4a08282c1eac4e584566676c7f9fb7e44cb87c56
1\documentclass[methods-collated.tex]{subfiles}
2
3\begin{document}
4
5\section{Statistics}
6
7\subsection*{Probability}
8
9\begin{align*}
10 \Pr(A \cup B) &= \Pr(A) + \Pr(B) - \Pr(A \cap B) \\
11 \Pr(A \cap B) &= \Pr(A|B) \times \Pr(B) \\
12 \Pr(A|B) &= \frac{\Pr(A \cap B)}{\Pr(B)} \\
13 \Pr(A) &= \Pr(A|B) \cdot \Pr(B) + \Pr(A|B^{\prime}) \cdot \Pr(B^{\prime})
14\end{align*}
15
16Mutually exclusive \(\implies \Pr(A \cup B) = 0\) \\
17
18Independent events:
19\begin{flalign*}
20 \quad \Pr(A \cap B) &= \Pr(A) \times \Pr(B)& \\
21 \Pr(A|B) &= \Pr(A) \\
22 \Pr(B|A) &= \Pr(B)
23\end{flalign*}
24
25\subsection*{Combinatorics}
26
27\begin{itemize}
28 \item Arrangements \({n \choose k} = \frac{n!}{(n-k)}\)
29 \item \colorbox{important}{Combinations} \({n \choose k} = \frac{n!}{k!(n-k)!}\)
30 \item Note \({n \choose k} = {n \choose k-1}\)
31\end{itemize}
32
33\subsection*{Distributions}
34
35\subsubsection*{Mean \(\mu\)}
36
37\textbf{Mean} \(\mu\) or \textbf{expected value} \(E(X)\)
38
39\begin{align*}
40 E(X) &= \frac{\Sigma \left[ x \cdot f(x) \right]}{\Sigma f} \tag{\(f =\) absolute frequency} \\
41 &= \sum_{i=1}^n \left[ x_i \cdot \Pr(X=x_i) \right] \tag{discrete}\\
42 &= \int_\textbf{X} (x \cdot f(x)) \> dx
43\end{align*}
44
45\subsubsection*{Mode}
46
47Most popular value (has highest probability of all \(X\) values). Multiple modes can exist if \(>1 \> X\) value have equal-highest probability. Number must exist in distribution.
48
49\subsubsection*{Median}
50
51If \(m > 0.5\), then value of \(X\) that is reached is the median of \(X\). If \(m = 0.5 = 0.5\), then \(m\) is halfway between this value and the next. To find \(m\), add values of \(X\) from smallest to alrgest until the sum reaches 0.5.
52
53\[ m = X \> \text{such that} \> \int_{-\infty}^{m} f(x) dx = 0.5 \]
54
55\subsubsection*{Variance \(\sigma^2\)}
56
57\begin{align*}
58 \operatorname{Var}(x) &= \sum_{i=1}^n p_i (x_i-\mu)^2 \\
59 &= \sum (x-\mu)^2 \times \Pr(X=x) \\
60 &= \sum x^2 \times p(x) - \mu^2 \\
61 &= \operatorname{E}(X^2) - [\operatorname{E}(X)]^2 \\
62 &= E\left[(X-\mu)^2\right]
63\end{align*}
64
65\subsubsection*{Standard deviation \(\sigma\)}
66
67\begin{align*}
68 \sigma &= \operatorname{sd}(X) \\
69 &= \sqrt{\operatorname{Var}(X)}
70\end{align*}
71
72\subsection*{Binomial distributions}
73
74Conditions for a \textit{binomial distribution}:
75\begin{enumerate}
76 \item Two possible outcomes: \textbf{success} or \textbf{failure}
77 \item \(\Pr(\text{success})\) (=\(p\)) is constant across trials
78 \item Finite number \(n\) of independent trials
79\end{enumerate}
80
81
82\subsubsection*{Properties of \(X \sim \operatorname{Bi}(n,p)\)}
83
84\begin{align*}
85 \mu(X) &= np \\
86 \operatorname{Var}(X) &= np(1-p) \\
87 \sigma(X) &= \sqrt{np(1-p)} \\
88 \Pr(X=x) &= {n \choose x} \cdot p^x \cdot (1-p)^{n-x}
89\end{align*}
90
91\begin{cas}
92 Interactive \(\rightarrow\) Distribution \(\rightarrow\) \verb;binomialPdf;
