Physics
 Andrew Lorimer

1 Motion

$\mathrm{m} / \mathrm{s} \times 3.6=\mathrm{km} / \mathrm{h}$

Inclined planes

$F=m g \sin \theta-F_{\text {frict }}=m a$

Banked tracks

$\theta=\tan ^{-1} \frac{v^{2}}{r g}$
ΣF always acts towards centre (horizontally)
$\Sigma F=F_{\text {norm }}+F_{\mathrm{g}}=\frac{m v^{2}}{r}=m g \tan \theta$
Design speed $v=\sqrt{g r \tan \theta}$
$n \sin \theta=m v^{2} \div r, \quad n \cos \theta=m g$

Work and energy

$W=F s=F s \cos \theta=\Delta \Sigma E$
$E_{K}=\frac{1}{2} m v^{2}$ (kinetic)
$E_{G}=m g h$ (potential)
$\Sigma E=\frac{1}{2} m v^{2}+m g h$ (energy transfer)

Horizontal circular motion Graphs

$v=\frac{2 \pi r}{T}$
$f=\frac{1}{T}, \quad T=\frac{1}{f}$
$a_{\text {centrip }}=\frac{v^{2}}{r}=\frac{4 \pi^{2} r}{T^{2}}$
$\Sigma F, a$ towards centre, v tangential
$F_{\text {centrip }}=\frac{m v^{2}}{r}=\frac{4 \pi^{2} r m}{T^{2}}$

- Force-time: $A=\Delta \rho$

Vertical circular motion

$T=$ tension, e.g. circular pendulum
$T+m g=\frac{m v^{2}}{r}$ at highest point
$T-m g=\frac{m v^{2}}{r}$ at lowest point
$E_{K \text { bottom }}=E_{K \text { top }}+m g h$

Projectile motion

- v_{x} is constant: $v_{x}=\frac{s}{t}$
- use suvat to find t from y-component
- vertical component gravity: $a_{y}=-g$
$v=\sqrt{v_{x}^{2}+v_{y}^{2}}$
vectors
$h=\frac{u^{2} \sin \theta^{2}}{2 g}$
$x=u t \cos \theta$
$y=u t \sin \theta-\frac{1}{2} g t^{2}$
$t=\frac{2 u \sin \theta}{g}$
$d=\frac{v^{g}}{g} \sin \theta$ max height
Δx at t
height at t time of flight horiz. range

Pulley-mass system

$a=\frac{m_{2} g}{m_{1}+m_{2}}$ where m_{2} is suspended
$\Sigma F=m_{2} g-m_{1} g=\Sigma m a$ (solve)

- Force-disp: $A=W$
- Force-ext: $m=k, \quad A=E_{s p r}$
- Force-dist: $A=\Delta$ gpe
- Field-dist: $A=\Delta$ gpe $/ \mathrm{kg}$

Hooke's law

$F=-k x$ (intercepts origin)
elastic potential energy $=\frac{1}{2} k x^{2}$
$x=\frac{2 m g}{k}$
Vertical: $\Delta E=\frac{1}{2} k x^{2}+m g h$

Motion equations

$$
\begin{array}{lr}
v=u+a t & x \\
x=\frac{1}{2}(v+u) t & a \\
x=u t+\frac{1}{2} a t^{2} & v \\
x=v t-\frac{1}{2} a t^{2} & u \\
v^{2}=u^{2}+2 a x & t
\end{array}
$$

Momentum

$\rho=m v$
impulse $=\Delta \rho, \quad F \Delta t=m \Delta v$
$\Sigma\left(m v_{0}\right)=(\Sigma m) v_{1}$ (conservation) if elastic:
$\sum_{i=1}^{n} E_{K}(i)=\sum_{i=1}^{n}\left(\frac{1}{2} m_{i} v_{i 0}^{2}\right)=\frac{1}{2} \sum_{i=1}^{n}\left(m_{i}\right) v_{f}^{2}$

2 Relativity

Postulates

1. Laws of physics are constant in all intertial reference frames
2. Speed of light c is the same to all observers (Michelson-Morley)
$\therefore t$ must dilate as speed changes
high-altitude particles: t dilation means more particles reach Earth than expected (half-life greater when obs. from Earth)
Inertial reference frame $a=0$
Proper time $t_{0} \mid$ length l_{0} measured by observer in same frame as events

