1 COMPLEX NUMBERS

Year 12 Specialist

Andrew Lorimer

1 Complex numbers Properties
(C:{a—l—bi:a,beR} |2122|=|Z1||22|
al_lal
Cartesian form: a -+ bi 29| | 22|
Polar form: rcis6 |21 + 22| < |21] + |22]
Operations Multiplicative inverse
Cartesian Polar 1 a—bi
21t 20 | (ate)(btd)i convert to a + bi ai +0?
z
+k X 2z krcisf = Wa
ka & kbi .
—k %z krcis(6 £ ) = rcis(—0)
2122 | ac—bd+ (ad +be)i | rirgcis(fy + 62)
21+ 2 | (2172) + | 22)? (%) cis(61 — 6-) Dividing over C
Scalar multiplication in polar form 21 22t
= Z1%9
22
For k € R™: 1z
. . PAE
k(rcisf) = krcisf
_ (a+bi)(c—di)
For k e R™: 2+ d?

then rationalise denominator
0—7m |0<Arg(z)<m
k(rcisf) = krcis

0+m |[—m<Arg(z) <0 Polar form
Conjugate conjg(a+bi) rcisf = r (cos + isinf)
e r=|z| = \/Re(z)? + Im(z)?
Z=aFbi
— rcis(—0) o 0 = arg(z) arg(a+bi)
e Arg(z) € (—m,m) (principal argument)
Properties
e Multiple representations:
nE =Tt rcis @ = rcis(6 + 2nw) with n € Z revolutions
Z1 23 =21 22 e cism = —1, cisO0=1
kz=kzVEkeR
#Z = (a+ bi)(a — bi) compToTrig(a+bi) <= cExpand{r-cisX}
— g2 42
= |2?

de Moivres’ theorem

Modulus

(rcis@)™ = r" cis(nf) where n € Z

2| = |Oz| = Va2 + b2
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Complex polynomials Argand planes
Include + for all solutions, incl. imaginary Im(z)
224 a? = 2% — (ai)? )
Sum of squares z=a+bi
= (z + ai)(z — ai) br-——- ‘ ]
. =rcisf
Sum of cubes  a®4b% = (a £b)(a® Fab+b?) r 1
Division P(z) = D(2)Q(%) + R(z) |
9 |
Remainder Let @ € C. Remainder of u Re(z)
theorem P(z) + (z — a) is P(a)
Factor theorem 2z — « is a factor of P(z) < e Multiplication by i = CCW rotation of 3
Pla)=0foraecC = | A

o Addition: z1 + 29 = Oz1 + Ozy
Conjugate root P(z)=0atz=a+xbi (=

theorem both z; and Z7 are solutions)

Sketching complex graphs

Factor theorem .
Linear

If Bz + a is a factor of P(z),
then P(_g) _o. e Re(z) = c or Im(z) = ¢ (perpendicular bisector)

B
e Im(z) = mRe(z)

o |z+a|l=|z+b = 2(a—b)x="1b—a?
nth roots _ o
Geometric: equidistant from a, b
nth roots of z = rcisf are:

Circles
1. 0+ 2km
z =rn cis " o |z —21]? = 2|z + 2)?

Same modulus for all solutions

o z—(a+bi))=c = (x—a)’+(y—b)?*=c

27 .
Arguments separated by <* .. there are n roots Loci Arg(2) < 6

If one square root is a + bi, the other is —a — bi Im(2)

Give one implicit nth root 2z, function is z = 27

Solutions of 2" = a where a € C lie on the circle

NE

2
22 +y? = (|a|717) (intervals of 2T) 4= Re(z)

For 0 = az? + bz + ¢, use quadratic formula:

L —b+vb% —4dac Rays Arg(z —b) =

2a
Im(z)
Fundamental theorem of algebra
A polynomial of degree n can be factorised into n linear
. 1
factors in C: 1 : Re(z)
8
= PR)=a(z—a1)(z—a)(z—a3)...(z —ay) lz=2] =]z - (1+19)]

Arg(z—i—i):% -1

where a7, @2, as,...,a, € C
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2 VECTORS

2 Vectors

Y

Column notation

x . .
<~ 11+ 1Y)

Y

To —
2 ! between A(x1,y1), B(22,y2)

Y2—UN
Scalar multiplication
k- (zi+yj) = ki + kyj
For k € R™, direction is reversed
Vector addition

T=—1+2]

7=2i+2]

(t+yjg) £ (ai+bj)=(rxa)i+ (yL£b)j
e Draw each vector head to tail then join lines
e Addition is commutative (parallelogram)

—\
ceu—v=u+(—v) = AB=b-a

Magnitude

(i +yjg)| = Va2 +y?

