5c3b3fc4746850c036438c43b399f75a809cd91c
1# Differential calculus
2
3## Limits
4
5$$\lim_{x \rightarrow a}f(x)$$
6
7$L^-$ - limit from below
8
9$L^+$ - limit from above
10
11$\lim_{x \to a} f(x)$ - limit of a point
12
13- Limit exists if $L^-=L^+$
14- If limit exists, point does not.
15
16Limits can be solved using normal techniques (if div 0, factorise)
17
18## Limit theorems
19
201. For constant function $f(x)=k$, $\lim_{x \rightarrow a} f(x) = k$
212. $\lim_{x \rightarrow a} (f(x) \pm g(x)) = F \pm G$
223. $\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G$
234. ${\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0$
24
25Corollary: $\lim_{x \rightarrow a} c \times f(x)=cF$ where $c=$ constant
26
27## Solving limits for $x\rightarrow\infty$
28
29Factorise so that all values of $x$ are in denominators.
30
31e.g.
32
33$$\lim_{x \rightarrow \infty}{{2x+3} \over {x-2}}={{2+{3 \over x}} \over {1-{2 \over x}}}={2 \over 1} = 2$$
34
35
36## Continuous functions
37
38A function is continuous if $L^-=L^+=f(x)$ for all values of $x$.
39
40## Gradients of secants and tangents
41
42Secant (chord) - line joining two points on curve
43
44Tangent - line that intersects curve at one point
45
46given $P(x,y) \quad Q(x+\delta x, y + \delta y)$:
47gradient of chord joining $P$ and $Q$ is ${m_{PQ}}={\operatorname{rise} \over \operatorname{run}} = {\delta y \over \delta x}$
48
49As $Q \rightarrow P, \delta x \rightarrow 0$. Chord becomes tangent (two infinitesimal points are equal).
50
51Can also be used with functions, where $h=\delta x$.
52
53## First principles derivative
54
55$$f^\prime(x) = \lim_{\delta x \rightarrow 0}{\delta y \over \delta x}={dy \over dx}$$
56
57$$m_{\operatorname{tangent}}=\lim_{h \rightarrow 0}f^\prime(x)$$
58
59
60
61$$m_{\operatorname{chord PQ}}=f^\prime(x)$$
62
63first principles derivative:
64$${m_{\operatorname{tangent at P}} =\lim_{h \rightarrow 0}}{{f(x+h)-f(x)}\over h}$$
65
66## Gradient at a point
67
68Given point $P(a, b)$ and function $f(x)$, the gradient is $f^\prime(a)$
69
70
71## Derivatives of $x^n$
72
73$${d(ax^n) \over dx}=anx^{n-1}$$
74
75If $x=$ constant, derivative is $0$
76
77If $y=ax^n$, derivative is $a\times nx^{n-1}$
78
79If $f(x)={1 \over x}=x^{-1}, \quad f^\prime(x)=-1x^{-2}={-1 \over x^2}$
80
81If $f(x)=^5\sqrt{x}=x^{1 \over 5}, \quad f^\prime(x)={1 \over 5}x^{-4/5}={1 \over 5 \times ^5\sqrt{x^4}}$
82
83If $f(x)=(x-b)^2, \quad f^\prime(x)=2(x-b)$
84
85$$f^\prime(x)=\lim_{h \rightarrow 0}{{f(x+h)-f(x)} \over h}$$
86
87## Derivatives of $u \pm v$
88
89$${dy \over dx}={du \over dx} \pm {dv \over dx}$$
90where $u$ and $v$ are functions of $x$
91
92## Euler's number as a limit
93
94$$\lim_{h \rightarrow 0} {{e^h-1} \over h}=1$$
95
96## Chain rule for $(f\circ g)$
97
98$${dy \over dx} = {dy \over du} \cdot {du \over dx}$$
99$${d((ax+b)^n) \over dx} = {d(ax+b) \over dx} \cdot n \cdot (ax+b)^{n-1}$$
100
101Function notation:
102
103$$(f\circ g)^\prime(x)=f^\prime(g(x))g^\prime(x),\quad \mathbb{where}\hspace{0.3em} (f\circ g)(x)=f(g(x))$$
104
105Used with only one expression.
