Year 12 Specialist Andrew Lorimer 1 COMPLEX NUMBERS

1 Complex numbers Properties

C={a+bi:a,beR}

|z122| = |21]|22]
2| _ |al
Z9 ‘ZQ|

Cartesian form: a + bi
|21 + 22| < |z1] + |22]
Polar form: rcis6

Multiplicative inverse

Operations
Cartesian Polar 1 a—Dbi
1o 2T
: : a® + b2
z1t 29 | (axe)(bxd)i convert to a + bi =
+kxz krcisf B Wa
—1 ka £ kbi
—k Xz krcis(6 £ ) = rcis(—0)
2129 | ac—bd+ (ad+be)i | rirgcis(fy + 02)
2+ 2 | (%) = |2e)? (:—;) cis(f — 62) Dividing over C
Scalar multiplication in polar form 2 .
N g = Z1%9
For k € R™: 2%
k (rcis@) = krcis@ |22
(a+ bi)(c — di)
For k € R S a—
O—m [0<Arg(z) < (rationalise denominator)
k (rcis@) = krcis B
0+7m |—m<Arg(z) <0
Polar form
Conjugate
z=rcisf
Z=aF b
= r(cosf + isin )
= rcis(—0)

o 7 = |z| = y/Re(2)? + Im(z)?
On CAS: conjg(a+bi)

e § =arg(z) On CAS: arg(a+bi)

Properties
e Arg(z) € (—m,m) (principal argument)
2120 =721 7%
e Convert on CAS:
2129 =721 22 . . .
compToTrig(a+bi) <= cExpand{r-cisX}
kz=kz | keR
) ) e Multiple representations:
2Z = (a + bi)(a — bi)
rcisf = rcis(f + 2nm) with n € Z revolutions
—_ CL2 T b2
:\z|2 e cism=—1, cis0=1
Modulus de Moivres’ theorem
2| = |0%] = Va2 + b2 (rcis@)™ = r" cis(nd) where n € Z
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Complex polynomials Argand planes
Include + for all solutions, incl. imaginary Im(z)
224 a? = 2% — (ai)? B
Sum of squares N z=a+bi
= (z+ ai)(z — ai) ' rcisd
Sum of cubes  a®£b* = (a+b)(a®>Fab+b?) r i
Division P(z) = D(2)Q(z) + R(z) f
Remainder Let o« € C. Remainder of (‘fz Re(2)

theorem P(z) + (z — ) is P(a)

e Multiplication by i = CCW rotation of Z
Factor theorem z—a is a factor of P(z) <= P Y 2

—\ —\
Pla)=0foraeC o Addition: z1 + 29 = Oz + Ozy
Conjugate root P(z)=0at z=a+bi (=
theorem both z; and Z7 are solutions) Sketching complex graphs
Linear
nth roots

e Re(z) = ¢ or Im(z) = ¢ (perpendicular bisector)

nth roots of z = rcis @ are:
e Im(z) = mRe(z)

z =7rn Cis
n

1 (9"‘2]”) o |z+a|l=|z+b = 2(a—b)x="1>—a?
Geometric: equidistant from a, b

Same modulus for all solutions

Circles

Arguments separated by %’T .. there are n roots ) ) 9
o |z — z1|* = ?|zg + 2

If one square root is a + bi, the other is —a — bi o |z—(a+bi)|=c = (z—a)? oy - b)2 = 2

e Give one implicit nth root z;, function is z = zf Loci Arg(z) <0

Tm(z)
Solutions of 2™ = a where a € C lie on the circle

2
22 4+y? = (\aﬁ) (intervals of 27”)

.2 : : fud
For 0 = az® + bz + ¢, use quadratic formula: PR 1 Re(2)

L —b+Vb% — dac
o 2a

Fundamental theorem of algebra Im(2)
A polynomial of degree n can be factorised into n linear
factors in C:
1
4
oy - Re(z)
8
= P)=a(z—a1)z—a)(z —a3)...(z —ayp) (o= |z (11
Arg(z + i) =3 -1

where a1, as,as,...,a, € C
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2 VECTORS

