1 Statistics

Continuous random variables

A continuous random variable X has a pdf f such that:

- 1. $f(x) \ge 0 \forall x$
- 2. $\int_{-\infty}^{\infty} f(x) \, dx = 1$

$$E(X) = \int_{\mathbf{X}} (x \cdot f(x)) \, dx$$
$$\operatorname{Var}(X) = E\left[(X - \mu)^2 \right]$$

$$\Pr(X \le c) = \int_{-\infty}^{c} f(x) \, dx$$

Two random variables X, Y

If X and Y are independent:

$$E(aX + bY) = a E(X) + b E(Y)$$
$$Var(aX \pm bY \pm c) = a^{2} Var(X) + b^{2} Var(Y)$$

Linear functions $X \rightarrow aX + b$

$$\Pr(Y \le y) = \Pr(aX + b \le y)$$
$$= \Pr\left(X \le \frac{y - b}{a}\right)$$
$$= \int_{-\infty}^{\frac{y - b}{a}} f(x) \, dx$$

Mean:	$\mathcal{E}(aX+b) = a \mathcal{E}(X) + b$
Variance:	$\operatorname{Var}(aX+b) = a^2 \operatorname{Var}(X)$

Expectation theorems

For some non-linear function g, the expected value E(g(X)) is not equal to g(E(X)).

$$E(X^{2}) = \operatorname{Var}(X) - [E(X)]^{2}$$

$$E(X^{n}) = \Sigma x^{n} \cdot p(x) \qquad (\text{non-linear})$$

$$\neq [E(X)]^{n}$$

$$E(aX \pm b) = aE(X) \pm b \qquad (\text{linear})$$

$$E(b) = b \qquad (\forall b \in \mathbb{R})$$

$$E(X+Y) = E(X) + E(Y)$$
 (two variables)

Sample mean

Approximation of the **population mean** determined experimentally.

$$\overline{x} = \frac{\Sigma x}{n}$$

where

n is the size of the sample (number of sample points)

x is the value of a sample point

On CAS

- 1. Spreadsheet
- 2. In cell A1:

mean(randNorm(sd, mean, sample size))

- 3. Edit \rightarrow Fill \rightarrow Fill Range
- 4. Input range as A1:An where n is the number of samples
- 5. Graph \rightarrow Histogram

Sample size of n

$$\overline{X} = \sum_{i=1}^{n} \frac{x_i}{n} = \frac{\sum x}{n}$$

Sample mean is distributed with mean μ and sd $\frac{\sigma}{\sqrt{n}}$ (approaches these values for increasing sample size n). For a new distribution with mean of n trials, E(X') = E(X), $sd(X') = \frac{sd(X)}{\sqrt{n}}$

On CAS

- Spreadsheet → Catalog → randNorm(sd, mean, n) where n is the number of samples. Show histogram with Histogram key in top left
- To calculate parameters of a dataset: Calc \rightarrow One-variable

Normal distributions

$$Z = \frac{X - \mu}{\sigma}$$

Normal distributions must have area (total prob.) of $1 \implies \int_{-\infty}^{\infty} f(x) dx = 1$ mean = mode = median

Always express z as +ve. Express confidence interval as ordered pair.

Central limit theorem

If X is randomly distributed with mean μ and sd σ , then with an adequate sample size n the distribution of the sample mean \overline{X} is approximately normal with mean $E(\overline{X})$ and $\operatorname{sd}(\overline{X}) = \frac{\sigma}{\sqrt{n}}$.

Confidence intervals

- Point estimate: single-valued estimate of the population mean from the value of the sample mean \overline{x}
- Interval estimate: confidence interval for population mean μ
- C% confidence interval \implies C% of samples will contain population mean μ

95% confidence interval

For 95% c.i. of population mean μ :

$$x \in \left(\overline{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}\right)$$

where:

- σ is the population sd
- n is the sample size from which \overline{x} was calculated

 $[\]overline{x}$ is the sample mean

On CAS

Menu \rightarrow Stats \rightarrow Calc \rightarrow Interval Set Type = One-Sample Z Int and select Variable

Margin of error

For 95% confidence interval of μ :

$$M = 1.96 \times \frac{\sigma}{\sqrt{n}}$$
$$\implies n = \left(\frac{1.96\sigma}{M}\right)^2$$

=

Always round n up to a whole number of samples.

General case

For C% c.i. of population mean μ :

$$x \in \left(\overline{x} \pm k \frac{\sigma}{\sqrt{n}}\right)$$

where k is such that $\Pr(-k < Z < k) = \frac{C}{100}$

Confidence interval for multiple trials

For a set of n confidence intervals (samples), there is 0.95^n chance that all n intervals contain the population mean μ .

2 Hypothesis testing

Note hypotheses are always expressed in terms of population parameters

Null hypothesis H_0

Sample drawn from population has same mean as control population, and any difference can be explained by sample variations.

Alternative hypothesis H_1

Amount of variation from control is significant, despite standard sample variations.

p-value

$$p = \Pr(\overline{X} \leq \mu(H_1))$$
$$= 2 \cdot \Pr(\overline{X} <> \mu(H_1) | \mu = 8)$$

Probability of observing a value of the sample statistic as significant as the one observed, assuming null hypothesis is true.

p	Conclusion
> 0.05	insufficient evidence against H_0
< 0.05 (5%)	good evidence against H_0
< 0.01 (1%)	strong evidence against H_0
$< 0.001 \ (0.1\%)$	very strong evidence against H_0

Statistical significance

Significance level is denoted by α .

If $p < \alpha$, null hypothesis is **rejected**

If $p > \alpha$, null hypothesis is **accepted**

z-test

Hypothesis test for a mean of a sample drawn from a normally distributed population with a known standard deviation.

On CAS	
$\mathrm{Menu} \to \mathrm{St}$	atistics \rightarrow Calc \rightarrow Test.
Select One-	Sample Z-Test and Variable, then input:
μ cond:	same operator as H_1
μ_0 :	expected sample mean (null hypothesis)
σ :	standard deviation (null hypothesis)
\overline{x} :	sample mean
n:	sample size

One-tail and two-tail tests

One tail

- μ has changed in one direction
- State " $H_1: \mu \leq$ known population mean"

Two tail

- Direction of $\Delta \mu$ is ambiguous
- State " $H_1: \mu \neq$ known population mean"

For two tail tests:

$$p\text{-value} = \Pr(|\overline{X} - \mu| \ge |\overline{x}_0 - \mu|)$$
$$= \left(|Z| \ge \left|\frac{\overline{x}_0 - \mu}{\sigma \div \sqrt{n}}\right|\right)$$

Modulus notation for two tail

 $\Pr(|\overline{X} - \mu| \ge a) \implies$ "the probability that the distance between $\overline{\mu}$ and μ is $\ge a$ "

Inverse normal

On CAS

invNormCdf("L", $\alpha,~\frac{\sigma}{n^{\alpha}},~\mu)$

Errors

Type I error H_0 is rejected when it is **true**

Type II error H_0 is **not** rejected when it is **false**