106
107e.g. $y=(x^2+5)^7$ - Cannot reasonably expand
108Let $u-x^2+5$ (inner expression)
109${du \over dx} = 2x$
110$y=u^7$
111${dy \over du} = 7u^6$
112
113
114## Product rule for $y=uv$
115
116$${dy \over dx} = u{dv \over dx} + v{du \over dx}$$
117
118Surds can be left on denomintaors.
119
120## Quotient rule for $y={u \over v}$
121
122$${dy \over dx} = {{v{du \over dx} - u{dv \over dx}} \over v^2}$$
123
124If $f(x)={u(x) \over v(x)}$, then $f^\prime(x)={{v(x)u^\prime(x)-u(x)v^\prime(x)} \over [v(x)]^2}$
125
126If $y={u(x) \over v(x)}$, then derivative ${dy \over dx} = {{v{du \over dx} - u{dv \over dx}} \over v^2}$
127
128## Logarithms
129
130$$\log_b (x) = n \quad \operatorname{where} \hspace{0.5em} b^n=x$$
131
132Wikipedia:
133
134> the logarithm of a given number $x$ is the exponent to which another fixed number, the base $b$, must be raised, to produce that number $x$
135
136### Logarithmic identities
137
138$\log_b (xy)=\log_b x + \log_b y$
139$\log_b x^n = n \log_b x$
140$\log_b y^{x^n} = x^n \log_b y$
141
142### Index identities
143
144$b^{m+n}=b^m \cdot b^n$
145$(b^m)^n=b^{m \cdot n}$
146$(b \cdot c)^n = b^n \cdot c^n$
147${a^m \div a^n} = {a^{m-n}}$
148
149### $e$ as a logarithm
150
151$$\operatorname{if} y=e^x, \quad \operatorname{then} x=\log_e y$$
152$$\ln x = \log_e x$$
153
154### Differentiating logarithms
155$${d(\log_e x)\over dx} = x^{-1} = {1 \over x}$$
156
157## Derivative rules
158
159| $f(x)$ | $f^\prime(x)$ |xs
160| ------ | ------------- |
161| $\sin x$ | $\cos x$ |
162| $\sin ax$ | $a\cos ax$ |
163| $\cos x$ | $-\sin x$ |
164| $\cos ax$ | $-a \sin ax$ |
165| $\tan f(x)$ | $f^2(x) \sec^2f(x)$ |
166| $e^x$ | $e^x$ |
167| $e^{ax}$ | $ae^{ax}$ |
168| $ax^{nx}$ | $an \cdot e^{nx}$ |
169| $\log_e x$ | $1 \over x$ |
170| $\log_e {ax}$ | $1 \over x$ |
171| $\log_e f(x)$ | $f^\prime (x) \over f(x)$ |
172| $\sin(f(x))$ | $f^\prime(x) \cdot \cos(f(x))$ |
173| $\sin^{-1} x$ | $1 \over {\sqrt{1-x^2}}$ |
174| $\cos^{-1} x$ | $-1 \over {sqrt{1-x^2}}$ |
175| $\tan^{-1} x$ | $1 \over {1 + x^2}$ |
176
177<!-- $${d(ax^{nx}) \over dx} = an \cdot e^nx$$ -->
178
179Reciprocal derivatives:
180
181$${{dy \over dx} \over 1} = dx \over dy$$
182
183## Differentiating $x=f(y)$
184
185Find $dx \over dy$. Then $dx \over dy = {1 \over {dy \over dx}} \therefore {dy \over dx} = {1 \over {dx \over dy}}$.