Parallel vectors
u||v <= u = kv where k € R\ {0}

For parallel vectors a and b:

|a||b] if same direction

—|al|b] if opposite directions
Perpendicular vectors
alb < a-b=0 (since cos90 =0)

Unit vector |a| =1

R 1
a=—a
la

:a.|a|

Scalar product a - b
b
0

a

a~b:a1b1 +a2b2

|a||b| cos d

(0 <0 <) - from cosine rule

On CAS: dotP([a b c], [d e f])

Properties

1. k(a-b) = (ka)-b=a- (kb)

Angle between vectors

cos ) — a-b - a1b1+a2b2
|al|b] |al|b]

On CAS: angle([a b c]l, [a b cl)

(Action — Vector —Angle)
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Angle between vector and axis Collinear points

Fora = a1t + asj + ask which makes angles «, 8,y with ) ] )
> 3 points lie on the same line
positive side of z,y, z axes:

B
/Q/h/
B_GQ as A . C

ai
cosa=—, cosf=+=, cosy= — ‘ b
al al al —
0
On CAS: angle([a b cl, [1 0 0)
for angle between at + bj + ck and z-axis
Projections & resolutes e.g. Prove that

A\ —\
AC =mAB <= c=(1l—m)a+mb

N
= c¢c=0A+ AC

—\ —\
=0A+mAB
=a+m(b—a)

|| b (vector projection/resolute) = a+mb—ma

=(1-m)a+mb
a-b
u = |b|2b
() ()
- T —\ - —\
|| || Also, = OC = \OA + uOB
=(a-b)b where A +pu =1

A
If C lies along AB, — O0<pu<1
1 b (perpendicular projection)

Parallelograms

RN
Diagonals OB, AC' bisect each other
Rectangular (||, L) components

a-b a-b

If diagonals are equal length, it is a rectangle

Vector proofs

—\ —\ —\ —\ AN —\
|OB|? + |CA|> = |OA]? + |AB|?> + |CB|? + |OC|?
Concurrent: intersection of > 3 lines

e Areca=c-a
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Perpendicular bisectors of a triangle z

The three bisectors meet at the : Bisector BC '

. = ;
circumcenter Z where |ZA| = - A

—\ N
\ZB| = |ZC).

Parametric vectors

C-. Bisector AB
Parametric equation of line through point (zo,yo, 20)

and parallel to at + b5 + ck is:

Perpendicular bisector theorem

If a point P lies on the perpendicular bisector of
L= . L . r=x,+a-t
line XY, then P is equidistant from the endpoints

of the bisected segment y=yo+b-t

SN N z=2z +c-t
i.e. |PX|=|PY|

, 3 Circular functions
Useful vector properties

®a|b—= b=kaforsomekeR\ {0} sin(bz) or cos(bx): period = 2%

e If @ and b are parallel with at least one point in tan(nx): period = 7

common, then they lie on the same straight line ~ asymptotes at x = W |keZ

ealb < a-b=0

e a-a=lal? Reciprocal functions
Linear dependence Cosecant
a,b, c are linearly dependent if they are }f and: 1

cosec = —— | sinf # 0
sin 6
0=ka+1b+mec
s.e=ma+nb (simultaneous) e Domain =R\ nr:n € Z

a,b, and c are linearly independent if no vector in the

set is expressible as a linear combination of other vectors Range =R\ (-1,1)

in set, or if they are parallel.