2 Vectors

Y

Column notation

-T; . .
<~ 11+ 1Y)

Y

Ty — T
? ' between A(x1,41), B(x2,y2)

Y2 — Y1
Scalar multiplication
k- (zi+yj) = kxi+ kyj

For k € R™, direction is reversed

Vector addition

(xi+yjg)Lt(ai+bj)=(rLta)i+ (yL£b)j
e Draw each vector head to tail then join lines
e Addition is commutative (parallelogram)

—\
eu—v=u+(—v) = AB=b-—a

Magnitude

(2 +yg)| = Va2 +y?

Parallel vectors
ul||lv < wu = kv where k € R\ {0}

For parallel vectors a and b:

|al|b] if same direction

—|al|b| if opposite directions

Perpendicular vectors

alb < a-b=0 (since cos90 =0)

Unit vector |a| =1

=a-|a|

Scalar product a - b
b
0

a

a-b= a1b1 +a2b2

|a||b| cos O

(0 <0 <) - from cosine rule

On CAS: dotP([a b c], [d e f])

Properties
1. k(a-b) = (ka)-b=a- (kb)

2.a-0=0

6. a-a=|a]?=ad?

Angle between vectors

cos ) — a-b o a1b1 +a2b2
|al[b] |a|[b]

On CAS: angle([a b c]l, [a b cl)

(Action — Vector —Angle)
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Angle between vector and axis Collinear points

Fora = aji+asj+azk which makes angles o, 3, with > 3 points lie on the same line

o B
positive side of z,y, z axes: C ’
A c [

as as
—=, cosy= Tal a o

cos B =
|al

ai
cosa = —

lal’
On CAS: angle([a b c], [1 0 0])

for angle between at + bj + ck and x-axis
e.g. Prove that

—\ —\

AC =mAB <= c=(1-m)a+mb
Projections & resolutes RGN
= c¢c=0A+ AC

N SN
=0A+mAB

=a+m(b—a)

b
=a+ mb—ma
=(1—-m)a+mb
| b (vector projection/resolute)
—— - N
a-b Also, = OC = MOA + uOB
T -
where A+ p =1
_(a-b b N
bl [b] If C lies along AB, = 0<pu<1
= (a-b)b

Parallelograms

1 b (perpendicular projection)

—\ .\
5= |ul e Diagonals OB, AC bisect each other
=a-b e If diagonals are equal length, it is a rectangle
= Lb —\ —\ —\ —\ —\ —\
] o |OB]?+|CAP = |OAP +|AB[* +|CBJ* +|0C?
= |a| cosf

e Areca=c-a

Rectangular (||, L) components Useful vector properties

b b
a:(l];l)b+(a_;)l-l)> e a|b = b=ka for some k € R\ {0}
e If @ and b are parallel with at least one point in

Vector proofs common, then they lie on the same straight line

s . S a3l
Co?current intersection of > 3 lines ealb a-b=0

e a-a=|al?
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Linear dependence e Range =R\ (—1,1)
a,b, c are linearly dependent if they are }f and: e Turning points at § = (2"+1)” Ine€Z
0=ka+Ib+mc e Asymptotes at 0 =nw|ncZ
s.c=ma+nb (simultaneous)
Secant
a,b, and c are linearly independent if no vector in the § § Y :
: : ‘| secx
set is expressible as a linear combination of other vec- :
tors in set, or if they are parallel.
. . /l \ Lo T\ CcosT
Three-dimensional vectors M R A
=27 N =T N 2
Right-hand rule for axes: z is up or out of page. S I N
z
N