186
187$${dy \over dx} = {1 \over {dx \over dy}}$$
188
189## Second derivative
190
191$$f(x) \implies f^\prime (x) \implies f^{\prime\prime}(x)$$
192
193$$\therefore y \implies {dy \over dx} \implies {d({dy \over dx}) \over dx} \implies {d^2 y \over dx^2}$$
194
195Order of polynomial $n$th derivative decrements each time the derivative is taken
196
197### Points of Inflection
198
199*Point of inflection* - point of maximum gradient (either +ve or -ve). Occurs where $f^{\prime\prime} = 0$
200
201- if $f^\prime (a) = 0$ and $f^{\prime\prime}(a) > 0$, then point $(a, f(a))$ is a local min (curve is concave up)
202- if $f^\prime (a) = 0$ and $f^{\prime\prime} (a) < 0$, then point $(a, f(a))$ is local max (curve is concave down)
203- if $f^{\prime\prime}(a) = 0$, then point $(a, f(a))$ is a point of inflection
204- - if also $f^\prime(a)=0$, then it is a stationary point of inflection
205
206![](graphics/second-derivatives.png)
207
208## Antidifferentiation
209
210$$y={x^{n+1} \over n+1} + c$$
211
212## Integration
213
214$$\int f(x) dx = F(x) + c$$
215
216- area enclosed by curves
217- $+c$ should be shown on each step without $\int$
218
219$$\int x^n = {x^{n+1} \over n+1} + c$$
220
221### Integral laws
222
223$\int f(x) + g(x) dx = \int f(x) dx + \int g(x) dx$
224$\int k f(x) dx = k \int f(x) dx$
225
226| $f(x)$ | $\int f(x) \cdot dx$ |
227| ------------------------------- | ---------------------------- |
228| $k$ (constant) | $kx + c$ |
229| $x^n$ | ${1 \over {n+1}}x^{n+1} + c$ |
230| $a x^{-n}$ | $a \cdot \log_e x + c$ |
231| $e^{kx}$ | ${1 \over k} e^{kx} + c$ |
232| $e^k$ | $e^kx + c$ |
233| $\sin kx$ | $-{1 \over k} \cos (kx) + c$ |
234| $\cos kx$ | ${1 \over k} \sin (kx) + c$ |
235| ${f^\prime (x)} \over {f(x)}$ | $\log_e f(x) + c$ |
236| $g^\prime(x)\cdot f^\prime(g(x)$ | $f(g(x))$ (chain rule)|
237| $f(x) \cdot g(x)$ | $\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx$ |
238| ${1 \over {ax+b}}$ | ${1 \over a} \log_e (ax+b) + c$ |
239| $(ax+b)^n$ | ${1 \over {a(n+1)}}(ax+b)^{n-1} + c$ |
240
241## Applications of antidifferentiation
242
243- $x$-intercepts of $y=f(x)$ identify $x$-coordinates of stationary points on $y=F(x)$
244- the nature of any stationary point of $y=F(x)$ is determined by the way the sign of the graph of $y=f(x)$ changes about its $x$-intercepts
245- if $f(x)$ is a polynomial of degree $n$, then $F(x)$ has degree $n+1$
246
247To find stationary points of a function, substitute $x$ value of given point into derivative. Solve for ${dy \over dx}=0$. Integrate to find original function.
248
249## Rates
250
251### Related rates
252
253$${da \over db} \quad \text{change in } a \text{ with respect to } b$$
254
255#### Gradient at a point on parametric curve
256
257$${dy \over dx} = {{dy \over dt} \over {dx \over dt}} \> \vert \> {dx \over dt} \ne 0$$
258
259$${d^2 \over dx^2} = {d(y^\prime) \over dx} = {{dy^\prime \over dt} \over {dx \over dt}} \> \vert \> y^\prime = {dy \over dx}$$
260
261# Rational functions
262
263$$f(x) = {P(x) \over Q(x)} \quad \text{where } P, Q \text{ are polynomial functions}$$
264
265## Addition of ordinates
266
267- when two graphs have the same ordinate, $y$-coordinate is double the ordinate
268- when two graphs have opposite ordinates, $y$-coordinate is 0 i.e. ($x$-intercept)
269- when one of the ordinates is 0, the resulting ordinate is equal to the other ordinate
270