Turning points at § = (2"%1)” |neZ
Three-dimensional vectors

Right-hand rule for axes: z is up or out of page. Asymptotes at 0 =nw |n €Z
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Secant

‘| secx

1
secld = —— | cosf #0
cos

Domain:R\w:neZ}

Range =R\ (—1,1)
e Turning points at 6 =nw|n € Z

Asymptotes at 0§ = w |neZ

Cotangent

cot x ! tanx

0
C?S | sinf # 0
sin 6

cotf =

e Domain =R\ {nr:n € Z}

e Range =R

e Asymptotes at 0 =nw|n €Z

Symmetry properties

sec(m £ x) = —secx
sec(—x) = secx
cosec(m £+ x) = F cosecx
cosec(—x) = — cosec x
cot(m £ x) = +cotx
cot(—x) = —cotx
Complementary properties
T
sec (5 - :r) = cosec x
i
cosec (5 — x) =secx
t(5-x) =t
cot (- —z) =tanwx
2
7r
tan (f - x) = cotx
2

Pythagorean identities

1+ cot? x = cosec? z, where sinz # 0

1 +tan®z =sec?z, where cosz #0

Compound angle formulas
cos(z £y) =cosx + cosy Fsinzsiny

sin(z £ y) =sinzcosy + coszsiny

tan(z + 1) tanx £ tany
an(x ==
4 1 Ftanztany

Double angle formulas

2 2

cos2xr = cos“x —sin“ x
=1-2sin’z

=2cos?z—1

sin 2x = 2sinx cos

2tanz
tan2x = ———
1 —tan“x
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Inverse circular functions

Y
(—1,71')

H‘R

0.5

Inverse functions: f(f~!(x)) = = (restrict domain)

sin~!:[-1,1] - R, sintz=y

where siny =z, y € [, §]

cos ti[-1,1] = R, costz=y

where cosy =z, y € [0, 7]

tan ! :R—>R, tan lz=y
where tany =z, y € (—g, %)

Mensuration

Major Sector

Major Segment

Minor Segment,

5 0

Sectors: A = nr
2T

2
Segments: A = % (0 — sin )

Chords: crdf = \/(1 —cosh)? +sin 0
=+v2—2cosf

. 0
= 2sin (2)

4 Differential calculus

dy dy
’ _ Y9 _ %Y
i) = sz—0 0z dx
Limits

lim f(z)
L=, LT limit from below/above

lim,, f(z) limit of a point

For solving x — oo, put all z terms in denominators

e.g.
20+3 242 2
S1-2 1

lim
z—o00 I — 2

Limit theorems

1. For constant function f(z) =k, lim,_,, f(z) =k
2. lim, . (f(z) £ g(x) =F G

3. limg o (f(z) X g(x) =F x G

4. - limg_y, ¢ X f(x) = ¢F where ¢ = constant

5. limy_sa L””; =L G#0

6. f(z) is continuous < L~ =L* = f(x)Vx

Gradients

Secant (chord) - line joining two points on curve

Tangent - line that intersects curve at one point

Points of Inflection

Stationary point - i.e. f'(x) =0

Point of inflection - max |gradient| (i.e. f” =0)
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Strictly increasing/decreasing

For x5 and z; where x5 > x1:
strictly increasing

where f(x2) > f(x1) or f'(z) >0
strictly decreasing

where f(x2) < f(z1) or f'(z) <0

Endpoints are included, even where Z—Z =

Second derivative

f@) —f'(x) — f"(x)

dy d2y
Hi _> _
— v dx dx?

Order of polynomial nth derivative decrements each

time the derivative is taken

Slope fields

"I

\ N

AR -/
TR S
\\ VN -

e f'(a) =0, f"(a) >0

local min at (a, f(a)) (concave up)

o f'(a)=0, f"(a) <0

local max at (a, f(a)) (concave down)

. Fa)=0
point of inflection at (a, f(a))

o /"(a)=0, f'(a) =0

stationary point of inflection at (a

Implicit Differentiation

Used for differentiating circles etc.

If p and ¢ are expressions in z and y such that p = ¢,

for all  and y, then:

dp _dg
de ~ dx

dp_@
dy dy

Action — Calculation

impDiff (y~2+ax=5, x, y)

Function of the dependent variable

dy _

dy __ dr __ .
If 22 =g(y), then GZ =1+ 28 = (y)

sides to solve equation. Only add c on one side. Express

Integrate both

e as A.