Lorentz factor

$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}, \quad v=c \sqrt{1-\frac{1}{\gamma^{2}}}
$$

$t=t_{0} \gamma(t$ longer in moving frame)
$l=\frac{l_{0}}{\gamma}(l$ contracts $\| v$: shorter in moving frame)
$m=m_{0} \gamma$ (mass dilation)

Energy and work

$E_{\text {rest }}=m c^{2}, \quad E_{K}=(\gamma-1) m c^{2}$
$E_{\text {total }}=E_{K}+E_{\text {rest }}=\gamma m c^{2}$
$W=\Delta E=\Delta m c^{2}=(\gamma-1) m_{\mathrm{rest}} c^{2}$

Relativistic momentum

$$
\rho=\frac{m v}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=\gamma m v=\gamma \rho_{0}
$$

$\rho \rightarrow \infty$ as $v \rightarrow c$
$v=c$ is impossible (requires $E=\infty$)

$$
v=\frac{\rho}{m \sqrt{1+\frac{p^{2}}{m^{2} c^{2}}}}
$$

3 Fields and power

Non-contact forces

- electric (dipoles \& monopoles)
- magnetic (dipoles only)
- gravitational (monopoles only, $F_{g}=$ 0 at mid, attractive only)
- monopoles: lines towards centre
- dipoles: field lines $+\rightarrow-$ or $\mathrm{N} \rightarrow \mathrm{S}$ (two magnets) or $\rightarrow \mathrm{N}$ (single)
- closer field lines means larger force
- dot: out of page, cross: into page
- +ve corresponds to N pole

Gravity

$$
\begin{array}{cr}
F_{g}=G \frac{m_{1} m_{2}}{r^{2}} & \text { (grav. force) } \\
g=\frac{F_{g}}{m_{2}}=G \frac{m_{1}}{r^{2}} & \text { (field of } \left.m_{1}\right) \\
E_{g}=m g \Delta h & \text { (gpe) } \\
W=\Delta E_{g}=F x & \text { (work) }
\end{array}
$$

$$
w=m(g-a) \quad \text { (app. weight) }
$$

Satellites

$$
\begin{align*}
& v=\sqrt{\frac{G M}{r}}=\sqrt{g r}=\frac{2 \pi r}{T} \\
& T=\sqrt{\frac{4 \pi^{2} r^{3}}{G M}} \quad \quad \text { (period) } \\
& r=\sqrt[3]{\frac{G M T^{2}}{4 \pi^{2}}} \quad \text { (radius) } \tag{radius}
\end{align*}
$$

Magnetic fields

- field strength B measured in tesla
- magnetic flux Φ measured in weber
- charge q measured in coulombs
- emf \mathcal{E} measured in volts

$$
\begin{array}{rr}
F=q v B & (F \text { on moving } q) \\
F=I l B & (F \text { of } B \text { on } I)
\end{array}
$$

$$
\begin{array}{rr}
B=\frac{m v}{q r} & \text { (field strength on e-) } \\
r=\frac{m v}{q B} & \text { (radius of } q \text { in } B \text {) } \\
\text { if } B \not \perp A, \Phi \rightarrow 0 & , \quad \text { if } B \| A, \Phi=0
\end{array}
$$

Electric fields

$$
F=q E(=m a) \quad \text { (strength })
$$

$$
F=k \frac{q_{1} q_{2}}{r^{2}} \quad\left(\text { force between } q_{1,2}\right)
$$

$$
E=k \frac{q}{r^{2}} \quad \text { (field on point charge) }
$$

$$
E=\frac{V}{d} \quad \text { (field between plates) }
$$

$$
F=B I n l \quad(\text { force on a coil })
$$

$$
\Phi=B_{\perp} A \quad \text { (magnetic flux) }
$$

$$
\mathcal{E}=-N \frac{\Delta \Phi}{\Delta t}=B l v \quad \text { (induced emf) }
$$

$$
\frac{V_{p}}{V_{s}}=\frac{N_{p}}{N_{s}}=\frac{I_{s}}{I_{p}} \quad(\mathrm{xfmr} \text { coil ratios })
$$