1
secl = —— | cos@ #0
cos 0

Domain:R\W:neZ}

Range =R\ (—1,1)

e Turning points at § =nn |n €Z

Parametric vectors

Asymptotes at § = w lneZ

Parametric equation of line through point (zq, yo, 20)

and parallel to at + bj + ck is: Cotangent
cot x

rT=x,+a-t

y=vyo+b-t

z=2zyt+c-t )/

. . =
3 Circular functions &
sin(bz) or cos(bx): period = 2T
tan(nz): period = ©
asymptotes at £ = (Qk;;:)ﬂ |keZ
cosf | .
Reciprocal functions cotf = sin 0 | sin¢ # 0
Cosecant e Domain =R\ {n7:n € Z}
1
COSGCO:%| Slne?éo ° Range:R
sin 0
e Domain =R\nr:ne€Z e Asymptotes at 0 =nrw|n c€Z
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Symmetry properties Inverse circular functions
sec(m £ x) = —secx y
sec(—x) = secx
cosec(m + ) = F cosec x
cosec(—x) = — cosec (1, %)
cot(mr + ) = +cotx
x
cot(—z) = —cotx * * * °
-1 —0. 0.5 1
sin™!z
Complementary properties (-1,-2) ~z
T
sec (5 - x) = cosec ¥
71— p—
cosec (5 - :v) =secx Inverse functions: f(f~!(x)) = z (restrict domain)
T
cot (7 — J;) =tanx
2
T
tan (5 - m) =cotx

sin™':[-1,1] = R, sinlz=y
Pythagorean identities

1+ cot?x = cosec’ z, where sinz # 0 )
where siny =z, y € [57, 7]

1+tan?z =sec?z, where cosz # 0

Compound angle formulas

cos ' [-1,1] = R, costax=y
cos(x £ y) = cosx + cosy F sinzsiny

sin(z + y) = sinx cosy & cosxsiny where cosy =z, y € [0, 7]

tan(z + y) tanx £ tany
an(x =
Y lFtanztany

tan ! :R—> R, tan 'z =
Double angle formulas Y

cos 2z = cos? z — sin? x
) where tany =z, y € (—%,g)
=1-2sin“x
9 )
—9cosr — 1 e SIS ST
y=3 2
. . T
sin2x = 2sinx cos x
y=—3
Stang e g S
tan2r = ——— 2
— tan“x
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4 Differential calculus

Limits
lim f(z)
L=, LT limit from below/above

lim,_,, f(z) limit of a point

For solving x — oo, put all z terms in denominators

e.g.
. 2x+3 2+2 2
lim =
z—00 L — 2 1—% 1

Limit theorems

1. For constant function f(z) =k, lim,—,, f(z) =k

2. limgo(f(z) £ g(x) =F £ G
3. limgo(f(z) x g(x)) =F x G

4. - lim,_,, ¢ X f(x) = cF where ¢ = constant

5. limy s, % —

LG A0

Ql

6. f(x) is continuous <= L~ =L*" = f(z)Vz

Gradients of secants and tangents

Secant (chord) - line joining two points on curve

Tangent - line that intersects curve at one point

First principles derivative

. o0y dy
/ _ Yy _ %Y
Flw)= 52%0 S dx

Logarithmic identities

logy, (zy) = log;, = + log, y

log, 2™ = nlog, =

log, y*" = 2" log, y

Index identities

bm+n = pm . pn

(b-c)"=b"-c"
am+a"=am""

Reciprocal derivatives

1 dx
Ay .,
A

Differentiating = = f(y)

Find d—x, then d—y = L

dy dx dz
dy

Second derivative

fl@) —f' (@) — f"(x)

o, dy
v dx dx?