93 \begin{description}[nosep, style=multiline, labelindent=0.5cm, leftmargin=3cm, font=\normalfont]
94 \item [x:] no. of successes
95 \item [numtrial:] no. of trials
96 \item [pos:] probability of success
97 \end{description}
98\end{cas}
99
100\subsection*{Continuous random variables}
101
102A continuous random variable \(X\) has a pdf \(f\) such that:
103
104\begin{enumerate}
105 \item \(f(x) \ge 0 \forall x \)
106 \item \(\int^\infty_{-\infty} f(x) \> dx = 1\)
107\end{enumerate}
108
109\begin{align*}
110 E(X) &= \int_\textbf{X} (x \cdot f(x)) \> dx \\
111 \operatorname{Var}(X) &= E\left[(X-\mu)^2\right]
112\end{align*}
113
114\[ \Pr(X \le c) = \int^c_{-\infty} f(x) \> dx \]
115
116
117\subsection*{Two random variables \(X, Y\)}
118
119If \(X\) and \(Y\) are independent:
120\begin{align*}
121 \operatorname{E}(aX+bY) & = a\operatorname{E}(X)+b\operatorname{E}(Y) \\
122 \operatorname{Var}(aX \pm bY \pm c) &= a^2 \operatorname{Var}(X) + b^2 \operatorname{Var}(Y)
123\end{align*}
124
125\subsection*{Linear functions \(X \rightarrow aX+b\)}
126
127\begin{align*}
128 \Pr(Y \le y) &= \Pr(aX+b \le y) \\
129 &= \Pr\left(X \le \dfrac{y-b}{a}\right) \\
130 &= \int^{\frac{y-b}{a}}_{-\infty} f(x) \> dx
131\end{align*}
132
133\begin{align*}
134 \textbf{Mean:} && \operatorname{E}(aX+b) & = a\operatorname{E}(X)+b \\
135 \textbf{Variance:} && \operatorname{Var}(aX+b) &= a^2 \operatorname{Var}(X) \\
136\end{align*}
137
138\subsection*{Expectation theorems}
139
140For some non-linear function \(g\), the expected value \(E(g(X))\) is not equal to \(g(E(X))\).
141
142\begin{align*}
143 E(X^2) &= \operatorname{Var}(X) - \left[E(X)\right]^2 \\
144 E(X^n) &= \Sigma x^n \cdot p(x) \tag{non-linear} \\
145 &\ne [E(X)]^n \\
146 E(aX \pm b) &= aE(X) \pm b \tag{linear} \\
147 E(b) &= b \tag{\(\forall b \in \mathbb{R}\)}\\
148 E(X+Y) &= E(X) + E(Y) \tag{two variables}
149\end{align*}
150
151\begin{figure*}[hb]
152 \centering
153 \include{../spec/normal-dist-graph}
154\end{figure*}
155
156\subsection*{Sample mean}
157
158Approximation of the \textbf{population mean} determined experimentally.
159
160\[ \overline{x} = \dfrac{\Sigma x}{n} \]
161
162where
163\begin{description}[nosep, labelindent=0.5cm]
164 \item \(n\) is the size of the sample (number of sample points)
165 \item \(x\) is the value of a sample point
166\end{description}
167
168\begin{cas}
169 \begin{enumerate}[leftmargin=3mm]
170 \item Spreadsheet
171 \item In cell A1:\\ \path{mean(randNorm(sd, mean, sample size))}
172 \item Edit \(\rightarrow\) Fill \(\rightarrow\) Fill Range
173 \item Input range as A1:An where \(n\) is the number of samples
174 \item Graph \(\rightarrow\) Histogram
175 \end{enumerate}
176\end{cas}
177
178\subsubsection*{Sample size of \(n\)}
179
180\[ \overline{X} = \sum_{i=1}^n \frac{x_i}{n} = \dfrac{\sum x}{n} \]
181
182Sample mean is distributed with mean \(\mu\) and sd \(\frac{\sigma}{\sqrt{n}}\) (approaches these values for increasing sample size \(n\)).