Lenz's law: $I_{\text {emf }}$ opposes $\Delta \Phi$
(emf creates I with associated field that opposes $\Delta \phi$)
Eddy currents: counter movement within a field

Right hand grip: thumb points to I (single wire) or N (solenoid / coil)

Flux-time graphs: $m \times n=\mathrm{emf}$. If f increases, ampl. \& f of \mathcal{E} increase
Xfmr core strengthens \& focuses Φ

Particle acceleration

$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
e- accelerated with $x \mathrm{~V}$ is given $x \mathrm{eV}$

$$
\begin{aligned}
W & =\frac{1}{2} m v^{2}=q V \quad \text { (field or points) } \\
v & =\sqrt{\frac{2 q V}{m}} \quad \text { (velocity of particle) }
\end{aligned}
$$

Circular path: $F \perp B \perp v$

Power transmission

$$
\begin{gathered}
V_{\mathrm{rms}}=\frac{V_{\mathrm{p} \rightarrow \mathrm{p}}}{\sqrt{2}} \\
P_{\mathrm{loss}}=\Delta V I=I^{2} R=\frac{\Delta V^{2}}{R} \\
V_{\mathrm{loss}}=I R
\end{gathered}
$$

Use high- V side for correct $\left|V_{\text {drop }}\right|$

- Parallel V is constant
- Series V shared within branch

Motors

Force on current-carying wire, not copper
$F=0$ for front back of coil (parallel)

Any angle >0 will produce force
DC: split ring (two halves)
AC: slip ring (separate rings with constant contact)

4 Waves

nodes: fixed on graph amplitude: max disp. from $y=0$ rarefactions and compressions mechanical: transfer of energy without net transfer of matter

Longitudinal (motion || wave)

$T=\frac{1}{f} \quad$ (period: time for one cycle)
$v=f \lambda \quad$ (speed: displacement / sec)
$f=\frac{c}{\lambda} \quad($ for $v=c)$

Doppler effect

When P_{1} approaches P_{2}, each wave w_{n} has slightly less distance to travel than w_{n-1}. w_{n} reaches observer sooner than w_{n-1} ("apparent" λ).

Interference

Poissons's spot supports wave theory (circular diffraction)
Standing waves - constructive int. at resonant freq. Rebound from ends. Coherent - identical frequency, phase, direction (ie strong directional). e.g. laser
Incoherent - e.g. incandescent/LED

Harmonics

1 st harmonic $=$ fundamental
for nodes at both ends:
$\lambda=2 l \div n \quad f=n v \div 2 l$
for node at one end (n is odd):
$\lambda=4 l \div n \quad f=n v \div 4 l$
alternatively, $\lambda=\frac{4 l}{2 n-1}$ where $n \in \mathbb{Z}$ and $n+1$ is the next possible harmonic

Polarisation

Transverse only. Reduces total A.

Diffraction

5 Light and Matter

Planck's equation

$$
\begin{gathered}
E=h f=\frac{h c}{\lambda}=\rho c=q V \\
h=6.63 \times 10^{-34} \mathrm{Js}=4.14 \times 10^{-15} \mathrm{eVs} \\
1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}
\end{gathered}
$$

De Broglie's theory

$$
\begin{aligned}
\lambda=\frac{h}{\rho} & =\frac{h}{m v}=\frac{h}{m \sqrt{\frac{2 W}{m}}} \\
\rho=\frac{h f}{c} & =\frac{h}{\lambda}=m v, \quad E=\rho c \\
v & =\sqrt{2 E_{K} \div m}
\end{aligned}
$$

- cannot confirm with double-slit (slit

$$
\left.<r_{\text {proton }}\right)
$$

- confirmed by e- and x-ray patterns

Force of electrons

$$
F=\frac{2 P_{\mathrm{in}}}{c}
$$

photons $/$ sec $=\frac{\text { total energy }}{\text { energy / photon }}$

$$
=\frac{P_{\mathrm{in}} \lambda}{h c}=\frac{P_{\mathrm{in}}}{h f}
$$

X-ray electron interaction

Spectral analysis

- light bent by gravity
- quantised energy
- e- stable if $m v r=n \frac{h}{2 \pi}$ where $n \in \mathbb{Z}$ and r is radius of orbit
- $\therefore 2 \pi r=n \frac{h}{m v}=n \lambda$ (circumference)
- if $2 \pi r \neq n \frac{h}{m v}$, no standing wave
- if e- $=$ x-ray diff patterns, $E_{\text {e- }}=$ $\frac{\rho^{2}}{2 m}=\left(\frac{h}{\lambda}\right)^{2} \div 2 m$