Reciprocal derivatives

1 dzr
—=—
o dy

Parametric equations

dy _dy do
dt  dr dt
()
dy . dx
e = provided 7 #0

(%)
ey ()
" (%)

Integration

[ @) -a

where y' = —y
dx

F(z)+c¢ where F'(z) = f(2)
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d? d?
£Y <0 - (inflection)

Rising (concave up)

Rising (concave down)

dax? dx?
Rising inflection point

dy

Falling (concave up)

Falling (concave down)

™~ N

Falling inflection point

dy
%—0 \ /

Local minimum

Local maximum

~

Stationary inflection point

Properties

/abf(a:)dx:/:f(a:)dx+/cbf(x)da:

/aaf(:c)dxzo
/abk-f(x)dx:k:/abf(x)dx

/abf(x)ig(x) dx:/abf(x) dxi/abg(x) da

/abf(x)dx_—/baf(x)d;z:

Integration by substitution

[ do= [ 5w du

f(u) must be 1:1 = one z for each y

e.g. for y = /(2x+1)\/x+4-d:v

letu=xo+4
d7u
dx

—rx=u—4

=1

then y = /(2(u —4)+ 1)u% - du

(solve as normal integral)

Definite integrals by substitution

For f; f(x)de

9% - dw, evaluate new a and b for f(u) - du.

Trigonometric integration

sin™ z cos" x - dx

m is odd: m =2k + 1 where k € Z

2k+1

= sin r = (sin® z)*sinz = (1 — cos? z)* sinz

Substitute © = cosx

n is odd: n =2k + 1 where k € Z

= cos? ! 2 = (cos® x)* cosz = (1 —sin® z)* cos

Substitute u = sin x

m and n are even: use identities...

e sin®z = (1 — cos2z)
e cos’z = 1(1+ cos2z)

e sin2x = 2sinx cosx

Separation of variables

If

Q.‘&
SN

= [(2)g(y), then:

/f(x)dw:/ﬁdy

4 DIFFERENTIAL CALCULUS
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Partial fractions

Regions not bound by y =0

b
To factorise f(z) = aiﬁ V= 71'/ f(x)? = g(x)® d
5 A B C ‘
Y R . where Jte) = 9(z)
Multiply by (a- 8- 7):
5= BvA + ayB + aBC @) Length of a curve

Substitute x = {a, 8,7} into (2) to find denominators

Repeated linear factors

plz) A Ay A,

@—ap @-a @-a? T w-ar

Irreducible quadratic factors

3r—4 A L Bzt C
(22 —3)(22+5) 2x—3 2245

e.g.

Action — Transformation:
expand (..., x)

To reverse, use combine(...)

d
Integrating 9 _ g(y)
dx

if%zg(y), thenx:/—dy

9(y)

Graphing integrals on CAS

In main: Interactive — Calculation — [
For restrictions, Define f(x)=... then

fFx)|x>. ..

Solids of revolution

Approximate as sum of infinitesimally-thick cylinders

Rotation about x-axis

r=b
V= 7r/ f(zx)? dx

T=a

Rotation about y-axis

y=>b
V= ﬂ'/ z? dy
y=a

For length of f(x) from z =a — = =b:

b d 2
Cartesian L= / 1+ (y) dx
o dx

b 2 2
. dz dy
P t L= — | + (=) dt
arametre /a \/( dt > ( dt )

a) Evaluate formula

b) Interactive — Calculation — Line — arcLen

Applications of antidifferentiation

e z-intercepts of y = f(z) identify z-coordinates of

stationary points on y = F(x)

e nature of stationary points is determined by sign

of y = f(x) on either side of its z-intercepts

e if f(x) is a polynomial of degree n, then F(z) has
degree n + 1

To find stationary points of a function, substitute x
value of given point into derivative. Solve for % = 0.

Integrate to find original function.