Order of polynomial nth derivative decrements each

time the derivative is taken

Points of Inflection

Stationary point - i.e. f'(x) =0

Point of inflection - max |gradient| (i.e. f” =0)

e if f/(a) = 0 and f”(a) > 0, then point (a, f(a))

is a local min (curve is concave up)

o if f'(a) =0 and f”(a) < 0, then point (a, f(a))

is local max (curve is concave down)

e if f”(a) = 0, then point (a, f(a)) is a point of

inflection

e if also f’(a) = 0, then it is a stationary point of

inflection

Implicit Differentiation

Used for differentiating circles etc.
If p and g are expressions in x and y such that p = g,

for all  and y, then:

dp _ dq dp _ dq

dr dx o dy dy

Action — Calculation

impDiff (y~2+ax=5, x, y) (returnsy’ =...)
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d?y d?y . .
Fr >0 ) <0 i 0 (inflection)

dy
— >0
a / / /
Rising (concave up) Rising (concave down) Rising inflection point
dy
— <0
dx \\ \ \
Falling (concave up) Falling (concave down) Falling inflection point
dy \ / / \
=0
dz
Local minimum Local maximum Stationary inflection point
Slope fields Integration
oy / /f(a:)-dx:F(a:H—c where F'(z) = f(z)
N\ - /] / Definite integrals
Fol .
VaNCc /] [ 1@)-do = F@L = FO) - o
\ x a
\ Vv - / e Signed area enclosed by
\ \ o\ N y=f(z), y=0, z=a, x=0
\ R o Integrand is f
\ \ ® [ntegrana 1S .
RN RN ’

Parametric equations

Properties

/abf(x)dx:/:f(x)dx+/cbf(x)dx

For each point on (f(t),g(t)): /a f(z)dz =0
b b
/ k‘-f(a:)da::k/ f(x) dx
dt da;d dt / f(x) £ g(x) dx :/ f(z) dx :I:/ g(z) dzx
y a a a
d ( ) d b a
: y In providedd—f7£0 /a f(I)dl":*/b f(z) de
" (W)
Also...
<dl/> Integration by substitution
dt _ 7y
dch N (dm) where y' = dx /f — dm—/f(u) du
dt
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f(u) must be 1:1 —> one « for each y

e.g. fory:/(2x+1)\/:17+4~d:z:
let u=x+4
du
ke
dx
—z=u—4
theny:/(2(u—4)+1)u% -du

(solve as normal integral)

Definite integrals by substitution

For f; f(z)% . dz, evaluate new a and b for f(u) - du.

Trigonometric integration
sin™ x cos™ z - dx
m is odd: m = 2k + 1 where k € Z

— sin®* 2 = (sin 2)¥sinz = (1 — cos® z)* sinz

Substitute © = cosx

n is odd: n =2k + 1 where k € Z

k

— cos? 1z = (cos?z)F cosz = (1 —sin® z)* cos x

Substitute u = sinx

m and n are even: use identities...
2. — 1 .
e sin“z = 5(1 — cos2x)

e cos®x = (1 + cos2x)

e sin2x = 2sinxcosx

Partial fractions

To factorise f(z) = ai_ﬁ.
] A B C
=—+ =+ — 1
a-fy o By M

Multiply by (- 8- 7):
0 =pBvA+ayB + aBC (2)

Substitute x = {a, 8,v} into (2) to find denominators

Repeated linear factors

p(l‘) _ Al + AQ An
@—ar (@-a)  (@-ap? (@—ay
Irreducible quadratic factors
o 3z —4 A Bz +C
& 2z —3)(a2+5) 22-3 ' 2245

Action — Transformation:
expand(..., x)

To reverse, use combine(. . .)

Graphing integrals on CAS

In main: Interactive — Calculation — f

Restrictions: Define f(x)=.. then f(x)|x>..

Applications of antidifferentiation

e z-intercepts of y = f(z) identify z-coordinates of

stationary points on y = F(z)

e nature of stationary points is determined by sign

of y = f(z) on either side of its z-intercepts

e if f(x) is a polynomial of degree n, then F(z) has
degree n + 1

To find stationary points of a function, substitute z

value of given point into derivative. Solve for % =

Integrate to find original function.

