4d8debb621d1dbeb9698160e8e90a2294127002c
   1---
   2geometry: margin=2cm
   3columns: 2
   4graphics: yes
   5author: Andrew Lorimer
   6linestretch: 0.9
   7---
   8
   9\pagenumbering{gobble}
  10<!-- \usepackage{multicols} -->
  11
  12# Light and Matter
  13
  14## Planck's equation
  15
  16$$f={c \over \lambda},\quad E=hf={hc \over \lambda}=\rho c$$
  17
  18$$h=6.63 \times 10^{-34}\operatorname{J s}=4.14 \times 10^{-15} \operatorname{eV s}$$
  19
  20$$ 1 \operatorname{eV} = 1.6 \times 10^{-19} \operatorname{J}$$
  21
  22## Force of electrons
  23
  24$$F={2P_{\text{in}}\over c}$$
  25
  26$$\text{photons per second}={\text{total energy} \over \text{energy per photon}}={{P_{\text{in}} \lambda} \over hc}={P_{\text{in}} \over hf}$$
  27
  28## Photoelectric effect
  29
  30- $V_{\operatorname{supply}}$ does not affect photocurrent
  31- $V_{\operatorname{sup}} > 0$: e- attracted to collector anode
  32- $V_{\operatorname{sup}} < 0$: attracted to illuminated cathode, $I\rightarrow 0$
  33- $v$ of e- depends on ionisation energy (shell)
  34- max current depends on intensity
  35
  36### Threshold frequency $f_0$
  37- minimum $f$ for photoelectrons to be ejected
  38- $x$-intercept of frequency vs $E_K$ graph
  39- if $f < f_0$, no photoelectrons are detected
  40
  41### Work function $\phi$
  42- minimum $E$ required to release photoelectrons
  43- magnitude of $y$-intercept of frequency vs $E_K$ graph
  44- $\phi$ is determined by strength of bonding
  45
  46$$\phi=hf_0$$
  47
  48### Kinetic energy
  49
  50$$E_{\operatorname{k-max}}=hf - \phi$$
  51
  52voltage in circuit or stopping voltage = max $E_K$ in eV  
  53equal to $x$-intercept of volts vs current graph (in eV)
  54
  55### Stopping potential ($V$ for minimum $I$)
  56
  57<!-- $$V_0 = {E_{K \operatorname{max}} \over q_e} = {{hf - \phi} \over q_e}$$ -->
  58$$V=h_{\text{eV}}(f-f_0)$$
  59
  60## De Broglie's theory
  61
  62$$\lambda = {h \over \rho} = {h \over mv}$$
  63$$\rho = {hf \over c} = {h \over \lambda} = mv, \quad E = \rho c$$
  64
  65- cannot confirm with double-slit (slit $< r_{\operatorname{proton}}$)
  66<!-- - confirmed by Davisson and Germer's apparatus (diffraction pattern like double-slit) -->
  67- confirmed by similar e- and x-ray diff patterns
  68
  69## X-ray and electron interaction
  70
  71- e- is only stable if $mvr = n{h \over 2\pi}$ where $n \in \mathbb{Z}$
  72- rearranging this, $2\pi r = n{h \over mv} = n \lambda$ (circumference)
  73- if $2\pi r \ne n{h \over mv}$, no standing wave
  74- if e- = x-ray diff patterns, $E_{\text{e-}}={\rho^2 \over 2m}={({h \over \lambda})^2 \div 2m}$
  75- calculating $h$: $\lambda = {h \over \rho}$
  76
  77## Spectral analysis
  78
  79<!-- ![](graphics/energy-levels.png) -->
  80- $\Delta E = hf = {hc \over \lambda}$ between ground / excited state
  81- $E$ and $f$ of photon: $E_2 - E_1 = hf = hc$
  82- Ionisation energy - min $E$ required to remove e-
  83- EMR is absorbed/emitted when $E_{\operatorname{K-in}}=\Delta E_{\operatorname{shells}}$ (i.e. $\lambda = {hc \over \Delta E_{\operatorname{shells}}}$)
  84
  85## Indeterminancy principle
  86
  87measuring location of an e- requires hitting it with a photon, but this causes $\rho$ to be transferred to electron, moving it.
  88 <!-- $\therefore, \sigma E \propto {1 \over \sigma t}$ -->
  89
  90<!-- $$\sigma E \sigma t \ge {h \over 4 \pi}$$ -->
  91
  92$$\sigma \rho \sigma x = {h \over 4\pi}$$
  93
  94## Wave-particle duality
  95wave model:  
  96
  97- cannot explain photoelectric effect
  98- $f$ is irrelevant to photocurrent
  99- predicts delay between incidence and ejection
 100- speed depends on medium
 101
 102particle model:  
 103
 104- explains photoelectric effect
 105- rate of photoelectron release $\propto$ intensity
 106- no time delay - one photon releases one electron
 107- double slit: photons interact. interference pattern still appears when a dim light source is used so that only one photon can pass at a time
 108- light exerts force
 109- light bent by gravity