Rates

Gradient at a point on parametric curve

dy dy  dx  dx )
il i | 7 # 0 (chain rule)

& dy) dy | de , dy

A2~ dz dt ~dt 'V T dx

Rational functions

flx) = L) where P, Q are polynomial functions

10
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Euler’s method

flx+h) - fz)

h ~ f'(z) for small h
= flz+h) = f(x)+hf(z)
dy :
If T g(z) with xg = a and yo = b, then:

Tpi1 =Zp +h

Yn+1 = Yn + hg(xn)

d?y | >0 = underestimate (concave up)

da? .
<0 = overestimate (concave down)

correct solution

Menu — Sequence — Recursive

To generate x-values:

e Enter a,41 = a, + h where h is the step size

(input a,, from menu bar)
e In agp, set the initial value xgy as a constant
To generate y-values:
dy . .
e In b, 1, enter Iz’ replacing x with a,,
oz

e Set by = y(xp) as a constant

To view table of values, tap table icon (top left)

To compare approximations with actual values, en-

:f@dx

terin ¢p41 = apt1— f(an+1) where f(z) 7
2

Fundamental theorem of calculus

If f is continuous on [a, b], then

/abf(x) dz =

F(b) — Fla)

where F = [ fdx

Differential equations

Order - highest power inside derivative

Degree - highest power of highest derivative
dy? \°

e.g. <yx>
42

To verify solutions, find g—ﬁ from y and sub-

order 2, degree 3

stitute into original

DE Method
W _ fa) y_/f
dz (x) + ¢ where F'(x) = f(z)
/f
2 )+c¢ where F'(z) = f(x)
d
4= jw) y—//f ydo = [ (Pla)+ ) da
G(r) +cx+d
where G'(z) = F(z)
dr. 1
dy  g(y)
i”—g(y) 9(y)
dx =F(y)+c
where F’(y):ﬁy)
1 dy
fla) = —=- ==
W _ fwew) o,
/f(x)dmz @dy

Mixing problems

dm) _ (dm) _ (dm
dt ) N dt in dt out

11
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Derivatives Antiderivatives
flx)  f(x) f@) [ f(x)-do
sinx cosz k (constant) kz+c
. n 1 n+1
sinar acosax " ——ux
n+1
cosx —sinx ax™™ a-log, |z|+ ¢
cosar —asinax ! 1 log,(ax + b) + ¢
i az+b a o
tan f(z)  f?(x)sec? f(x) (ax + b)™ m(am +0)" T +eln#£1
. . 1
e’ e” (ax +b)~1  —log, |ax +b| + ¢
a
e  qe?® ek le’” +c
k
ax™® an-e"* ek eFr4ec
1 =1
log, © " sin kx s cos(kx) + ¢
log, ax 1 L
Se . cos kx z sin(kx) + ¢
f'( 1
log, f(z) f((ac)) sec? kx z tan(kx) + ¢
1
sin(f(z)) f'(x)-cos(f(x)) sin™! L 4 e |a>0
a2 _ l'2 a
_ 1 —1
-1 7
sin ¥ —— -1z
a2 - @ a+c|a>0
-1
1 a — x
cos” i =% tan"'Z4¢
1 /
—1 f'(z)
tan™!' z T2 o log. f(z) +c
1
%f(y) 7z (reciprocal) [ flu) -2 de [ f(u)-du (substitution)
dy
o e () @) 9@ [IF@) - g@de + [l (@) f(z))dx
du dv
Y Ve~ Yag - in—1(* -1 () _
» 2 (quotient rule)  Note sin (a) + cos <a) is constant V& € (—a,a)
flg(x))  f'(g(x)) - g'(x)

Index identities

b7n,+71, — bm . bn
(bm)n —pmn
b-o)"=b"-c"
am =g =gm "

Logarithmic identities

log, (zy) = log,, « + log,, y
x
o (£ = tors (o) ~ 0w 1)
log, ™ = nlog, x

log, y‘””n =z"log, y

12
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5 Kinematics & Mechanics Vector calculus

. Derivative
Constant acceleration

Let r(t) = z(t)i + y(¢)(j). If both x(t) and y(t) are
differentiable, then:

e Position - relative to origin

e Displacement - relative to starting point
r(t) = 2(t)i + y(t)J

Velocity-time graphs

Displacement: signed area 6 Dynamics

Distance travelled: total area
Resolution of forces

lerati Pz dv dv d (1, Resultant £ . ¢ .
acceleration= — = — =p— = — [ =
72 7 o dr \3 esultant force is sum of force vectors
no In angle-magnitude form
= t
v=uta x Cosine rule: 2 = a2 4+ bv® — 2abcosh
v2 = u? 4 2as t . a b c
Sine rule:

s=iw+ut a sinA sinB  sinC

_ 142
§ = ut+ zat v In i—j form

s =uvt — %at2 U
Vector of a N at 0 to = axis is equal to acosfi+asindj.
Aposition Convert all force vectors then add.
Vavg = At