Photoelectric effect

- $V_{\text {supply }}$ does not affect photocurrent
- $V_{\text {sup }}>0$: attracted to + ve
- $V_{\text {sup }}<0$: attracted to -ve, $I \rightarrow 0$
- v of e- depends on shell
- max I (not V) depends on intensity

Threshold frequency f_{0}

$\min f$ for photoelectron release. if $f<f_{0}$, no photoelectrons.

Work function $\phi=h f_{0}$
$\min E$ for photoelectron release. determined by strength of bonding. Units: eV or J.

Kinetic energy $\mathbf{E}_{K}=h f-\phi=q V_{0}$
$V_{0}=E_{K}$ in eV
dashed line below $E_{K}=0$

Stopping potential V_{0} for $\min I$

$$
V_{0}=h_{\mathrm{eV}}\left(f-f_{0}\right)
$$

Opposes induced photocurrent

Graph features

	m	x-int	y-int
$f \cdot E_{K}$	h	f_{0}	$-\phi$
$V \cdot I$		V_{0}	intensity
$f \cdot V$	$\frac{h}{q}$	f_{0}	$\frac{-\phi}{q}$

- $\Delta E=h f=\frac{h c}{\lambda}$ between ground / excited state
- E and f of photon: $E_{2}-E_{1}=h f=$ $\frac{h c}{\lambda}$
- Ionisation energy - min E required to remove e-
- EMR is absorbed/emitted when $E_{\mathrm{K}-\mathrm{in}}=\Delta E_{\text {shells }}\left(\right.$ i.e. $\left.\lambda=\frac{h c}{\Delta E_{\text {shells }}}\right)$
- No. of lines - include all possible states

Uncertainty principle

measuring location of an e- requires hitting it with a photon, but this causes ρ to be transferred to electron, moving it.

Wave-particle duality

wave model

- cannot explain photoelectric effect
- f is irrelevant to photocurrent
- predicts delay between incidence and ejection
- speed depends on medium
- supported by bright spot in centre
- $\lambda=\frac{h c}{E}$

particle model

- explains photoelectric effect
- rate of photoelectron release \propto intensity
- no time delay - one photon releases one electron
- double slit: photons interact. interference pattern still appears when a dim light source is used so that only one photon can pass at a time
- light exerts force

6 Experimental

design

Absolute uncertainty Δ

(same units as quantity)

$$
\begin{gathered}
\Delta(m)=\frac{\mathcal{E}(m)}{100} \cdot m \\
(A \pm \Delta A)+(B \pm \Delta A)=(A+B) \pm(\Delta A+\Delta B) \\
(A \pm \Delta A)-(B \pm \Delta A)=(A-B) \pm(\Delta A+\Delta B) \\
c(A \pm \Delta A)=c A \pm c \Delta A
\end{gathered}
$$

Relative uncertainty \mathcal{E} (unitless)

$$
\mathcal{E}(m)=\frac{\Delta(m)}{m} \cdot 100
$$

$(A \pm \mathcal{E} A) \cdot(B \pm \mathcal{E} B)=(A \cdot B) \pm(\mathcal{E} A+\mathcal{E} B)$
$(A \pm \mathcal{E} A) \div(B \pm \mathcal{E} B)=(A \div B) \pm(\mathcal{E} A+\mathcal{E} B)$

$$
\begin{gathered}
(A \pm \mathcal{E} A)^{n}=\left(A^{n} \pm n \mathcal{E} A\right) \\
c(A \pm \mathcal{E} A)=c A \pm \mathcal{E} A
\end{gathered}
$$

Uncertainty of a measurement is $\frac{1}{2}$ the smallest division

Precision - concordance of values
Accuracy - closeness to actual value
Random errors - unpredictable, reduced by more tests
Systematic errors - not reduced by more tests

Uncertainty - margin of potential error
Error - actual difference
Hypothesis - can be tested experimentally

Model - evidence-based but indirect representation

