)
 189      \item Find \(\det(\text{first matrix}) = ps-qr\)
 190      \item Let \(\det = 0\) for \(\{0,\infty\}\) solutions
 191        or \(\det \ne 0\) for 1 solution
 192      \item Solve to find variable \\ \\
 193        \textbf{For infinite/no solutions:}
 194      \item Substitute variable into both original equations
 195      \item Rearrange so that LHS of each is the same
 196      \item \(\begin{aligned}[t]
 197          \infty \text{ solns: } & \text{RHS}(1) = \text{RHS}(2) \implies (1)=(2) \> \forall x \\
 198          0 \text{ solns: } & \text{RHS}(1) \ne \text{RHS}(2) \implies (1)\ne(2) \> \forall x
 199      \end{aligned}\)
 200  \end{enumerate}
 201
 202  \begin{cas}
 203    Action \(\rightarrow\) Matrix \(\rightarrow\) Calculation \(\rightarrow\) \texttt{det}
 204  \end{cas}
 205
 206  \subsubsection*{Solving \(\protect\begin{cases}a_1 x + b_1 y + c_1 z = d_1 \\ a_2 x + b_2 y + c_2 z = d_2 \\ a_3 x + b_3 y + c_3 z = d_3\protect\end{cases}\)}
 207
 208    \begin{itemize} \tightlist
 209      \item Use elimination
 210      \item Generate two new equations with only two variables
 211      \item Rearrange \& solve
 212      \item Substitute one variable into another equation to find another variable
 213    \end{itemize}
 214
 215    \subsection*{Piecewise functions}
 216
 217    \[\text{e.g.} \quad f(x) = \begin{cases} x^{1 / 3}, \hspace{2em} x \le 0 \\ 2, \hspace{3.4em} 0 < x < 2 \\ x, \hspace{3.4em} x \ge 2 \end{cases}\]
 218
 219      \textbf{Open circle:} point included\\
 220      \textbf{Closed circle:} point not included
 221
 222      \subsection*{Operations on functions}
 223
 224      For \(f \pm g\) and \(f \times g\):
 225      \quad \(\text{dom}^\prime = \operatorname{dom}(f) \cap \operatorname{dom}(g)\)
 226
 227      Addition of linear piecewise graphs: add \(y\)-values at key points
 228
 229      Product functions:
 230
 231      \begin{itemize}
 232          \tightlist
 233        \item
 234          product will equal 0 if \(f=0\) or \(g=0\)
 235        \item
 236          \(f^\prime(x)=0 \veebar g^\prime(x)=0 \not\Rightarrow (f \times g)^\prime(x)=0\)
 237      \end{itemize}
 238
 239      \subsection*{Composite functions}
 240
 241      \((f \circ g)(x)\) is defined iff
 242      \(\operatorname{ran}(g) \subseteq \operatorname{dom}(f)\)
 243
 244      \pgfplotsset{
 245        blank/.append style={%
 246          enlargelimits=true,
 247          ticks=none,
 248          yticklabels={,,}, xticklabels={,,},
 249          xlabel=, ylabel=,
 250          scale=0.4,
 251          samples=100, smooth, unbounded coords=jump
 252        }
 253      }
 254      \tikzset{
 255        blankplot/.append style={orange, mark=none}
 256      }
 257
 258      \begin{figure*}[ht]
 259        \centering
 260
 261        \begin{tabularx}{\textwidth}{r|Y|Y}
 262
 263          & \(n\) is even & \(n\) is odd \\ \hline
 264
 265          \centering \(x^n, n \in \mathbb{Z}^+\) & 
 266
 267          \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
 268            \begin{axis}[blank, xmin=-3,  xmax=3]
 269              \addplot[blankplot] {(x^2)};
 270            \end{axis}
 271          \end{tikzpicture}} &
 272
 273          \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
 274            \begin{axis}[blank, xmin=-3,  xmax=3]
 275              \addplot[blankplot, domain=-3:3] {(x^3)};
 276            \end{axis}
 277          \end{tikzpicture}} \\ \hline
 278
 279          \centering \(x^n, n \in \mathbb{Z}^-\) &
 280
 281          \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
 282            \begin{axis}[blank, xmin=-4, xmax=4, ymax=8, ymin=-0]
 283              \addplot[blankplot, samples=100] {(x^(-2))};
 284            \end{axis}
 285          \end{tikzpicture}} &
 286
 287          \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
 288            \begin{axis}[blank, xmin=-3, xmax=3]
 289              \addplot[blankplot, domain=-3:-0.1] {(x^(-1))};
 290              \addplot[blankplot, domain=0.1:3] {(x^(-1))};
 291            \end{axis}
 292          \end{tikzpicture}} \\ \hline
 293
 294          \centering \(x^{\frac{1}{n}}, n \in \mathbb{Z}^-\) &
 295
 296          \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
 297            \begin{axis}[blank, xmin=-1,  xmax=5]
 298              \addplot[blankplot] {(x^(1/2))};
 299            \end{axis}
 300          \end{tikzpicture}} &
 301
 302          \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
 303            \begin{axis}[blank, xmin=-3, xmax=3, ymin=-3, ymax=3]
 304              \addplot [blankplot, domain=-2:2] gnuplot[id=poly]{sgn(x)*(abs(x)**(1./3)) };
 305            \end{axis}
 306          \end{tikzpicture}} \\ \hline
 307
 308        \end{tabularx}
 309      \end{figure*}
 310
 311      \section{Polynomials}
 312
 313      \subsection*{Factor theorem}
 314
 315      \begin{theorembox}{title=General form \(\beta x + \alpha\)}
 316        If \(\beta x + \alpha\) is a factor of \(P(x)\), \\
 317        \-\hspace{1em}then \(P(-\dfrac{\alpha}{\beta})=0\).