To find angle of an as + bj vector, use § = tan~! g

speed = |velocity]|

— ]2 2 2
=4\/v; T Uyt vz

Resolving in a given direction

The resolved part of a force P at angle 6 is has magni-

Distance travelled between ¢t = a — ¢t = b: tude P cosf
b 2 2 To convert force ||OA to angle-magnitude form, find
= e WY 4t 2D 8
a dt * dt (2D) component | OA then:
t=b
B dx . 2 2
_/t:a Edt (linear) r|—\/(|OA) +(J_OA)
Shortest distance between 7(to) and r(t;): 0 — tan—" J|-§;14

= |r(t1) — r(t2)]
Newton’s laws

Vector functions 1. Velocity is constant without X F'
r(t) =i +yj + zk 2. Lpx UF = F =ma

e If 7(t) = position with time, then the graph of 3. Equal and opposite forces

endpoints of r(t) = Cartesian path
e Domain of »(¢) is the range of z(t) Weight

e Range of () is the range of y(¢) A mass of m kg has force of mg acting on it

13
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Momentum p

p=mu (units kg m/s or Ns)

Reaction force R

e With no vertical velocity, R = mg
e With vertical acceleration, |R| = m|a| — mg

o With force F' at angle 6, then R = mg — F'sinf

Friction

Fr=uR (friction coefficient)

Inclined planes
F = |F|cosbi+ |F|sindj
e Normal force R is at right angles to plane

e Let direction up the plane be ¢ and perpendicular

to plane j

mg Mgsin 0

Connected particles

15

“Mag

14

e Suspended pulley: T} =T,

mp —mg
la| = g where m; accelerates down

mi + Mo

mig —T =mia
— M1g—mag = Mia+maa

T —mag = maa

String pulling mass on inclined pane: Resolve

parallel to plane
T —mgsinf = ma
Linear connection: find acceleration of system

first

mag
mi+ma

Pulley on right angle: a = where my is

suspended (frictionless on both surfaces)

Pulley on edge of incline: find downwards force

W5 and components of mass on plane

In this example,

note 1y # Ts: ;
Equilibrium
A B
— = = _C (Lami’s theorem)
sina sinb sinc

2 =a® +b* —2abcosh (cosine rule)
Three methods:
1. Lami’s theorem (sine rule)

2. Triangle of forces (cosine rule)

3. Resolution of forces (X F = 0 - simultaneous)

To verify: Geometry tab, then select points with
normal cursor. Click right arrow at end of toolbar

and input point, then lock known constants.

Variable forces (DEs)

d2x

dv

dv

d

dt ~ dz  dw

)

dt?

2

(
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7 Statistics

Continuous random variables

A continuous random variable X has a pdf f such that:
1. f(z) > OVz

2. [Z flx)de=1

Var(X) = E [(X — 1)?]

Pr(ch):/iC f(z) dz

Two random variables X,Y

If X and Y are independent:

E(aX 4+ bY) = a E(X) + bE(Y)

Var(aX + bY + ¢) = a® Var(X) + b Var(Y)

Linear functions X — aX +5b

Pr(Y <y)=Pr(aX +b<y)
=Pr (X <
u=b

y—2>b
a

_ / f(x) dz

— 00

Mean: E(aX +b) =aE(X)+0

Variance: Var(aX + b) = a* Var(X)

Expectation theorems

For some non-linear function g, the expected value

E(g(X)) is not equal to g(E(X)).

E(X?) = Var(X) - [B(X)]’

E(X") =Xz" - p(x) (non-linear)

# [E(X)]"
E(aX £b)=aBE(X)£b (linear)
Eb)=0b (Vb eR)

E(X+Y)=EX)+EY) (two variables)

Sample mean

Approximation of the population mean determined

experimentally.

where

n is the size of the sample (number of sample points)

x is the value of a sample point

1. Spreadsheet

2. In cell Al:

mean(randNorm(sd, mean, sample size))
3. Edit — Fill — Fill Range

4. Input range as Al:An where n is the number of

samples

5. Graph — Histogram

Sample size of n
n
= Ti 2T
X = — ==

Sample mean is distributed with mean p and sd % (ap-

proaches these values for increasing sample size n).