Solids of revolution

Approximate as sum of infinitesimally-thick cylinders

Rotation about xz-axis

r=b
V= 7T/ f(z)? dx

=a
Rotation about y-axis

y=b
V:ﬂ/ 22 dy
Yy

=a
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Regions not bound by y =0

b
V= 77/ f(x)? = g(z)? dx

where f(z) > g(x)
Length of a curve

b dy .
L= 1+ (d—)2 dz  (Cartesian)
a x

— + (%)2 dt (parametric)

a) Evaluate formula

b) Interactive — Calculation — Line — arcLen

Rates

Gradient at a point on parametric curve

dy dy dx  dx .

W _a. v dr hain rul
dr ~dr oar | ap 70 (chainule)
Py ey
dz? dx dt = dt dx

Rational functions

where P, () are polynomial functions

Addition of ordinates

e when two graphs have the same ordinate, y-

coordinate is double the ordinate

e when two graphs have opposite ordinates, y-

coordinate is 0 i.e. (z-intercept)
e when one of the ordinates is 0, the resulting or-

dinate is equal to the other ordinate

Fundamental theorem of calculus

If f is continuous on [a, b], then

b
/ f(z) dx = F(b) - F(a)

where F = [ fdx

10

Differential equations

Order - highest power inside derivative

Degree - highest power of highest derivative

(%
e.g.

3
x) order 2, degree 3
Verifying solutions

d2

Start with y = ..., and differentiate. Substitute into

original equation.

Function of the dependent variable

dx

dy

.ody

©odx T

1
g(y)°

both sides to solve equation. Only add ¢ on one side.

dy _

Ifdxfg

(y), then

Integrate

Express e© as A.

Mixing problems

dm) _ (dmy  _ (dm
d )y  \ dt ), dt out
Separation of variables
If Z—Z = f(z)g(y), then:
[ [ 14
)de= [ — dy
9(y)

Euler’s method for solving DEs

flz+h) - f(z)
h

for small A

~ f'(x)

= f(z+h) = f(z)+hf'(z)
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Derivatives Antiderivatives
fx)  f(z) fl@) [f(z)-dw
. n 1 n+1
sinax acosax " ——=x
n+1
cosar —asinax ! 1l (ax +0)+
e LA G c
e’ e’ (ax +b)~! %loge lax 4+ b| + ¢
1
ek Ee’m +ec
ek efr e
. !
sin kx T cos(kx) + ¢
1
cos kx Z sin(kx) + ¢
sec? kx %tan(k‘x) +c
1 . 1T
- S0 E+c|a>0
=l Lz
———3 o8 E+c|a>0
=% tan 'L 4c
L@ g flx)+c¢
f(@) @
1
% o) & (reciprocal) Jfw) -2 de [ f(u)-du (substitution)
d

(quotient rule)

x x
Note sin™* (—) + cos ™1 (—) is constant Vz € (—a,a)
a a
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5 Kinematics & Mechanics

Constant acceleration
e Position - relative to origin

e Displacement - relative to starting point

Velocity-time graphs

e Displacement: signed area between graph and ¢

axis

e Distance travelled: total area between graph and

t axis

. d’z  dv dv d (1 2)
acceleration = — = — = (20

a2~ dt ~ Vdr  dr \2
no
v=u-+at T
v2 = u? + 2as t

s=1(v+ult a

s =ut + %at2 v

s =uvt — %at2 U
Aposition

R

speed = |velocity]|

— 2 2 2
=4/ Uz T vy + vz

Distance travelled between t = a — t = b:

[V (@)

Shortest distance between r(ty) and r(¢;):

= [r(t1) = 7(t2)]

Vector functions
r(t) =zi+yj+ zk

e If r(t) = position with time, then the graph of
endpoints of r(t) = Cartesian path

e Domain of r(t) is the range of z(t)

e Range of () is the range of y(t)

12

Vector calculus
Derivative

Let v(t) = z(t)t + y(t)(y). If both z(¢) and y(t) are
differentiable, then:

6 Dynamics

Resolution of forces

Resultant force is sum of force vectors

In angle-magnitude form
Cosine rule: Z = a2 4+ V?
a b c

sinA sinB sinC

— 2abcos b

Sine rule:

In i—j form

Vector of a N at 6 to x axis is equal to a cos fi+asin0j.
Convert all force vectors then add.