 318      \end{theorembox}
 319
 320      \begin{theorembox}{title=Simple form \(x-a\)}
 321        If \((x-a)\) is a factor of \(P(x)\), remainder \(R=0\). \\
 322        \-\hspace{1em}\(\implies P(a)=0\)
 323      \end{theorembox}
 324
 325      \subsection*{Remainder theorem}
 326
 327      \begin{theorembox}{}
 328        When \(P(x)\) is divided by \(\beta x + \alpha\), the remainder is \(-\dfrac{\alpha}{\beta}\).
 329      \end{theorembox}
 330
 331      \subsection*{Rational root theorem}
 332      Let \(P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0\) be a polynomial of degree \(n\) with \(a_i \in \mathbb{Z} \forall a\). Let \(\alpha, \beta \in \mathbb{Z}\) such that their highest common factor is 1 (i.e. relatively prime).
 333
 334      If \(\beta x + \alpha\) is a factor of \(P(x)\), then \(\beta\) divides \(a_n\) and \(\alpha\) divides \(a_0\) .
 335
 336      \subsubsection*{Discriminant}
 337      \[\begin{cases}
 338        b^2-4ac > 0 & \text{two solutions} \\
 339        b^2-4ac = 0 & \text{one solution} \\
 340        b^2-4ac < 0 & \text{no solutions}
 341      \end{cases}\]
 342      \begin{warning}
 343        Flip inequality sign when multiplying by -1
 344      \end{warning}
 345
 346      \subsection*{Long division}
 347
 348      \[ \polylongdiv{x^2+2x+4}{x-1} \]
 349
 350      \begin{cas}
 351        Action \(\rightarrow\) Transformation \(\rightarrow\) \texttt{propFrac}
 352      \end{cas}
 353
 354      \subsection*{Linear equations}
 355
 356      \subsubsection*{Forms}
 357
 358      \begin{itemize}
 359          \tightlist
 360        \item \(y=mx+c\)
 361        \item \(\frac{x}{a} + \frac{y}{b}=1\) where \((x_1, y_1)\) lies on the graph
 362        \item \(y-y_1 = m(x-x_1)\) where \((a,0)\) and \((0,b)\) are \(x\)- and \(y\)-intercepts
 363      \end{itemize}
 364
 365      \subsubsection*{Line properties}
 366
 367      Parallel lines: \(m_1 = m_2\)\\
 368      Perpendicular lines: \(m_1 \times m_2 = -1\)\\
 369      Distance: \(|\vec{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)
 370
 371      \subsection*{Quadratics}
 372
 373      \setlength{\abovedisplayskip}{1pt}
 374      \setlength{\belowdisplayskip}{1pt}
 375
 376      \textbf{Linear factorisation}
 377      \[ x^2 + bx + c = (x+m)(x+n) \]
 378      \hfill where \(mn=c, \> m+n=b\)
 379
 380      \textbf{Difference of squares}
 381      \[ a^2 - b^2 = (a-b)(a+b) \]
 382      \textbf{Perfect squares}
 383      \[ a^2 \pm 2ab + b^2 = (a \pm b^2) \]
 384      \textbf{Completing the square}
 385      \begin{align*}
 386        x^2+bx+c &= (x+\frac{b}{2})^2+c-\frac{b^2}{4} \\
 387        ax^2+bx+c &= a(x-\frac{b}{2a})^2+c-\frac{b^2}{4a}
 388      \end{align*}
 389      \textbf{Quadratic formula}
 390      \[ x = \dfrac{-b\pm\sqrt{b^2-4ac}}{2a} \]
 391      \hfill (Discriminant \(\Delta=b^2-4ac\))
 392
 393      \subsection*{Cubics}
 394
 395      \textbf{Difference of cubes}
 396      \[ a^3 - b^3 = (a-b)(a^2 + ab + b^2) \]
 397      \textbf{Sum of cubes}
 398      \[ a^3 + b^3 = (a+b)(a^2 - ab + b^2) \]
 399      \textbf{Perfect cubes}
 400      \[ a^3 \pm 3a^2b + 3ab^2 \pm b^3 = (a \pm b)^3 \]
 401
 402      \[ y=a(bx-h)^3 + c \]
 403
 404      \begin{itemize}
 405          \tightlist
 406        \item
 407          \(m=0\) at \emph{stationary point of inflection}
 408          (i.e.~(\({h \over b}, k)\))
 409        \item \(y=(x-a)^2(x-b)\) --- max at \(x=a\), min at \(x=b\)
 410        \item \(y=a(x-b)(x-c)(x-d)\) --- roots at \(b, c, d\)
 411        \item \(y=a(x-b)^2(x-c)\) --- roots at \(b\) (instantaneous), \(c\) (intercept)
 412      \end{itemize}
 413
 414      \subsection*{Quartic graphs}
 415
 416      \subsubsection*{Forms of quartic equations}
 417
 418      \(y=ax^4\)\\
 419      \(y=a(x-b)(x-c)(x-d)(x-e)\)\\
 420      \(y=ax^4+cd^2 (c \ge 0)\)\\
 421      \(y=ax^2(x-b)(x-c)\)\\
 422      \(y=a(x-b)^2(x-c)^2\)\\
 423      \(y=a(x-b)(x-c)^3\)
 424
 425      \input{transformations}
 426      \input{stuff}
 427      \input{circ-functions}
 428      \input{calculus}
 429
 430      \subfile{statistics-ref}
 431
 432    \end{multicols}
 433
 434\end{document}