For a new distribution with mean of n trials, E(X’) =

B(X), sd(X’)= S(i(/%()
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Spreadsheet — Catalog —
randNorm(sd, mean, n)

where n is the number of samples. Show histogram
with Histogram key in top left.

To calculate parameters of a dataset:

Calc — One-variable

Normal distributions
_X-n
o g

Z

Normal distributions must have area (total prob.) of 1
= [T f(@)dz=1
mean = mode = median

Always express z as +ve. Express confidence

interval as ordered pair.

Central limit theorem

If X is randomly distributed with mean y and sd o,
then with an adequate sample size n the distribu-
tion of the sample mean X is approximately normal

with mean E(X) and sd(X) = =

Confidence intervals

e Point estimate: single-valued estimate of the

population mean from the value of the sample

mean T

e Interval estimate: confidence interval for popu-

lation mean p

e C% confidence interval = C% of samples will

contain population mean p

95% confidence interval

For 95% c.i. of population mean u:

re (xj: 1.96\%)

where:

T is the sample mean
o is the population sd

n is the sample size from which T was calculated

Menu — Stats — Calc — Interval
Set Type = One-Sample Z Int

and select Variable

Margin of error

For 95% confidence interval of p:

Always round n up to a whole number of samples.

General case

For C% c.i. of population mean u:

ze Gik\jﬁ)

where k is such that Pr(—k < Z < k) = &

Confidence interval for multiple trials

For a set of n confidence intervals (samples), there is
0.95™ chance that all n intervals contain the population

mean .

8 Hypothesis testing

Note hypotheses are always expressed in

terms of population parameters

Null hypothesis H,

Sample drawn from population has same mean as con-
trol population, and any difference can be explained by

sample variations.

16
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Alternative hypothesis H; If p < o, null hypothesis is rejected

. . Ifp > 11 hypothesis i ted
Amount of variation from control is significant, despite P~ @, it Lypothesis 1s accepte

standard sample variations.
z-test

p-value Hypothesis test for a mean of a sample drawn from a

normally distributed population with a known standard
Probability of observing a value of the sample statistic Y bop

deviation.
as significant as the one observed, assuming null hypoth-

esis is true.
Menu — Statistics — Calc — Test.
For one-tail tests:
Select One-Sample Z-Test and Variable, then in-

p-value = Pr (X < p(Hy) | p = p(Hy)) put:
Py (Z < (n(Hy) — p(Hy)) - ﬁ) p cond: same operator as Hy
sd(X) o' expected sample mean (null hypoth-
then use normCdf with std. norm. esis)
o: standard deviation (null hypothesis)
p Conclusion i sample mean
> 0.05 insufficient evidence against Hy : sample size
< 0.05 (5%) good evidence against Hy
< 0.01 (1%) strong evidence against H One-tail and two-tail tests
< 0.001 (0.1%) | very strong evidence against Hg p-value (two-tail) = 2 x p-value (one-tail)

Finding n for a given p-value One tail

Find ¢ such that Pr(Z < ¢) such that ¢ = o (use ® j has changed in one direction

invNormCdf on CAS). e State “H; : 4 S known population mean”

Significance level « Two tail
The condition for rejecting the null hypothesis. e Direction of Ay is ambiguous
1
aV2r |
‘ 68.27% ‘
B l !
[ w ‘ 95.35% ‘ :
= : / \ |
o l ) 99.73% l l ‘
(n—20) (b —o) ® (n+o0) (1 +

20) z

17
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e State “Hj : u # known population mean”

p-value = Pr(|X — u| > |[To — p)

= (|Z|> )

To —

o++n

where
1 is the population mean under Hy
To is the observed sample mean
o is the population s.d.

n is the sample size

Modulus notation for two tail

Pr(|X —p| > a) = “the probability that the distance

between 1z and p is > a”

18

Inverse normal

- n n v
invNormCdf ("L", «, a )

Errors

Type I error Hj is rejected when it is true

Type II error Hj is not rejected when it is false

Actual result

z-test Hj true H, false
Reject Hy Type I error | Correct
Do not reject Hy Correct Type II error