To find angle of an ai + bj vector, use § = tan™* g

Resolving in a given direction

The resolved part of a force P at angle 6 is has mag-
nitude P cos 6
To convert force ||OA to angle-magnitude form, find

component | OA then:

7| :\/(||oi4)2+ @ 071)2

6 = tan~* 104
[|OA

Newton’s laws

1. Velocity is constant without X F
2. %puEF = F =ma

3. Equal and opposite forces

Weight

A mass of m kg has force of mg acting on it
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Momentum p

p=mu

Reaction force R

e With no vertical velocity, R = mg

e With vertical acceleration, |R| = m|a| — mg

(units kg m/s or Ns)

e Suspended pulley: tension in both sections of

rope are equal

‘a| _ mi1—ms
gm1+m2

With tension:

where m accelerates down

mig — T =mia
= M1g—mag = Mia+maa

T — mog = moa

e With force F' at angle 6, then R = mg — F sin6 e String pulling mass on inclined pane: Re-
solve parallel to plane
Friction
T —mgsinf = ma
Fr=pR (friction coefficient)

Inclined planes

F = |F|cosbi+ |F|sinfj

e Normal force R is at right angles to plane

e Let direction up the plane be ¢ and perpendicular

to plane j

mg cos 6

mg sin 0

mg

Connected particles

mig

e Linear connection: find acceleration of system

first

m29

e where ms

e Pulley on right angle: a =

is suspended (frictionless on both surfaces)

e Pulley on edge of incline: find downwards

force Wy and components of mass on plane

In this example,

note T1 }é T22 g
Equilibrium
A B
- = — = _C (Lami’s theorem)
sina sinb sinc

¢ =a® 4+ b* — 2abcos b (cosine rule)
Three methods:
1. Lami’s theorem (sine rule)

2. Triangle of forces (cosine rule)

3. Resolution of forces (XF = 0 - simultaneous)

ma
T
,3 To verify: Geometry tab, then select points with
normal cursor. Click right arrow at end of toolbar
and input point, then lock known constants.
ma

Variable forces (DEs)

A2z dv dv d (1
agai = —=79— = — —
dt? dt de dz \2

\fm2g

)

13
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7 Statistics

Continuous random variables

A continuous random variable X has a pdf f such that:
1. f(z) > 0V

2. [% fl@)de=1

Pr(ch)z/iC f(z) dex

Two random variables X,Y

If X and Y are independent:
E(aX +0Y) =aE(X) 4+ bE(Y)
Var(aX 4+ bY + ¢) = a® Var(X) + b* Var(Y)

Linear functions X — aX +b

Pr(Y <y)=Pr(aX +b<y)

)

y—>b
a

Pr(X§

y—>b
a

f(x) dx

— 00

Mean: E(aX +b)=aE(X)+b

Variance: Var(aX + b) = a® Var(X)

Expectation theorems

For some non-linear function g, the expected value

E(g(X)) is not equal to g(E(X)).

E(X?) = Var(X) - [B(X)]’

E(X") =Xz" - p(x) (non-linear)

# [E(X)]"
E(aX £b)=aFE(X)£b (linear)
E®b) =0 (Wb eR)

E(X+Y)=EX)+EY) (two variables)

Sample mean

Approximation of the population mean determined

experimentally.

where
n is the size of the sample (number of sample
points)

x is the value of a sample point

. Spreadsheet

In cell Al:

mean (randNorm(sd, mean, sample size))
Edit — Fill — Fill Range

Input range as Al:An where 7 is the number of

samples

Graph — Histogram

Sample size of n

g

Vn
(approaches these values for increasing sample size n).