183
184For a new distribution with mean of \(n\) trials, \(\operatorname{E}(X^\prime) = \operatorname{E}(X), \quad \operatorname{sd}(X^\prime) = \dfrac{\operatorname{sd}(X)}{\sqrt{n}}\)
185
186\begin{cas}
187
188 \begin{itemize}
189 \item Spreadsheet \(\rightarrow\) Catalog \(\rightarrow\) \verb;randNorm(sd, mean, n); where \verb;n; is the number of samples. Show histogram with Histogram key in top left
190 \item To calculate parameters of a dataset: Calc \(\rightarrow\) One-variable
191 \end{itemize}
192
193\end{cas}
194
195\subsection*{Normal distributions}
196
197
198\[ Z = \frac{X - \mu}{\sigma} \]
199
200Normal distributions must have area (total prob.) of 1 \(\implies \int^\infty_{-\infty} f(x) \> dx = 1\) \\
201\(\text{mean} = \text{mode} = \text{median}\)
202
203\begin{warning}
204 Always express \(z\) as +ve. Express confidence \textit{interval} as ordered pair.
205\end{warning}
206
207\subsection*{Confidence intervals}
208
209\begin{itemize}
210 \item \textbf{Point estimate:} single-valued estimate of the population mean from the value of the sample mean \(\overline{x}\)
211 \item \textbf{Interval estimate:} confidence interval for population mean \(\mu\)
212 \item \(C\)\% confidence interval \(\implies\) \(C\)\% of samples will contain population mean \(\mu\)
213\end{itemize}
214
215\subsubsection*{95\% confidence interval}
216
217For 95\% c.i. of population mean \(\mu\):
218
219\[ x \in \left(\overline{x} \pm 1.96 \dfrac{\sigma}{\sqrt{n}} \right)\]
220
221where:
222\begin{description}[nosep, labelindent=0.5cm]
223 \item \(\overline{x}\) is the sample mean
224 \item \(\sigma\) is the population sd
225 \item \(n\) is the sample size from which \(\overline{x}\) was calculated
226\end{description}
227
228\begin{cas}
229 Menu \(\rightarrow\) Stats \(\rightarrow\) Calc \(\rightarrow\) Interval \\
230 Set \textit{Type = One-Sample Z Int} \\ \-\hspace{1em} and select \textit{Variable}
231\end{cas}
232
233\subsection*{Margin of error}
234
235For 95\% confidence interval of \(\mu\):
236\begin{align*}
237 M &= 1.96 \times \dfrac{\sigma}{\sqrt{n}} \\
238 &= \dfrac{1}{2} \times \text{width of c.i.} \\
239 \implies n &= \left( \dfrac{1.96 \sigma}{M} \right)^2
240\end{align*}
241
242Always round \(n\) up to a whole number of samples.
243
244\subsection*{General case}
245
246For \(C\)\% c.i. of population mean \(\mu\):
247
248\[ x \in \left( \overline{x} \pm k \dfrac{\sigma}{\sqrt{n}} \right) \]
249\hfill where \(k\) is such that \(\Pr(-k < Z < k) = \frac{C}{100}\)
250
251\begin{cas}
252 Menu \(\rightarrow\) Stats \(\rightarrow\) Calc \(\rightarrow\) Interval \\
253 Set \textit{Type = One-\colorbox{important}{Prop} Z Int} \\
254 Input x \(= \hat{p} * n\)
255\end{cas}
256
257\subsection*{Confidence interval for multiple trials}
258
259For a set of \(n\) confidence intervals (samples), there is \(0.95^n\) chance that all \(n\) intervals contain the population mean \(\mu\).
260
261\end{document}