Sample mean is distributed with mean p and sd

For a new distribution with mean of n trials, E(X”)

B(Y), sd(x') = =)

14
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e Spreadsheet — Catalog —

randNorm(sd, mean, n) where n is
the number of samples. Show histogram

with Histogram key in top left

e To calculate parameters of a dataset: Calc

— Omne-variable

Normal distributions

_X-n
o g

Z

Normal distributions must have area (total prob.) of 1
= [T fl@)dz=1
mean = mode = median

Always express z as +ve. Express confi-

dence interval as ordered pair.

Central limit theorem

If X is randomly distributed with mean g and sd o,
then with an adequate sample size n the distribution

of the sample mean X is approximately normal with

mean F(X) and sd(X) = T

Confidence intervals

e Point estimate: single-valued estimate of the
population mean from the value of the sample

mean T

e Interval estimate: confidence interval for pop-

ulation mean p

e C% confidence interval = C% of samples will

contain population mean p

95% confidence interval

For 95% c.i. of population mean u:

= (x:t 1.96\%)

where:

T is the sample mean
o is the population sd

n is the sample size from which T was calculated

Menu — Stats — Calc — Interval
Set Type = One-Sample Z Int

and select Variable

Margin of error

For 95% confidence interval of u:

Always round n up to a whole number of samples.

General case

For C% c.i. of population mean u:

ze (m:k\%)

where k is such that Pr(—k < Z < k) = &

Confidence interval for multiple trials

For a set of n confidence intervals (samples), there is
0.95™ chance that all n intervals contain the population

mean [.

8 Hypothesis testing

Note hypotheses are always expressed in

terms of population parameters

Null hypothesis H

Sample drawn from population has same mean as con-
trol population, and any difference can be explained by

sample variations.
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Alternative hypothesis H;

Amount of variation from control is significant, despite

standard sample variations.

p-value

Probability of observing a value of the sample statis-
tic as significant as the one observed, assuming null
hypothesis is true.

For one-tail tests:

p-value = Pr (X < p(Hy) | p = p(Hy))
(u(Hy) — p(Hy)) - ﬁ)

:Pr(Z§ SA(X)

then use normCdf with std. norm.

p Conclusion

> 0.05 insufficient evidence against Hj
< 0.05 (5%) good evidence against Hy

< 0.01 (1%) strong evidence against Hy

< 0.001 (0.1%) | very strong evidence against Hy

Significance level o

The condition for rejecting the null hypothesis.
If p < «, null hypothesis is rejected
If p > «, null hypothesis is accepted

z-test

Hypothesis test for a mean of a sample drawn from
a normally distributed population with a known stan-

dard deviation.

Menu — Statistics — Calc — Test.

Select One-Sample Z-Test and Variable, then in-

put:
@ cond: same operator as Hy
Lot expected sample mean (null hypoth-
esis)
o: standard deviation (null hypothesis)
frik sample mean
n: sample size

One-tail and two-tail tests

p-value (two-tail) = 2 x p-value (one-tail)

One tail

e 4, has changed in one direction

e State “H; : ¢ < known population mean”

Two tail

e Direction of Ay is ambiguous

e State “Hj : p # known population mean”

1
ov2or |
68.27%
=
|| I T 9535% T |
= | / \ |
& : : 99.73% : : ‘
i i | | 1
(n—20)  (n—o0) H (uto)  (u+20) r
_9 —‘1 0 1 é Z
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Inverse normal

p-value = Pr(|X — u| > |ZTg — p)

o
= _ invNormCdf ("L", «, —, W)
= (|Z| > | ) "

UT\/ﬁ

Errors
where

1t is the population mean under H Type I error Hj is rejected when it is true

Zo is the observed sample mean Type II error Hj is not rejected when it is false

o is the population s.d.

n is the sample size Actual result
z-test Hj true H, false
Modulus notation for two tail
o Reject Hy Type I error | Correct
Pr(|X—p| > a) = “the probability that the distance
Do not reject Hy Correct Type II error

between & and p is > a”
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